用户名: 密码: 验证码:
SIMA法压缩形变镁合金半固态组织的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为工程材料的优点在于:低的密度,良好的刚性、减震性和切削加工性,易于回收利用等。半固态成形是一种可以生产出近终形零件的新型成形技术,所获得的零件的显微组织为球状晶。在制备半固态坯料的几种方法中,SIMA法具有工艺简单、设备成本低的优势。
     本文采用SIMA法压缩形变工艺对AZ91D镁合金的形变组织及微观缺陷进行了观测;通过半固态等温液淬实验和挤压成形实验,分析了工艺参数对镁合金半同态组织演化的影响,研究了压缩形变镁合金的半固态球化机制,并与挤压形变SIMA法进行了对比。结果表明:
     ①形变工艺参数会影响AZ91D镁合金压缩形变组织。形变温度为280℃时,随着形交率的增加,发生脆断和塑性变形的原始枝晶数量增加。形变率为20%时,随着形变温度的增加,原始枝晶发生脆性断裂的数量减少,发生塑性变形的数量增加。枝晶内缺陷以孪晶为主。
     ②压缩形变镁合金在半固态保温过程中枝晶的球状化与枝晶内缺陷有关,晶内缺陷促使液相在固相枝晶内部析出,液相沿亚晶界的渗透导致枝晶分解,分解后的晶粒在表面能的作用下逐渐球化;在晶粒球状过程结束后,大的晶粒会随着保温时间的延长而逐渐长大,而小晶粒的数量则逐渐减少;随着等温温度的升高,组织的球状化速度加快,相同等温时间下晶粒的平均尺寸减小。
     ③形变工艺参数影响镁合金的半固态等温组织。形变温度为280℃时,随着形变率增加,晶粒尺寸减小。在形变率为20%的条件下,形变温度低于250℃时半固态组织晶粒分布均匀性较差;当形变温度高于250℃时,晶粒分布均匀性明显改善。
    
    西安理工大学硕士学位论文
     ④将压缩形变与挤压形变制备镁合金半固态坯料相比发现,挤压形变组织中晶
    粒明显细化;压缩形变晶内缺陷以孪晶为主,挤压形变以位错为主;在半固态等温
    过程中,挤压形变镁合金晶粒球状化速度明显较快,且所获得球状晶尺寸较小。
     ⑤在半固态挤压成形过程中,随着成形温度的升高,镁合金半固态浆料的流变
    性改善。半固态镁合金组织在高固相率挤压成形过程中会产生形变织构,织构条纹
    随着成形温度的升高而逐渐舒缓以至消失。
The advantages of magnesium alloy being engineered material are as follows: low density, high rigidity, damping capacity, easy machinability and recyclability etc. SSF (semi-solid forming) is new technology to manufacture near net shaped parts with a globular microstructure. Among several processes to fabricate semi-solid billet, the SIMA( strain induced melt activated) process is very simple and advantageous with respect to equipment.
    In this paper, the Mg alloy specimens for upsetting were studied. The deformation microstructure was observed. Influences of parameters on microstructure of Mg alloy were investigated in semi-solid quenching and forming experiments and the spheroidization mechanism of Mg alloy for upsetting was analyzed in comparison with extruding. The results indicated as follows:
    (1)There were effects of deformation parameters on microstructure of Mg alloy for upsetting. With the increase of strain at 280*C, the initial dendrite arms of AZ91D alloy got broken or stretched-out; with the rise of deformation temperature under 20% strain, the deformation style of dendritic structure of AZ91D alloy changed gradually from fragmentation to directional bending.
    (2)In the semi-solid isothermal process, there was evident relationship between the
    spheroidization of dendrite of deformed AZ91D magnesium alloy and the defect within
    the dendrite caused by deformation, which brought about the precipitation of liquid
    phase entrapped within solid phase. The penetration of liquid phase along the sub-grain
    
    
    
    boundary resulted in the separation of the dendrite. The isolated dendrite became globular due to the reduction of the surface energy. After the spheroidization of grains, with the increase in soaking time, the large grains grew up gradually and the quantity of small grains decreased; with the rise of soaking temperature, the rate of grain's spheroidization got fast and the average dimension of grains diminished.
    (3)There were influences of parameters on semi-solid microstructure of Mg alloy for upsetting. After holding at 580 for 10min in the semi-solid state, the greater the strain at 280 , the finer and rounder the size of the globular grains of AZ91D alloy and in the mean time, the agglomeration of solid particles deformed at more than 250 got less than that of less than 250 .
    (4)the differences in microstructure of Mg alloy between for upsetting and for extruding were clear: The average size of grains in deformation microstructure of Mg alloy for extruding was much less than that of upsetting. The main deformation for upsetting was twin and that for extruding was dislocation. In semi-solid isothermal process, the spheroidization of Mg alloy for extruding was faster and the grains were finer.
    (5)With the rise of temperature in squeeze process, the Theological property of semi-solid magnesium alloy slurry was improved. During the semi-solid forming process, the deformation texture in microstructure of Mg alloy at high solid content was found and the higher the temperature, the less the texture.
引文
【1】 张永忠,张奎,樊建中,等.压铸镁合金及其在汽车工业中的应用.特种铸造及有色合金,1999(3):54~56
    【2】 孙伯勤.镁合金压铸件在汽车工业中的巨大应用潜力.特种铸造及有色合金,1998(3):40~41
    【3】 吴炳尧.镁合金压铸技术分析.铸造,2000(8):443~448
    【4】 刘正.压铸镁合金在汽车工业中的应用和发展趋势.特种铸造及有色合金 1999(5):55~58
    【5】 叶久新,陈明安,周建,等.镁合金及其成形技术在工业中的应用.湖南大学学报(自然科学版),Vol.29.2002(3):112~116
    【6】 佚名.Semi-solid Metalcasting Gains Acceptance, Application——A review of SSM's background and recent progress. Foundry Management and Technology, 1995 No. 11: 23~35
    【7】 Merton C. Flemings. Behavior of metal alloys in the semisolid state. Metallurgical Transactions A. 1991.May: 957~980
    【8】 Kirkwood D.H. Semisolid Metal Forming [J]. International Materials Reviews. 1994, 39(5): 173~189
    【9】 佚名.New Rheocasting: a noval approach to semisolid casting. Foundry Trade Journal. Diecasting World, 2000. Nov: 16~18
    【10】 杨红亮,张质良.半固态金属制备技术.中国有色金属学报,2002 S.2: 126~131
    【11】 程钢,樊刚.镁合金半固态铸造技术(SSP)的研究与应用.第二届中国中西部地区压铸技术研讨会论文集.2001.5:41~45
    【12】 Robert M. Aikin, Jr. Gautham Ramachandran. Mechanical properties of A356 squeeze and A357 semisolid castings. Die casting engineering 1999(Nov/Dec): 44~55
    【13】 陈体军,郝远.金属的半固态成形技术与应用.铸造,2001.11:
    
    645-632
    [14] 谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999
    [15] 江海涛,李淼泉.半固态金属材料的制备技术及应用.重型机械,2002 (2):l~5
    [16] 张豪,陈振华,康智涛,等.多层喷射沉积6066铝合金半固态挤压.中国有色金属学报,v01.8,1998,6:191~196
    [17] Evangelos Tzimas, Antonios Zavaliangos. Evolution of nearequiaxed microstructure in the semisolid states. Materials science and engineering. A289(2000): 228~240
    [18] Vivesc. Elaboration of semisolid alloys by means of new electronmagnetic rheocasting process[J]. Metallugical Transactions B.1992(2): 189~205
    [19] Yrung L S, Wang L K. Rheological behavior and Modelling of Semisolid Sn-15%Pb Alloy. Journal of Materials Science. 1991, 26:2173~2183
    [20] Lee Song-Yong, Lee Jung-Hwan, Lee Young-Seon. Characterization of Al 7075 alloys after cold working and heating in the semisolid temperature range. Journal of Materials processing technology 111(2001): 42~47
    [21] Evangelos Tzimas, Antonios Zavaliangos A comparative characteriza- tion of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced,melt activated process. Materials Science and Engineering A289(2000): 217~222
    [22] 松井伸司.導入AZ9lD合金半溶融状態組織变化.轻金属(日)(1995)Vol.45.No.1:15
    
    
    [23] 田文彤,罗守靖,路贵民.半固态加工Al-Zn-Mg合金的组织演化.特种铸造及有色合金.2002(1):6~13
    [24] 吴炳尧,戴挺.半固态触变成形坯料二次加热技术分析,特种铸造及有色合金.2000(6):58~61
    [25] P J Hages, J F Tremayne. Induction heating of single shot melting process. Foundryman, 1998(Jan): 23~26
    [26] 刘昌明,邹茂华.形变诱发法半固态加热工艺参数对LYl2合金组织和晶粒尺寸的影响.中国有色金属学报,2002(6):436~440
    [27] Jae Chan Choi, Hyung Jin Park. Microstructural characteristics of aluminum 2024 by cold working in the SIMA process. Journal of Materials processing technology 82(1998): 107~116
    [28] 陈体军,郝远,路松,等.ZA27合金在SIMA处理过程中形变量和等温温度对组织的影响.金属热处理学报,2000,3:26~31
    [29] 罗守靖,田文彤.半固态金属塑性加工力学的研究进展.哈尔滨工业大学学报,2000(Oct):78~83
    [30] E.Tzimas,A.Zavallangos.Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content.Acta materials.Vol.47,No.2:517~528
    [31] 孙家宽,罗守靖.半固态下LYl2的变形力学行为.中国有色金属学报,1999(9):493~499
    [32] 田文彤,罗守靖,张广安.半固态LC4合金的屈服应力.中国有色金属学报,2002(2):82~85
    [33] 郭钧,谢水生,黄声宏.半固态铝合金的制备工艺研究.稀有金属,1998,(6):424~428
    [34] F. Czerwinski, A. Zielinska-lipiec. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy. Acta materials, 49(2001): 1225~1235
    
    
    [35] 吴树森,李东南 毛有武,等.半固态流变压铸AZ91D镁合金的组织与性能.铸造,2002(10):583~586
    [36] 中国铸造专业学会编.铸造手册——铸造非铁合金[M].北京:机械工业出版社,1995
    [37] Kurt Brissing, Ken Young. Semisolid Casting Machines, Heating Systems, Properties and Applications. Diecasting. 2000(Dec/Nov):34~4l.
    [38] Stephen P. Midson, Brad J. Hormiston, Olivier Gabis. The Influence of Key Parameters on the Uniformity of Slug Re-heating During Semisolid Metal Forming. Die Casting Engineer. 1999(Nov/Dec):62~65
    [39] C.G. Kang and H. K. Jung. A study on solutions for avoiding liquid segregation phenomena in thixoforming process: part Ⅱ. Net shape manufacturing of automotive scroll component. Metallurgical and materials transactions B. Vol. 32B, 2001(Feb): 129~132
    [40] I.J. Polmear. Magnesium Alloys and Applications. Materials Science and Technology, 1994, 10(1): 1-16
    [41] 邢书明,曾大本,胡汉起等.半固态连铸技术经济分析与研究进展[J].铸造,2000,49(8):449~453
    [42] 金属手册,第二卷,性能与选择:有色合金及纯金属.[美]美国材料学会,机械工业出版社,1994
    [43] 李元东,郝远,陈体军.等温热处理工艺对AZ91D镁合金半固态组织演变和成形性的影响.中国有色金属学报:Vol.12 No.6.2002(12):1143~1148
    [44] 佚名. Slurry-Based Semi-Solid Die Casting. Advanced materials and processes, 2001, (October): 49—52
    [45] 王占学.塑性加工金属学.北京:冶金工业出版社,1983
    [46] 胡汉起.金属凝固原理.北京:机械工业出版社.2000
    
    
    [47] 翟秋亚.基于SIMA法的AZ91镁合金半固态组织演变.西安理工大学硕士论文.2003,4
    [48] 夏明许.SIMA法制备半固态镁合金的研究.西安理工大学硕士论文.2003,3
    [49] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002,9
    [50] E.Π.翁科索夫[苏].W.约翰逊,等.金属塑性变形理论.北京:机械工业出版社.1985
    [51] 王健安.金属学与热处理.北京:机械工业出版社.1987
    [52] 戚正风.固态金属中的扩散与相变.北京:机械工业出版社,1998
    [53] LUO Shou-jing, TIAN Wen-tong , ZHANG Guang-an. Structural evolution of LC_4 alloy in making thixotropic billet by SIMA method.Trans. Nonferrous Met. Soc. China. 2001 (Aug):547~550
    [54] W. Lapkowski. Some studies regarding thixoforming of metal alloys.Journal of Materials Processing Technology 111 (2001): 463~468
    [55] 吴春苗.压铸实用技术.广州:广东科技出版社,2003
    [56] 毛为民,晶体学织构与各向异性.北京:科技出版社,2002
    [57] 余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001
    [58] 刘毅,宏永峰.金属学与热处理.北京:冶金工业出版社,1995
    [59] 雷霆权,姚忠凯,杨德庄,等.钢的形变热处理,北京:机械工业出版社,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700