用户名: 密码: 验证码:
混凝土泵车臂架结构健康监测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:混凝土泵车是将用于泵送混凝土的泵送机构和用于布料的臂架系统集成在汽车底盘上的专用车辆,具有工作效率高、浇筑质量好、机动灵活等优点。由于工作环境恶劣、维护难度大,以及材料老化、环境侵蚀、疲劳等长期效应与突变等灾害因素相互作用,混凝土泵车结构损伤及故障既有渐变性,又有突发性。如操作不当、维护不及时,均有可能造成重大经济和生命安全问题。
     本文在国家高技术研究发展计划(863计划)项目“远程监控及维护关键技术及单元系统研究”(2008AA042801)及“混凝土泵车远程监控及维护应用系统研制”(2008AA042802)资助下,以理论研究、仿真分析、实验分析为研究手段,围绕混凝土泵车臂架结构健康监测关键技术问题-结构健康监测方法、传感器布置、监测信号采集处理、特征参数提取、健康状态评价等进行研究。主要研究工作如下:
     对混凝土泵车结构及载荷特点进行了分析,对其结构故障进行了统计,采取仿真分析、实验分析方法对泵车臂架结构动静态特性进行研究,提出了基于应变参数的混凝土泵车臂架结构健康监测策略。
     对频谱分析、幅值分析及损伤分析的采样频率问题进行了研究。推导了幅值分析及损伤分析误差与采样频率的关系,提出了基于误差控制的应变信号采样策略。将该方法运用到泵车臂架结构健康监测应变信号采样频率的确定,通过实例验证该采样频率满足损伤分析精度要求,能够减少采集的数据量、节省存储空间并提高数据处理及分析的效率。利用小波多分辨率分析理论和方法,对混凝土泵车臂架结构监测应力信号进行了分析处理,对监测信号进行了降噪和奇异值剔除处理,并分析了各种尺度响应信号的分布特征。
     提出了基于综合评价法的监测应变传感器优化布置方法。该方法首先根据混凝土泵车臂架结构、工作环境、损伤特点及健康监测内容等确定了影响测点布置的因素集;利用层次分析法(AHP)确定各因素的权重;利用各待选测点应变信号的相关系数构建了模糊支持度矩阵,计算了各待选测点的综合支持度以表征传感器覆盖能力;基于模糊数学的方法和思想,将因素集中的待选测点应力水平、传感器安装难易程度、测点安全性、应力梯度因素进行了分级及标准量化;最后利用加权平均综合评价方法对某泵车臂架待选测点进行了优化布置。
     对疲劳累积损伤理论及损伤特征参数提取方法进行了研究。基于疲劳损伤理论,研究了信号分段影响宽带随机应力疲劳损伤计算精度的机理。提出了基于实时监测数据的泵车臂架结构载荷谱提取方法。该方法能够减小长周期应力循环的截断及信号频繁重组,提高了载荷谱的提取精度及疲劳损伤计算准确度。
     建立了基于损伤的臂架结构健康状态评价体系,将疲劳损伤引入到结构运行工况健康状态评估、结构周期性点检及寿命评估,为泵车臂架结构健康维护及管理提供依据。将疲劳损伤作为评价指标,结合小波多分辨率分析理论和方法,对臂架结构不同尺度应力响应进行了累积损伤分析,揭示了不同尺度应力响应对臂架结构损伤的影响。
Abstract:Concrete pump truck is a specialty vehicle with the pump transport mechanism used for pumping conceret and boom used for distributing conceret integrated on automobile chassis. It has the advantages of high efficiency, good pouring quality and high flexibility. Due to the interaction of the poor working conditions, difficult to maintenance, materials aging, environmental erosion, fatigue, other long-term effects and disaster factors, the structural damage and failure of concrete pump truck has the propoety of gradient and sudden. Improper operation and not timely maintenance are likely to cause significant economic and life-safety issues.
     The work in this thesis was supported by the National "863" Plan essential project of China "Remote Monitoring and Maintenance of Key Technologies and Unit System"(2008AA042801) and "Concrete Pump Truck Remote Monitoring and Maintenance Application System Development"(2008AA042802). Using theoretical studies, simulation modeling and experimental analysis as research tools, the key technology of health monitoring for concrete pump truck structure, such as structural health monitoring method, sensor optimal placement, monitoring signal acquisition and processing, characteristic parameter extraction and health status evaluation method are studied in this thesis. The main contents are as follows:
     The structure and load characteristics of concrete pump truck was described. The statistics analysis of the common failure of the concrete pump truck structural was done. The static and dynamic characteristics of concrete pump truck boom structure were studied by simulation and experimental analysis. The health monitoring strategy of concrete pump truck boom structure based on strain parameter was proposed.
     The determination of sampling frequency in spectrum analysis, amplitude analysis and damage analysis was studied. The relationship between sampling frequency and damage analysis accuracy was deduced. A signal sampling strategy based on error contral was proposed. This method was applied to the strain signal sampling frequency determination of pump truck boom structure health monitoring. By examples, it is verified the sampling frequency can not only met the accuracy requirements of damage analysis, but also save data storage and increase the data treatment efficiency. Based on theory and methods of wavelet multi-resolution analysis, the noise reduction and abnormal value elimination of the structure monitoring strain signal were processed, and the distribution characteristics and the cumulative damage of different scale response signal was analyzed.
     Based on comprehensive evaluation method, a method of optimal monitoring strain sensor placement was proposed. According to the characteristics of concrete pump truck boom structure, working environment, damage and health monitoring content, the factor set affecting sensor placement was determinded. And the weight of each factor was determined based on Analytical Hierarchy Process (AHP). The fuzzy support matrix was constructed by using the correlation coefficient of strain signal of the proposed measuring points, and the comprehensive support degree of each proposed measured points was also calculated. Based on fuzzy mathematics methods, factors such as the stress level, the measuring point security, the sensor installation performance and the stress gradient, were classified and standardized. At last, the selected monitoring points of a concrete pump truck boom were optimized according to comprehensive evaluation method.
     The cumulative damage theory and the method of damage characteristic parameter extraction were researched. Based on fatigue damage theory, the influence mechanism of signal segment on the damage calculation accuracy was studied. A optimal load spectrum extraction method based on the real-time monitoring data of pump truck boom structure was proposed. The method can reduce the truncation of long-time stress cycles and frequent signal reorganization, which can improve the accuracy of load spectrum extraction and fatigue damage calculation.
     Based on damage index, the health evaluation system of boom structural was established, which introduced the fatigue damage into structure health status assessment of running condition, structure periodical check and life assessment. The evaluation result can provide the basis for health maintenance and management of the pump truck boom structure. Using fatigue damage as the evaluation index, and combining with wavelet multi-resolution analysis theory and method, the cumulative damage of different scale stress response was analyzed. The study reveals the influence of different scale stress response on the boom structure damage.
引文
[1]易秀明,王尤毅.混凝土泵车[M].长沙:三一重工股份有限公司,2007:1-20
    [2]张国忠.现代混凝土泵车及施工应用技术[M].北京:中国建材工业出版社,2004:56-68.
    [3]王帅.37米混凝土泵车臂架结构强度与振动特性研究[D].长沙:中南大学,2011
    [4]向文波.三一携手普茨迈斯特缔造全球混凝土泵行业王者[J].三一杂志,2012,3:22-33
    [5]胡宝秀.泵车输送泵掉落砸死一工人[N].东方早报,2012-2-23(A11).
    [6]李勋文,尹槐林.混凝土泵车臂架特点及选用[J].工程机械与维修,2007,8:88-90
    [7]姜校林.混凝土泵车行业存在的问题[J].建筑机械(上半月),2007,4:36.
    [8]吴斌兴等.国家工技术研究发展计划(863计划)重点项目申请书-工程机械远程维护及监控系统[D].中华人民共和国科学技术部,2008.
    [9]QC/T 718-2004.混凝土泵车[S].北京:中国计划出版社,2004.
    [10]姜绍飞,吴兆旗.结构健康监测与智能信息处理技术及应用[M].北京:中国建筑工业出版社,2011,2:1-2.
    [11]Edin G, Golanty E. Health and Wellness[M].3rd ed. Boston,MA:Jones and Bartlett Publishers,1988:1-17.
    [12]武留信.健康概念与指标体系研究进展[C].第7届中国健康产业论坛暨中华医学会第四次全国健康管理学术会议,2010:12-14.
    [13]袁慎芳.结构健康监控[M].北京:国防工业出版社,2007:1-25.
    [14]盖会明.海洋平台的结构健康监测方法研究[D].北京:北京化工大学,2006,1-12.
    [15]周建庭,杨建喜,梁宗保.实时监测桥梁寿命预测理论及应用[M].北京:科学出版社,2010:24-30.
    [16]赵俊.结构健康监测中的测点优化布置方法研究[D].广州:华南理工大学,2011.
    [17]余波,邱洪兴,王浩,等.江阴长江大桥钢箱梁疲劳应力监测及寿命分析[J].公路交通科技,2009,26(6):69-73.
    [18]林健富,黄建亮,程瀛,等.广州新电视塔结构健康监测应变修正计算的研究[J].动力学与控制学报,2011,9(1):68-74.
    [19]李宏男.结构健康监测光纤光栅传感器技术[M].中国建筑工业出版社,2008:6-25.
    [20]董晓马.智能结构的损伤诊断研究及其传感器优化配置[M].郑州:黄河水利出版社,2008:62-85.
    [21]卢伟,滕军.基于数据融合的传感器优化布置方法[J].振动与冲击,2009.9,vo1.28(9):52-55.
    [22]朱宏平.结构损伤检测的智能方法[M].北京:人民交通出版社,2009:1-3.
    [23]Olusegun S.Salawu, Clive Williams. Structural Damage Detection Using Experimental Modal Analysis-acomparison of Some Methods[J]. Publ by Society of Photo-Optical Instrumentation Engineers, Bellinham, Wa, USA,1993:254-260.
    [24]谭冬莲.基于监测信息桥梁结构状态评估关键问题研究[D].上海:同济大学土木工程学院,2005.
    [25]郑蕊,李兆霞.基于结构健康监测系统的桥梁疲劳寿命可靠性评估[J].东南大学学报(自然科学版),2001,31(6):1-3.
    [26]Sarazin Geoff A, Newhook John P. A strain-based Index for Monitoring Laminates of FRP-strengthened Beams[J]. Construction and Building Materials, 2007,21:789-798.
    [27]X. Wang, N. Hu, Hisao Fukunaga, et al.Structural Damage Identification Using Static Test Data and Changes in Frequencies[J]. Engineering Structures,2001,23: 610-621.
    [28]李孟源.声发射检测及信号处理[M].北京:科学出版社,2010:33-64.
    [29]Yuan Shenfang, Wang Ling. On-line Damage Monitoring in Composite Structures[J]. Journal of Vibration and Acoustics,2003,125:178-186
    [30]Zagrai A, Giurgiutiu V. Electro-Mechanical Impedance Method for Crack Detection in Thin Plates[J]. Journal of Intelligent Material Systems and Structures, 2001,12(10):709-718
    [31]Park G, Sohn H, Farrar C R, et al. Overview of Piezoelectric Impedance-Based on Broadband Lamb Wave Exciation and Matched Filtering[C], Proceedings of 4th AIAA/ASME/ASCE/AHS Structures.Structural Dynamics and Material Conference. Norfolk, USA,2003, AIAA 2003,1563:1-7
    [32]薛岩波,杨波,陈贞翔.小波分析在土木工程结构健康监测系统中的应用研究[J].山东大学学报(理学版),2009,9:28-31.
    [33]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006:2-30.
    [34]Humar J, Bagchi A, Xu H. Performance of Vibration-based Techniques for the Identification of Structural Damag[J]e. Structural Health Monitoring,2006,5(3), 215-241
    [35]Wu Z, Huang N.E. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method[C]. Proc. R. Soc. Lond,2004,A, 460:1597-1611.
    [36]Huang N.E, Attoh-Okine. The Hilbert-Huang Transform in Engineering[M], Boca Raton,FL:CRC Press.2005.
    [37]滑广军,吴运新,唐宏宾,等.宽带随机应力损伤计算误差分析及改进措施[J].机械强度(已录用).
    [38]C.H. McInnes, P.A. Meehan. Equivalence of Four-point and Three-point Rainflow Cycle[J]. International Journal of Fatigue,2008,30:547-559.
    [39]Amzallag C, Gerey JP, Robert JL, Bahuaud J. Standardization of the Rainflow Counting Method for Fatigue Analysis[J]. Int J Fatigue,1994,16:287-93.
    [40]P. Frank Pai, Lu Huang, Jiazhu Hu,et al. Langewisch. Time-Frequency Method for Nonlinear System Identification and Damage Detection Sequence[J]. Structural Health Monitoring.2008,7(2):103-125.
    [41]雷新军,刘永红,张向阳,等.混凝土泵车臂架疲劳载荷谱研究[J].工程机械,2010,41(8):18-21.
    [42]易小刚,沈明星,刘永红,等.基于LABVIEW的泵车应力信号采集与分析系统[J].微计算机信息,2008,28(10):187-189.
    [43]钟志宏.基于MSC.Patran/Nastran的泵车臂架多姿态静力/模态自动分析程序的开发及应用[D].长沙:中南大学,2012.
    [44]Zhong Zhihong, Wu Yunxin, Ma Changxun. Simulation and Optimization of the Driving Forces of Hydraulic Cylinders for Boom of Truck Mounted Concrete Pump[C]. The fourth International Conference on Intelligent Computation Technology and Automation,2011,1:915-919.
    [45]Tang Hongbin, Wu Yunxin, Liao Zhiqi.Fault Diagnosis of Hydraulic Pump Bearing Based on EMD and Envelope Spectrum[J]. Journal of Digital Content Technology and its Applications,2011,12:28-34.
    [46]G.Cazzulani, C.Ghielmetti, H.Giberti, et al. A test rig and numerical model for investigating truck mounted concrete pumps [J]. Automation in Construction,2011, 5:1-10.
    [47]唐宏宾.混凝土泵车泵送液压系统故障诊断关键技术研究[D].长沙:中南大 学,2012.
    [48]唐宏宾,吴运新,滑广军,等.基于PCA和BP网络的液压油缸内泄漏故障诊断[J].中南大学学报,2011,42(12):3709-3714.
    [49]唐宏宾,吴运新,滑广军,等.基于EMD包络谱分析的液压泵故障诊断方法.振动与冲击[J],2012,31(9):44-48.
    [50]唐宏宾,吴运新,马昌训,等.小波变换在液压油缸泄漏故障诊断中的应用[J],计算机工程与应用,2012,48(5):221-223.
    [51]黄毅,王佳茜,邝昊.混凝土泵车便携式状态监测与故障诊断系统研究[J],中国工程机械学报.2010,8(4):441-443.
    [52]孙宇强.无线传感器网络在泵车臂架结构监测中的应用研究[D],太原:太原理工大学,2007.
    [53]石文泽.混凝土泵车监测系统的设计与研究[D].长沙:中南大学,2011.
    [54]胡凡.泵车臂架低周应力软测量模型的建立及其在疲劳损伤计算中的应用[D].长沙:中南大学,2012.
    [55]吴运新,胡凡,滑广军.泵车疲劳损伤计算中奇异值剔除方法[J].郑州大学学报(CSCD),2011,32(6):92-95.
    [56]王海英.水泥混凝土泵车振动性能与结构优化设计研究[D],长安大学,2003:77-86.
    [57]Zhou Shunwei, Zhang Siqi.Co-Simulation on Automatic Pouring of Truck-mounted Concrete Boom Pump[C]. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China,2007:53-57.
    [58]沈关林,张如一.动态应变测试技术[M].清华大学出版社,1999.
    [59]董忠红.水泥输送泵车结构强度研究[D].长安大学,2002.
    [60]夏冬星.水泥混凝土泵车动态特性与振动试验研究[D].长安大学,2004.
    [61]李邦国,路华鹏,胡仁喜,等.Patran2006与Nastran2007有限元分析实例指导教程[M].北京:机械工业出版社,2008:1-12.
    [62]杨剑,张璞,陈火红.新编MD Nastran有限元实例教程[M].北京:机械工业出版社,2008:1-9.
    [63]Liu Caishan, Zhang Ke, Yang Rei. The FEM Analysis and Approximate Model for Cylindrical Joints with Clearances[J]. Mechanism and Machine Theory,2007, 42(2):183-197
    [64]P. Flores. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mechanism and Machine Theory,2009,44(6):1211-1222
    [65]Brutti Carlo, Coglitore Giulio,Valentini Pier Paolo. Modeling 3D revolute joint with clearance and contact stiffness[J]. Nonlinear Dynamics,2011,66(4):531-548.
    [66]MSC Software Corporation. MSC.Patran Reference Manuals[M]. Los Angeles: MSC Software Corporation,2004:113-121.
    [67]姜绍飞,吴兆旗.结构健康监测与智能信息处理技术及应用[M].北京:中国建筑工业出版社,2011,2:245-246.
    [68]周建庭,杨建喜,梁宗保.实时监测桥梁寿命预测理论及应用[M].北京:科学出版社,2010.
    [69]裴玮,丁克勤,邬代军.起重机械安全健康监测与损伤预警方法研究[J].机械工程与自动化.2010,6:120-122.
    [70]缪长青,李爱群,韩晓林,等.润扬大桥结构健康监测策略[J].东南大学学报(自然科学版)2005,35(5):780-785.
    [71]Hua Guangjun, Wu Yunxin, Wang Shuai. Study of Concrete Pump Truck Structural Health Monitoring[J]. Advanced Material Research,2010,139-141: 2513-2516.
    [72]黄文虎,夏松波,刘瑞岩,等.设备故障诊断原理、技术及应用[M].科学出版社,1996:1-34,127.
    [73]Ch.E.Katsikeros, G.N.Labeas. Development and Validation of a Strain-based Structural Health Monitoring System[J].Mechanical System and Signal Processing, 2009,23:292-383.
    [74]Lucas F.M.Silva,J.P.M.Goncalves, F.M.F.Oliveira,et al.Multiple-site Damage in Riveted Lap-joints:Experimental Simulation and Finite Element Prediction[J]. International Journal of Fatigue,2000,22:319-338.
    [75]C.Rosalie, A.Chan, W.K.Chiu, et al. Structural Health Monitoring of Composite Structures Using Stress Wave Methods[J]. Composite Structures,2005,67: 157-166.
    [76]孙小猛.基于模态观测的结构健康监测的传感器优化布置方法研究[D].大连:大连理工大学,2009.
    [77]何浩祥,阎维明,张爱林.面向结构健康监测的传感器数量及位置优化研究[J].振动与冲击,2008,27(9):131-134.
    [78]M.Meo, G.Zumpano. On the Optimal Sensor Palcement Techiques for a Bridge Structure[J]. Engineering Structures,2005,27:1448-1497.
    [79]Z.N.Li, J.Tang, Q.S.Li. Optimal Sensor Location for Structural Vibration Measurements[J]. Applied Acoustics,2004,65:807-818.
    [80]吴子燕,荷银,简晓红.基于损伤敏感性分析的传感器优化布置研究[J].工 程力学,2009,26(5):239-244.
    [81]张政华,毕丹,李兆霞.基于结构多尺度模拟和分析的大跨斜拉桥应变监测传感器优化布置研究[J].工程力学,2009,26(1):142-148.
    [82]姜绍飞,杨博,吴兆旗.基于易损性分析的桁架桥传感器布设方法[J].工程力学,2010,27:263-265.
    [83]李爱群,丁幼亮.工程结构损伤预警理论及其应用[M].北京:科学出版社,2007:5-6.
    [84]kammer DC. Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures[J]. Journal of Guidance and Control Dynamics,1991, 14:251-259.
    [85]Guyan R.J. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal,1995, 3(2):380-387.
    [86]Heo M.L, Wang D, Satpathi. Optimal Transducer Placement for Health Monitoring of Long Span Bridge[J]. Soil Dynamics and Earthquake Engineering, 1997,16:495-502.
    [87]Breitfeld T. A Method for Identification of a Set of Optimal Measurement Points for Experimental Modal Analysis[J]. Modal Analysis:The International Jounal of Analytical and Experimental Modal Analysis,1996,11:254-273.
    [88]涂国平,邓群钊.多传感器数据的统计融合方法[J].传感器技术,2001,20(3):28-29,32.
    [89]刘献栋,曾小芳,单颖春.基于试验场实测应变的车辆下摆臂疲劳寿命分析[J].农业机械学报,2009,40(5):34-38.
    [90]Daniel Balageas, Claus-Peter Fritzen, Alfredo Guemes. Structural health monitoring[M]. London:ISTE Ltd,2008:237-270.
    [91]郝海,踪家峰.系统分析与综合评价方法[M].北京:经济科学出版社,2007:81-98,117-141,63-67.
    [92]何金平,李珍照,万富军.大坝结构实测性态综合评价中定性指标分析方法[J].水电能源科学,2000,18(1):5-8.
    [93]李东升,张莹,任亮,等.结构健康监测中的传感器布置方法及评价准则[J],力学进展,2011,41(1):39-50.
    [94]GCazzulani, C.Ghielmetti, H.Giberti, et al. A test rig and numerical model for investigating truck mounted concrete pumps [J]. Automation in Construction,2011, 5:1-10.
    [95]宋建安,董忠红,吕彭民.水泥混凝土输送泵车整机模态[J].长安大学学报 (自然科学版),2004,24(5):104-106.
    [96]王海英.水泥混凝土泵车振动性能与结构优化设计研究[D].西安:长安大学机械学院,2003:48-86.
    [97]刘习军,贾启芬,张文德.工程振动与测试技术[M].天津:天津大学出版社,2005,1:253-256
    [98]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [99]Hua Guangjun, Wu Yunxin, Tang Hongbin, et al. Damage Decoupling Analysis of Pump Truck Structure on Multi-load[J], Noise & Vibration Worldwide, 2011,11:20-24.
    [100]刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006:119-121,132-137.
    [101]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙:中南大学土木建筑学院,2004:54-55.
    [102]姚志远,曾发林,宫镇.小波变换在车辆噪声源识别中的应用[J].汽车工程,2002,24(4):302-305.
    [103]王国军,蒋美华,王俊.载荷谱信号奇异值剔除与降噪处理[J].仪器仪表学报,2009,30(6):310-313.
    [104]黄长艺,严普强.机械工程测试技术[M].北京:机械工业出版社,1995,10:126-140.
    [105]Yong-li Lee,Jwo Pan,Richard Hathaway,Mark Barkey. Fatigue Testing and Analysis(Theory and Practice) [M].Elsevier Butterworth Heinemann,2005:41-53.
    [106]张洪亭.电测信号计算机采样频率选择[J].电测与仪表,1988,1:18-20.
    [107]吴伟,周富强,赵化平,等.应变法载荷测量中理想采样频率的确定[J].农业机械学报,2005,36(2):96-99.
    [108]Y.X.Zhao, B.Yang, M.F.Feng,et al. Probabilistic fatigue S-N curves including the super-long life regime[J]. International Jounal of Fatitue,2009,31(4): 1550-1558.
    [109]伍颖.断裂与疲劳[M].武汉:中国地质大学出版社,2008:17-23,118-122.
    [110]赵少汴.有限寿命疲劳设计法的基础曲线[J].机械设计,1999,11:5-7.
    [111]张瑶莉.大型起重机在线寿命预测系统的研究[D].大连:大连理工大学,2009:37.
    [112]肖汉斌,陶德馨,顾必冲.起重机金属结构疲劳载荷时间历程的采集分析[J].水利电力机械,1998,3:39-41.
    [113]刘明才.小波分析及其应用[M],北京:清华大学出版社,2005,9:16-38.
    [114]Albert Boggess, Francis J.Narcowich,著.芮国胜,康健,译.小波与傅里叶分析基础[M].北京:电子工业出版社,2010.2:173-174.
    [115]徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2009,8:107-126.
    [116]吴伟,周富强,赵化平,等.应变法载荷测量中理想采样频率的确定[J],农业机械学报,2005,36(2):96-99.
    [117]管德,郦正能.飞机结构强度[M].北京:北京航空航天大学出版社,2005:96-123.
    [118]周建庭,杨建喜,梁宗保.实时监测桥梁寿命预测理论及应用[M].北京:科学出版社,2010:1-13.
    [119]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].西安:西安交通大学出版社,2006.
    [120]李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社,2006:1-20,47-66,83-84,235-241.
    [121]王国军,胡仁喜,陈欣等.疲劳分析理论与应用实例指导教程[M].北京:机械工业出版社,2004:45-51.
    [122]机械设计手册编委会.机械设计手册单行本—疲劳强度设计[M].北京:机械工业出版社,2007:16-45.
    [123]熊诚.基于累积损伤的桥梁性能评价方法研究[M].武汉:武汉理工大学,2011:14-18.
    [124]鞠杨,樊承谋.疲劳累积损伤理论研究[J],哈尔滨建筑工程学院学报,1994,27(5),115-120.
    [125]刘文光,陈国平,贺红林,等.结构振动疲劳研究综述[J].工程设计学报,2012,19(1):1-8.
    [126]刘义伦.不同计数法对疲劳寿命的影响[J].中南工业大学学报,1996,27(4):471-475.
    [127]肖建清,丁德馨,张萍,等.改进三峰谷雨流计数法在爆破震动损伤评价中的应用[J].岩土力学,2009,30:244-249.
    [128]周俊,童小燕.雨流计数的快速实现方法[J].科学技术与工程,2008,8(13):3544-3547.
    [129]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2004.
    [130]李兆霞.基于健康监测的大跨钢桥梁疲劳损伤评估.科学技术与工程,2004,4(1):56-57.
    [131]刘文珽,王智,隋福成.单机寿命监控技术指南[M].北京:国防工业出版社,2010:97-100,116-120.
    [132]陈科,王峰.结构有限寿命设计方法——名义应力法[J].中国重型装备,2010(2):1-3.
    [133]李勋.40t-43m门座式起重机金属结构的状态监测[D].武汉理工大学,机械工程学院,2002:51-53.
    [134]董忠红,汪洁.水泥混凝土输送泵车结构可靠佳疲劳寿命研究[J].筑路机械与施工机械化,2004,21(7):38-40.
    [135]杨平,吕彭民,王刚,等.混凝土泵车疲劳寿命预测方法[J],长安大学学报(自然科学版),2011,31(4):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700