用户名: 密码: 验证码:
基于GPS精密单点定位的时间比对与钟差预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS精密单点定位(PPP)的时间比对就是利用IGS精密轨道和精密星钟数据,对单台接收机所采集的测码伪距和载波相位观测数据进行解算,获得IGST时间尺度下的接收机钟差,实现纳秒至亚纳秒级精度的时间比对。
     PPP方法观测灵活,与GPS共视比对(CV)相比,不需要同步观测,就可以实现任意时间和地点的时间传递,与GPS全视(AV)相比, PPP能充分利用载波相位观测精度高的特点,使得时间传递精度有较大的提高。与其它远程时间比对方法相比,PPP投入少,易实现。因此,PPP目前是国际时频界研究的热点问题。研究该方法对提高国际原子时(TAI)的计算精度,对建立我国综合地方原子时,对我国正在建设自主卫星导航系统,有着重要的意义。
     本文深入研究了PPP技术,分析了PPP的各种误差的消除方法,实现了PPP时间比对算法,平滑了比对结果,讨论了钟差预报等相关问题。本文的主要研究内容包括:
     (1)实现了PPP时间比对算法
     欲使PPP钟差解算精度达到纳秒至亚纳秒级,因此必须采用完善的模型加以改正影响GPS时间比对的各项误差,并将改正后仍然无法忽略的残差作为未知数进行估计。本文详细地分析了相关误差源及其改正方法,选择了Kalman滤波模型求解参数,并用Helmert方差估计调整测码伪距和载波观测伪距的验前方差,使得两类观测值精度合理匹配。用Matlab软件实现了PPP时间传递的算法,并选择了短基线法和比测法研究了模型的特点,将相关的计算结果与IGS结果相比较,得到的结论是,本文算法稳定、精度可靠,可以用于时间实验室之间远程时间比对。
     (2)比对数据的平滑
     比对数据的平滑是数据处理中重要内容。讨论了Vondrak法平滑PPP比对结果,该法随着选取的ε的不同而有不同的结果,通过对四条典型链路的平滑研究,认为ε的经验取值为200~400为宜。顾及到PPP和AV的各自特点,讨论了Vondrak-Cepek组合平滑这两种时间比对的结果。为该法组合平滑不同时间比对结果提供了新的思路。鉴于Vondrak-Cepek法的优良特性,在文中也运用该法组合了氢铯钟钟差,得到了较为理想的结果。
     (3)钟差预报方法
     钟差预报在时间传递、守时和导航中起着重要的作用。本文简单地讨论了一些常用的钟差预报模型,包括多项式模型、灰色模型、谱分析模型和自回归模型。重点地研究了Kalman滤波(KF)模型,讨论了确定状态噪声协方差阵ΣW k和观测噪声的协方差阵Σk的方法。针对经典KF方程不能有效地抵抗粗差的影响,讨论了基于小波多尺度分析、基于残差预报的自适应和基于Sage自适应的KF模型。考虑到各种模型的预报优点和局限性,首次将组合预报理论用于钟差预报中,根据组合模型的特性不同将组合方法分为线性组合预报模型和非线性组合预报模型,对于前者,根据定权方法不同,讨论了经典权和最优权,对于后者以神经网络为例讨论了建模特点。在实际运用过程中,针对钟差预报特点,提出了修正线性组合预报模型,修正后模型能提高组合预报的可靠性和准确性。
GPS precise point positioning (PPP) which can be implemented only by one dual-frequency receiver can obtain the clock accuracy is about nanosecond or sub-nanosecond by using GPS precise satellite orbit and clock error data. Correspondingly, time comparison using PPP can attain this accuracy under the IGST.
     Compared with GPS Common-View (CV), PPP need not observe the same satellites in the sky. Therefore, PPP can accomplish time compare in any time and in any place in theory. Compared with GPS All-in-View (AV), PPP uses carrier observation data which is more accurate than code observation. Moreover, PPP is more flexible and lower cost than other time transfer methods.
     In this paper, we make intensive study on PPP, analysis the error elimination, realize the time comparison algorithm, smooth the result, and discuss the atomic clock prediction. The main content are as following:
     (1) PPP time comparison algorithm realization
     To achieve the centimeter accuracy for parameter estimation, more precise model must be used to correct the error while PPP is used to transfer time. And some residual error which are can not be neglected must be estimate as unknown parameter. The error resources and correction model are discussed in detail and Kalman filter (KF) model to estimate the parameter is chosed. Meantime, Helmert variance estimation is used to adjuste the variances from the two-type observations. Then time comparison algorithm is realized. To study the model precision, short baseline and comparison methods are employed. Results from the two methods show that the model precision is about 0.1ns. Meantime, time comparison is computed for the four time links and the results is compared with IGS outcome. Finally we get conclusion that this algorithm can be used in the time laboratory.
     (2) Comparison data smoothing
     Comparison data smoothing is one of the most important tasks in time transfer. Vondrak smooth method depends on the smooth parameterε. Through study on the four time links, we consider the empirical value ofεis about 200~400. Considering the characteristic of PPP and AV, we propose combining the result from these two methods by using Vondrak-Cepek which is available method to smooth the time comparison data. Just as Vondrak method, Vondrak-cepek is determined byεandε, so we propose the empirical values of these two parameters. Because the Vondrak-Cepek method is valid, the H-master and Cesium clock data is combined using this model and ideal result is obtained.
     (3) Clock prediction
     Clock prediction plays an important role in time transfer, time keeping and navigation. In this paper, the conventional methods for clock prediction including polynomial model, auto-regression model, spectrum analysis model and grey model are presented. Then we study the KF model in detail. Two methods to get the noise matrices are discussed. Classical KF is employed to predict the atomic clock; we find that classical KF is useful while there is no jump happened. But if there are jumps, KF become lower convergence, even more KF diverges. To deal with the problem from classical KF, wavelet KF and adaptive KFs are proposed. Finally, the combination models are studied which may improve the accuracy and stability. According to the combination characteristic, these models are divided into linear models and non-linear models. In the former, classic and optimal weight are present. In the latter, artificial neutral network is discussed as an example. Because IGS precise clock data has more accuracy, we use the data as example to confirm the models validation.
引文
[1]Abdel-salam, M. Precise Point Positioning Using Un-Differenced Code and Carrier Phase Observation [D]. Univ. CALGARY, 2005
    [2]Ahmed El-Rabbany. Introduction to GPS[M].Artech house.Inc.2006:47.
    [3]Axelrad,P, R.G.Brown. GPS Navigation Algorithms. In Global Positioning System: Theory and Applications [C], Progress in Astronautics and Aeronautics, Volume 1, Chapter 9. Eds.B.W. Parkinson, J.J. Spilker. Volume 164, American Institute of Aeronautics and Astronautics, Inc., V, Washington, D.C.,U.S.A
    [4]Breakiron L.A. A Kalman Filter for Atomic Clocks and Timescales [C]. In Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Meeting, 2001, 431-443
    [5]Breakiron L.A. Kalman Filter Characterization of Cesium Clocks and Hydrogen Masers[C]. In Proceedings of the 34th Annual Precise Time and Time Interval (PTTI) Meeting, 2002, 511-426
    [6]C. Bruyninx, P. Defraigne, J. Ray, F. Roosbeck and K. Senior. Comparison of Geodetic Clock Analysis Strategies[C]. 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Washington D.C., USA, 7-9 December, 2004, unpublished.
    [7]D. Orgiazzi, P. Tavella, and F. Lahaye. Experimental assessment of the time transfer capability of precise point positioning (PPP). in Proceedings of the IEEE International Frequency Control Symposium and Exposition (FCS’05), vol. 2005, pp.337–345, Vancouver, BC, Canada, August 2005.
    [8]David W. Allan, Marc A. Weiss. Accurate time and frequency transfer during common-view of a GPS satellite .34th Annual Frequency Control Symposium, 1980, 334-346
    [9]Defraigne P and Martine M C 2008 Combination of TWSTFT and GPS data for time transfer Proc.22nd EFTF(Toulouse) CD version.
    [10]Deigo Orgiazzi, Patrizia Tavella, Francois Lahaye. Experimental assessment of the time transfer capability of precise point positioning (PPP)[C].EFTF(2005),337~345.
    [11]Donald B.Pecival, Andrew T. Walden.程正兴等译.时间序列分析的小波方法[M].北京:机械工业出版社, 2006, 398-406.
    [12]Epstein M., Freed G. and Rajan J. GPS IIR Rubidium clocks: in-orbit performance aspects[C]. In Proceedings of the 35th Annual Precise Time and Time Interval(PTTI) Meeting, 2003, 117-134
    [13]Foreman S M, Ludlow A D,de Miranda M H G, Stalnaker J E, Diddams S A and Ye J 2007 Coherent optical phase transfer over a 32 km fiber with 1s instability at 10-17 Phys. Rev.Lett.99 153601
    [14]ftp://62.161.69.5/pub/tai/publication/cirt.225
    [15]G Panfilo, P Tavella. Atomic clock prediction based on stochastic differential equations [J]. metrologia,2008(6):S108-S116.
    [16]G. Petit and Z. Jiang.GPS Precise point positioning for TAI computation[C]. INO Article ID 562878, doi:10.1155/2008/562878 2008.
    [17]Petit G.. The TAIPPP pilot experiment [C]. EFTF-IFCS 2009, Besan?on, IEEE, 2009, 116-119.
    [18]Gao,Y.,Shen, X. A new method for carrier phase based precise point positioning[J].Journal of the Institute of Navigation, 2002, 49(2):109-116.
    [19]Gotoh T. Improvement GPS time link in Asia with All in Viem .IN. Proc.PTTI 2005
    [20]Howe D., Beard R., Greenhall C., et al. A Total Estimator of The Hadamard Function Used for GPS Operations[C]. In Proceedings of the 32th Annual Precise Time and Time Interval(PTTI) Meeting, 2000, 255-267
    [21]http://igscb.jpl.nasa.gov/components/prods.html.
    [22]http://sopac.ucsd.edu/cgi-bin/dbDataByDate.cgi.
    [23]http://www.bipm.org/utils/common/pdf/CCTF17.pdf, 2006.
    [24]http://www.cdgps.com
    [25]http://www.oso.chalmers.se/~loading/
    [26]Howe D., Beard R., Greenhall C., et al. A Total Estimator of The Hadamard Function Used for GPS Operations[C]. In Proceedings of the 32th Annual Precise Time and Time Interval(PTTI) Meeting, 2000, 255-267
    [27]Hutsell S.T. Fine Tuning GPS Clock Estimation in the MCS [C]. In Proceedings of the 26th Annual Precise Time and Time Interval (PTTI) Meeting, 1994, 63-74
    [28]Hutsell S.T. Relating the Hadamard variance to MCS Kalman filter clock estimation [C]. in Proc. 27th Annu. PTTI Syst. Applications Meeting, San Diego, CA, Nov.29-Dec.1, 1995, 291-301
    [29]Hutsell S.T., Reid W.G., et al. Operational Use of the Hadamard Variance in GPS, In Proceedings of the 28th Annual Precise Time and Time Interval (PTTI) Meeting, 1996, 201-213
    [30]J. Vondrak, A. Cepek. Combined smoothing method and its use in combining Earth orientation parameters measured by space techniques[J]. Astron.Astrophys.Suppl.Ser.147,347-359 (2000)
    [31]J. Vondrak. A Contribution To The Problem of Smoothing Observation Data [J]. Astron. Inst. Gzech. 1969, 20 (6):349-356.
    [32]Jiang Z., Petit G.. Time transfer with GPS All in View. Proc. Asia-Pacific Workshop on Time and Frequency. 2004:236-243.
    [33]Jim Ray, Ken Senior. Geodetic techniques for time and frequency comparisons using GPS phase and code measurements [J]. Metrologia, 2005, 42(2): 215-232
    [34]Judah Levine. A review of time and frequency transfer methods [J]. metrologia,2008, 45(6):S162-S174.
    [35]Kaplan E and Hegarty C 2006 Understanding GPS: Principles and Applications (Boston: Artech House )
    [36]Kouba,J and P.Héroux(2000).Precise Point Positioning Using IGS Orbit Products[J].GPS Solutions,Vol.5,No.2,pp12-28,2000
    [37]Manning D.M. AF/NGA GPS Monitor Station High-Performance Cesium Frequency Standard Stability 2005/2006: from NGA Kalman Filter Clock Estimates[C]. In Proceedings of the 38th Annual Precise Time and Time Interval(PTTI) Meeting, 2006, 137-152
    [38]Misra P and Enge P 2006 Global Positioning System: Signals, Measurements and Performance (Lincoln, MA: Ganga-Jamuna Pree)
    [39]Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS [J]. Journal of Geodesy, 1999,73(4): 193-203.
    [40]Q. W. Liu,Y. Q. Chen. Combining the geodetic models of vertical crustal deformation[J]. Journal of Geodesy , 1998, 72(12): 673-683.
    [41]Ray J, Senior K. Geodetic Techniques for time and frequency comparisons using GPS phaseand code measurements. metrologia,2005, 42.
    [42]R. Costa, D. Orgiazzi, V. Pettiti, I. Sesia and P. Tavella. Performance Comparison and Stability Characterization of Timing and Geodetic GPS Receivers at IEN [C]. The 18th European Time and Frequency Forum (EFTF), Guildford, UK, 5-7 April, 2004.
    [43]Sage A P, Husa G W. Adaptive filtering with unknown prior statistics [M]. Joint Americian Control Conference. 1969:769-774
    [44]Stein S.R. Kalman filter analysis of precision clocks with real-time parameter estimation [C]. 43rd Annual Frequency Control Symposium, 1989, 232-236
    [45]Stein S.R., Evans J. The application of Kalman filters and ARIMA models to the study of time prediction errors of clocks for use in the defense communication system (DCS) [C]. 44th Annual Frequency Control Symposium, 1990, 630-635
    [46]Vondrak J., 1977, Problem of smoothing observational data II, Bull. Astron. Inst. Czech 28, pp. 84-89.
    [47]Yang Yuan-xi, Gao Wei-guang. An optimal adaptive Kalman filter [J]. Journal of Geodesy, 2006, 80: 177-183
    [48]Yang Yuan-xi, He Hei-bo, Xu Guo-chang. Adaptively Robust Filtering for Kinematic Geodetic Positioning [J]. Journal of Geodesy, 2001, 75(2): 109-116
    [49]Yuan Haibo, Wang Zhengminm, Do Shaowu et al. Dynamic grey-autoregressive model of an atomic clock [J]. metrologia,2008, 45(6):S1-S5.
    [50]Z Jiang, G Petit. Combination of TWSTFT and GNSS for accurate UTC time transfer [J]. Metrologia, 2009,46(3):305~314
    [51]Zumberge J F,Heflin M B,Jefferson D C,et al(1997).Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J].Journal of Geophysical Research,1997,102(B3):5 005-5 017
    [52]陈俊勇,党亚明,程鹏飞.全球导航卫星系统的进展[J].大地测量与地球动力学, 2007, 27(5):1-4.
    [53]陈宪冬.基于大地型时频传递接收机的精密时间传递算法研究[J].武汉大学学报(信息科学版),2008,33(3):245-247.
    [54]崔希璋,於宗涛,陶本藻等.广义测量平差[M].新版.武汉:武汉大学出版社, 2001.
    [55]崔先强,焦文海.灰色系统模型在卫星钟差预报中的应用[J] .武汉大学学报:信息科学版, 2005 ,30
    [56]邓聚龙.灰色系统基本方法[M] .武汉:华中工学院出版社, 1987.
    [57]邓自立,王欣等.建模与估计[M].北京:科学出版社, 2007.
    [58]丁月蓉.天文数据处理处理方法[M].南京:南京大学出版社. 1998:247-257.
    [59]董绍武.守时中若干重要技术问题研究[D].北京:中国科学院研究生院,2007.
    [60]高玉平. IGS产品在GPS时间比对中的应用[J].天文学报,2004,45(4):428-436.
    [61]郭海荣.导航卫星原子钟时频特性分析理论与方法研究[D].郑州:信息工程大学,2006.
    [62]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社, 2006,67-78
    [63]何书元.应用时间序列分析[M].北京:北京大学出版社, 2003.
    [64]黄观文,张勤,许国昌等.基于频谱分析的IGS精密星历卫星钟差精度分析研究[J].武汉大学学报(信息科学版),2008,5(33),496-499.
    [65]黄观文,张勤,王继刚. GPS卫星钟差的估计与预报研究[J].大地测量与地球动力学,2009,29(6):118-122.
    [66]黄坤仪,周雄. Whittaker-Vondrak法滤波本质的探讨和数值滤波的方差和相关性估计[J].天文学报, 1981, 22(2):120-130.
    [67]江志恒. GPS全视法时间传递回顾与展望[J].宇航计测技术,2007,27(增刊):53-71.
    [68]李变.利用Vondrak方法处理GPS CV观测数据的随机噪声[J].计算机测量与控制. 2006. 14(7):953-955.
    [69]李变.我国综合原子时计算软件设计[D].北京:中国科学院研究生院,2005.
    [70]李滚. GPS载波相位时间频率传递研究[D].北京:中国科学院研究生院,2007.
    [71]李伟超.基于IGS的电离层预报模型研究[D].北京:中国科学院研究生院,2009.
    [72]李玮,程鹏飞,秘金钟.灰色系统模型在卫星钟差短期预报中的应用[J].测绘通报,2009(6):32-5.
    [73]李孝辉,吴海涛,高海军等.用Kalman滤波器对原子钟进行控制[J].控制理论与应用, 2004, 20(4): 551-554
    [74]李孝辉,刘阳,张慧君,施韶华.基于UTC(NTSC)的GPS定时接收机时延测量[J].时间频率学报, 2009, 32(1): 18-21
    [75]李欣等.国外激光时间比对进展[J].大地测量与地球动力学,2005,25(4):119-123
    [76]李鑫等.激光时间传递技术的进展[J].天文学进展, 2004, 22(1): 10-22
    [77]李征航,吴秀娟.全球定位系统GPS技术的最新进展(第四讲):精密单点定位(上)[J].测绘信息与工程, 2002, 27(5):34-37.
    [78]李征航,黄劲松. GPS测量与数据处理[M].武汉:武汉大学出版社, 2005
    [79]梁坤. GPS载波相位时间频率传递的研究[J].计量学报, 2010,vol.31(1):71-75
    [80]刘大杰,陶本藻.实用测量数据处理方法[M].北京:测绘出版社, 2000, 75-79
    [81]刘利,秦永志. GPS卫星钟噪声类型分析[J].全球定位系统,2005,第2期:27-29
    [82]刘晓刚,李建伟,李岩等.基于最小二乘和卡尔曼滤波方法进行原子时预报的研究[J],海洋测绘,2008,3(28),51-53
    [83]楼益栋,施闯,周小青等.GPS精密卫星钟差估计与分析[J].武汉大学学报(信息科学版),2009,34(1):88-91.
    [84]聂桂根.高精度GPS测时与时间传递的误差分析与应用研究[D].武汉:武汉大学,2002.
    [85]潘国荣,王穗辉.建筑物动态变形的模型辨识与预测[J].测绘学报, 1999, 28 (4) : 340-344
    [86]漆贯荣.时间科学基础[M].北京:高等教育出版社,2006:54~108.
    [87]祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉:武汉大学,2003
    [88]王正明,袁海波.氢钟和铯钟联合授时初探[J].天文学报, 2007, 48(1):71-83.
    [89]武汉测绘科技大学测量平差教研室.测量平差[M].第三版.北京:测绘出版社, 1996, 123-126
    [90]吴江飞,黄珹. GPS精密单点定位模型及其应用分析[J].大地测量与地球动力学, 2008, 28(1): 96-100
    [91]许承权.单频GPS精密单点定位算法研究与程序实现[D].武汉:武汉大学,2008.
    [92]严智渊.戴玉生.灰色系统预测与应用[M] .南京:江苏科学技术出版社,1989.
    [93]杨旭海. GPS共视时间频率传递应用研究[D].北京:中国科学院研究生院,2003.
    [94]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报, 2001, 30(4), 293-298.
    [95]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006.
    [96]叶世榕. GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学,2002.
    [97]张国平. B-G组合预测理论剖析[J].预测, 1988, 7 (5) : 22- 25.
    [98]张小红,程世来,李星星等.单站GPS载波平滑伪距精密授时研究[J].武汉大学学报(信息科学版),2009,vol.34(4):463-465
    [99]张正禄,黄义全,文鸿雁等.工程的变形监测分析与预报[M].北京:测绘出版社, 2007, 166-167
    [100]赵云胜.灰色系统理论在地学中的应用研究[M] .武汉:华中理工大学出版社,1997.
    [101]郑作亚,陈永奇,卢秀山.灰色模型修正及其在实时GPS卫星钟差预报中的应用研究[J].天文学报,2008,49(3):306-320.
    [102]朱祥维,肖华,雍少为等.卫星钟差预报的Kalman算法及其性能分析[J].宇航学报,2008,vol.29(3):965-970.
    [103]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社, 2005, 69-100.
    [104]周伟,桂林,周林等. MATLAB小波分析高级技术[M].西安:西安电子科技大学出版社, 2006, 105-115.
    [105]周忠馍,易杰军,周琪. GPS卫星测量原理与应用[M],第二版.北京:测绘出版社,1997,74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700