用户名: 密码: 验证码:
风力发电增速装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电是应用前景十分广阔的一种洁净可再生能源,增速箱是目前大型风力发电机的关键部件,对它的工作寿命和可靠性有比一般机械高得多的要求。本文从强度和动力学两个角度出发对大型风电增速箱的齿轮传动系统进行了研究。
     首先,按照现行的齿轮强度计算方法,全面地分析了齿间摩擦力对齿根弯曲疲劳应力和齿面接触疲劳应力的影响,得出了以下结论:①齿间摩擦力对齿根弯曲应力的影响在减速和增速传动中是不一样的。在减速传动设计中齿间摩擦力的影响较小,设计计算时将其忽略是完全可行的;而在增速传动中,齿问摩擦力会使主动大齿轮的齿根应力增加1%~10%,当齿间摩擦系数大于0.08时增加5%以上,因此,对主动大齿轮的齿根弯曲疲劳强度的精确计算校核有必要考虑齿间摩擦力的影响。②齿间摩擦力对齿面接触应力的影响在减速和增速传动中是一样的,都使齿面接触应力增加(无论是小齿轮还是大齿轮)。当齿间摩擦系数大于0.09时增加5%以上,因此,对齿面接触疲劳强度的精确计算校核也有必要考虑齿间摩擦力的影响。
     其次,根据上面的结论提出了考虑齿间摩擦力的行星齿轮传动设计校核计算公式。对1500kW风力发电增速箱选取了一级行星齿轮加两级平行轴圆柱齿轮的传动式,并按照本文提出的齿轮强度计算公式对其主要传动部件进行了设计和强度校核。
     最后,按照集中参数法建立了上述齿轮传动系统的等效动力学模型,并运用影响系数法推导出了系统的运动微分方程组,求出了行星轮系和整个传动系统的固有频率和主振型,归纳出了行星轮系具有扭转振动和行星轮振动两种振动模式,分析了整个传动系统中各构件转动惯量对系统固有频率的影响,进而运用SIMULINK仿真求解了系统在刚度激励和齿轮误差激励下的动态响应,得出了各构件的振动状况,为进一步的减振降噪设计和实际工况下的动载系数选取打下了基础。
Wind power is a clean renewable energy with widespread application. Speed-increase gearbox is the key parts of the large wind turbine generator, its working life is longer, and reliability higher, than common machines. The strength and dynamic characteristics of its gear transmission system has been studied in this paper.
     Firstly, based on the current gear strength calculation method, the effect of the friction between teeth on the gear stress has been analyzed and calculated. The result shows:①the effect on the bending fatigue stress at gear root under increase-speed transmission is different with deduce-speed transmission. The driven gear' bending stress can be decreased, driving gear's be increased, especially the driving big gear in increase-speed transmission, by the flank frictional force.②the effect on gear face contact fatigue stress under increase-speed transmission is same with deduce-speed transmission. The stress may increase 1%~10%, more than 5% when f≥0.09.
     Then the new gear strength calculation formulas have been given, and according it one stage planetary gear transmission added two stage fixed axis cylindrical gear transmission has been designed for speed-increase gearbox of wind turbine.
     Lastly, the dynamic model of the gear transmission system has been established by lumped-parameter method, and its differential movement equation has set up by the influence coefficient method; the natural frequency and main vibration mode of the planetary gear system and the whole transmission system has been calculated, and according it vibration modes of planetary gear are classed into two types, torsion mode and planet mode, then the influence of the rotational inertias on the whole transmission system's natural frequency has been analyzed; the dynamic response excited by the time-varying mesh stiffness and gear errors has been computed using SIMULINK.
引文
[1]包耳.风力发电技术发展现状[J].可再生能源杂志,2004,(2):12-15.
    [2]GWEC.Global wind 2005 report.2006.
    [3]Sawin,Janet,Langhlin.Wind power in the United States[D].Doctor's thesis,The Fletcher School of Law and Diplomacy.2001:500-513.
    [4]Kramer,Marcel.Long-term costs of electricity generation in Germany[M].Wind Engineering,Multi-Science Publishing Co.Ltd,2004,4(28):465-478.
    [5]刘忠明,王长路,段守敏.风力发电齿轮箱设计制造技术的发展和展望[J].机械传动.2006,6(30):1-6.
    [6]宫靖远,贺德新,孙如林等.风电场工程技术手册[M].北京:机械工业出版社,2004:118-124.
    [7]ANSI/AGMA 6006-A03.AGMA.2003.
    [8]ISO 81400-4:2005.Wind Turbines-Part 4:Design and Specification of Gearbox.2004.
    [9]GB/T 19073-2003.风力发电机组-齿轮箱.北京:中国标准出版社.2003.
    [10]汤克平.风电增速箱结构设计叙谈[J].机械传动,2004,28(5):1-3.
    [11]Dowson D,Higgison G R,Whitater A V.Stress distribution in lubricated rolling contact.Inst.Mech Engrs.Symposium on Fatigue in Rolling Contact,London,1963:99-103.
    [12]Chen H S,Werniek R J.Stress in lubricated rollers considering arbitrary distributed normal tangential load.AD6266008,1995:79-84.
    [13]Czyzewski T.Change in the stress field in the EHD contact zone due to some operating factors and their possible role in the rolling contact fatigue of cylindrical surface.Wear,1975(31):119-140.
    [14]程友联.齿轮齿根强度的摩擦修正系数[J].武汉工学院机电系学报,1994,23(7):13-15.
    [15]刘静香.浅析齿间摩擦力及其对轮齿齿的影响[J].河南机电学院学报,1997,12:30-32.
    [16]徐辅仁.齿间摩擦力对增速齿轮传动中惰轮齿根弯曲疲劳强度的影响[J].机床与液压.2003,10(2):85-90.
    [17]范垂本.齿轮的强度和试验[M].北京:机械工业出版社,1979.
    [18]濮良贵,纪名刚.机械设计(第八版)[M].北京:高等教育出版社,2006.
    [19]黄炎.工程弹性力学[M].北京:清华大学出版社,1982.
    [20]苏翼林主编.材料力学(第二版)[M].北京:高等教育出版社,1988.
    [21]饶振刚.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    [22]张展.风力发电机组的传动装置[J].传动技术.2003,6:35-36.
    [23]谢宝昌.兆瓦级风力发电机综述[J].电机与控制应用.2007,2:1-4.
    [24]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程.1998.9:55-58.
    [25]会田俊夫 主编,张展 译.齿轮的精度与性能[M].北京:中国农业机械出版社,1985.
    [26]张策等.机械动力学[M].北京:高等教育出版社,2000.
    [27]张策等.弹性连杆机构的分析与设计[M].北京:机械工业出版社,1989.
    [28]郝晓红.行星齿轮传动振动分析及可视化应用研究[D].西安:西安理工大学,2003.
    [29]王春光.行星齿轮传动动态特性的研究[D].北京:中国舰船研究院,2005.
    [30]万凯宇.行星齿轮传动系统动力学分析研究[D].南京:南京航空航天大学,2004.
    [31]倪振华.振动力学[M].西安:西安交通大学出饭社,1989.
    [32]李明,姜培林.轴承-转子-齿轮联轴器系统的振动研究[J].机械工程学报.1998,6:14-17
    [33]唐增宝,钟毅芳.齿轮的振动分析与动态优化设计[M].武汉:华中理工大学出版社,1994:73-80.
    [34]王沫然.MATLAB与科学计算(第二版)[M].北京:电子工业出版社,2005:49-50.
    [35]朱孝录,鄂中凯.齿轮承载能力分析[M].北京:高等教育出版社,1992:34-39.
    [36]Seager D L.Condition of the neutralization of excitation by the teeth in epicyclic gearing[J].Journal Mechanical Engineering Science.1975,17(5):293-298.
    [37]张策,王世宇,宋轶民,杨通强.行星传动基本参数选择理论的再认识[J].天津大学学报.2005,4:83-87.
    [38]李润方,王建军.齿轮系统动力学:振动、冲击、噪音[M].北京:科学出版社,1997.
    [39]黄永安,马路,刘慧敏.MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.
    [40]杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究[D].重庆:重庆大学,2006:24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700