用户名: 密码: 验证码:
轴承套圈冷辗扩成过程的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环件冷辗扩是常温下借助于辗环机使环件产生壁厚减小、直径扩大、截面轮的塑性加工工艺。环件辗扩是轧制技术与机械零件制造技术的交叉和结合,具有材料利用率高、减少加工工序、提高工件质量和精度、降低零件的制造成本、节能和改善工作环境等优点,与传统加工工艺相比,具有重大的社会经济效益。
     本文针对目前冷辗扩技术发展的现状和存在的问题,以深沟球轴承套圈的冷辗扩成加工为研究对象,建立了环件冷辗扩成过程工艺仿真模型。研究了模具结构、进给速度、驱动辊转速以及材料参数等对环件冷辗扩的成质量、力能参数以及轴向展宽等的影响规律,为环件冷辗扩生产工艺参数的合理确定提供了理论基础。本文的主要内容和得到的主要结论如下:
     (1)有限元模型的建立。以大型非线性模拟软件ABAQUS为平台,采用弹塑性力学理论、大变数值模拟技术,充分考虑环件冷辗扩过程的三维变、连续渐变、非对称、时变、非稳态等特征,有效处理环件冷辗扩过程中的几何、物理和边界三重非线性的多参数耦合交互作用问题,建立了轴承套圈冷辗扩成过程的有限元数值模拟模型。
     (2)研究给出了轴承套圈冷辗扩成过程有限元数值模拟中合理的进给速度、导向辊运动轨迹的确定与控制方法。根据咬入条件和锻透条件确定了轴承套圈冷辗扩成过程中进给速度的设计公式。在模拟中采用随动式的导向辊,其运动轨迹为一段以驱动辊轴线为中心的圆弧。通过研究不同质量缩放系数对模拟结果的影响,确定了模拟中合理的质量缩放系数为10。
     (3)研究了模具结构和加工工艺参数对轴承套圈成的影响。合理的模具结构可以避免工件端面出现鱼尾现象,使套圈获得较好的端面质量,减小辗压成后工件的机加工量。在成初始阶段采用较大的进给速度,而在加工后期阶段采用较小的进给速度,有利于加工的稳定、提高成的质量。随着驱动辊转速增大,所需的成辗扩力减小,成效果提高,但是易出现打滑,加工所需的冷辗机的功率增大,所以要根据生产的要求合理设计驱动辊转速。
     (4)研究了材料性能参数与进给速度及其耦合作用对轴承套圈成的影响。在模具加限制展宽结构情况下,研究了硬化指数、弹性模量和屈服强度等材料性能参数分别在0.10-0.40、100 GPa-400 GPa、50 MPa-400 MPa,均匀进给速度在1.0-4.0 mm/s范围内时,材料性能参数和进给速度对成的耦合影响。
     1)辗扩力随着进给速度的增大而增大;硬化指数对辗扩力的影响规律与不同硬化指数下材料的真实应力-应变曲线的变化规律基本一致;屈服强度在加工前期对辗扩力影响较大,后期影响较小;弹性模量对辗扩力的影响很小。
     2)随着进给速度增大,材料在芯辊凹槽处成状变差;随着硬化指数和弹性模量增大,轴承套圈端面的轴向展宽减小,随着进给速度增大,硬化指数和弹性模量对轴承套圈端面轴向展宽的影响减小;屈服强度对轴承套圈端面轴向展宽的影响较小。
     3)进给速度越小,工件的最终状越好,但随着进给速度增大,工件成的不均匀程度得到改善;随着硬化指数增大,工件成的最大变量减小,变均匀性提高。随着进给速度增大,硬化指数对工件内不均匀成的影响减小;随着弹性模量增大,工件成的最大等效塑性应变值增大,不均匀变程度增大;屈服强度对工件成的不均匀程度影响无明显规律。
     4)进给速度对靠近内径处端面的变量影响较大,随着进给速度增大,工件端面的等效塑性应变减小;随着硬化指数增大,工件端面的等效塑性应变减小,弹性模量和屈服强度对靠近外径处端面的应变量影响较大;随着进给速度增大,硬化指数、弹性模量和屈服强度对工件端面等效塑性应变影响减小。
     5)进给速度增大,工件内表面等效塑性应变减小;硬化指数和屈服强度对工件内表面等效塑性应变影响较小。在沟槽处弹性模量的影响较大,且随着弹性模量的增大,沟槽处的等效应变增大。
Cold ring rolling technology is a cross and combination of rolling technology and mechanical manufacturing, which decreases the thickness of ring and enlarges the diameter of ring via the cold ring rolling mill. It has many advantages, such as high material utilization ratio, reduced procedures, high quality and precision, energy saving and improved working environment. Compared with traditional method, the ring rolling technology is of great social significance and economic performance.
     Considering fully characteristics of cold ring rolling, simulation model is created to simulate the cold rolling of deep groove ball bearings. Influence of the parameters (such as mold structure, feed velocity, rotational speed and material parameters etc.) on roll force, axial spread and forming quality is studied. The main contents and conclusions of this paper are as follows:
     (1) Based on ABAQUS software, a three-dimensional elastic-plastic FEM model is established. The elastic-plastic mechanics theory and numerical simulation technology of large deformation are adopted according to the different stages of the deforming process basing on the deforming mechanism of cold ring rolling.
     (2) Proper feed velocity, motion track of guide roll and the mass scaling coefficient are determined. On basis of earlier work, designing formula of feed velocity is defined according to bite conditions and penetration conditions. The following motion guide rolls are adopted. The motion track is a segment of arc and the center is decided by the axis of drive roll, the distance of different times is computed and used to control the motion of guide rolls. Mass scaling can accelerate the simulation, so proper mass scaling coefficient is determined as 10 by comparison of the results under different mass scaling coefficients.
     (3) Influence of the mold structure and process parameters is studied. Proper mould structure can not only avoid fishtail effect, but also give a result of high quality and less machining amount. In order to gain a stable process, higher feed velocity should be took at the beginning of the process, while lower feed velocity should be took latterly. The roll force decreases and the quality can be improved by increasing the rotational speed of the drive roll. But slipping happened more frequently and higher power cold ring rolling mill is needed. Therefore, proper rotational speed of drive roll should be determined according to the production requirements.
     (4) Influence of the material property parameters, feed velocity and their coupling effect to forming process is studied. Limiting spread structure is adopted. when strain hardening exponent, Young's modulus and Yield strength are chosen respectively in the range of 0.10-0.40, 100GPa-400GPa, 50MPa-400MPa. Constant feed velocity is used and the scope is 1.1mm/s-4.0mm/s, influence of them to forming process is studied.
     1) The roll force grows with the increase of feed velocity. The influence of strain hardening exponent to roll force is similar to true stress-strain wave under different strain hardening exponent. In the earlier stage, the roll force is easier to be influenced by Yield strength, but subsequently, the influence decreases. Young's modulus has little influence on the roll force.
     2) When feed velocity increases, shaping effect turns worse. When strain hardening exponent and Young's modulus grow, side spread of the end face decreases, but when feed velocity increases, influence of them decreases. Side spread of the end face is hardly affected by Yield strength.
     3) The work piece is easier to get good shape when feed velocity is low, but when feed velocity increases, the condition of homogeneous deformation is improved. While strain hardening exponent grows, the maximum deformation decreases and the condition of inhomogeneous deformation is improved. When feed velocity increases, the influence of strain hardening exponent decreases. When Young's modulus grows, the maximum deformation and the inhomogeneous deformation degree increases. Yield strength has little influence on the inhomogeneous deformation.
     4) The deformation of end face is easier to be effected by feed velocity at the place close to inner surface. When feed velocity grows, the influence of strain hardening exponent, Young's modulus and Yield strength decreases.
     5) When feed velocity increases, equivalent plastic strain of the inner surface decreases. Strain hardening exponent and Yield strength have little influence on the equivalent plastic strain of the inner surface. The equivalent plastic strain of the groove is affected by Young's modulus, and it grows when Young's modulus increases.
引文
[1]华林,黄兴高,朱春东.环件轧制理论和技术[M].北京:机械工业出版社,2001
    [2]Johnson W,Mamalis A G..Rolling of Rings.International Metals Reviews,1979,(4):137-1483
    [3]华林,赵仲治。环件辗扩成及其在汽车工业中应用[J].汽车工程,1993,15(4):250-256
    [4]华林,赵仲治,张猛.后桥从动伞齿轮锻件辗扩毛坯设计[J].汽车工艺,1991,(1):11-13
    [5]李春天,黄欣.环件轧制技术及其在国内的应用[J].锻压装备与制造技术,2004,(5):8-13
    [6]王令文摘译.套圈毛坯的冷辗扩工艺[J].轴承,2002,(1):41-43
    [7]华林,梅雪松,吴序堂.轧环机进给速度设计[J].机械制造,1998,(8):15-16
    [8]W.Johnson and G Needham.Experiments on ring rolling.Int.J.Mech.Sci.,1968,10:95-113
    [9]R.M.Caddell,G.Neednam and W.Johnson.Yield strength variation in ring-roll eda luminium.Int.J.Mech.Sci.,1968,10:749-756
    [10]A.G.Mamalis,W.Johnson,J.B.Hawkyard.On the pressure distribution between stock and rolls in ring rolling.J.Mech.Eng.Sci.,1976,18:184-195
    [11]华林.环件轧制成原理和技术设计方法[D].西安:西安交通大学,2000
    [12]J.B.Hawkyard,W.Johnson,J.Kirkland,E.Appleton.Analyses for roll force and torque in ring rolling,with some supporting experiments.Int.J.Mech.Sci.,1973,15:873-893
    [13]D.Y.Yang,J.S.Ryoo.An investigation into the relationship between torque and load in ring rolling.J.Eng.Ind.,1987,109:190-196
    [14]Yang DY,Kim K H.Rigid-Plastic Finite Element Analysis of Plane Strain Ring Rolling.International Journal of Mechanical Science,1988,30(8):571-580
    [15]Naksoo Kim,Susumu Machida,Shiro Kobayshi.Ring Rolling Process Simulation by the Three Dimension Finite Element Method.Int.J.Mach.Tools,1990,30(4):569-577
    [16]Hua Z M,Pillinger I,Hartley P,McKenzie S,Spence P J.Three-Dimension finite Modeling of Ring Rolling.Journal of Materials Processing Technology,1994,45:143-148
    [17]Lim T,Pillinger I,Hartley P.A Finite-element Simulation of Profile Ring Rolling Using A Hybrid Mesh Model.Journal of Material's Processing Technology,1998,80:199-205
    [18]许思广,王海文.环件轧制过程中的横向变[J].重型机械,1990,(1):40-44
    [19]解春雷,李尚健。动态有限元模拟与环轧控制策略[J].锻压机械,1998.6:24-26
    [20]D.Y.Yang,K.H.Kim.Rigid plastic finite element analysis of plain strain ring rolling.Int.J.Mech.Sci.,1988,30:571-580
    [21]N.K.Kim,S.Machida,S.Kobayashi.Ring rolling process simulation by the three dimensional finite element method.Int.J.Mach.Tools Manuf.,1990,30:569-577
    [22]S.G.Xu,J.C.Lian,J.B.Hawkyard.Simulation of ring rolling using a rigid-plastic finite element model.Int.J.Mech.Sci.,1991,33(5):393-401
    [23]Rajiv Shivpuri and Erden Eruc.Planning and simulation of the ring rolling process for improved productivity.Int.J.Mach.Tools Manuf.,1993,33(2):153-173
    [24]Youngsoo Yea,Youngsoo Ko,Naksoo Kima,Jongchan Lee.Prediction of spread,pressure distribution and roll force in ring rolling process using rigid-plastic finite element method.J.Mater.Process.Technol.,2003,140(1-3):478-486
    [25]C.Xie,X.Dong,S.Li,S.Huang.Rigid-viscoplastic dynamic explicit FEA of the ring rolling process.Int.J.Mach.Tools Manuf.,2000,40:81-93
    [26]许思广,姚开云.几种不同截面状的环件轧制有限分析[J]。锻压技术,1993,(2):9-11
    [27]李斌.国内外冷辗环机特点分析[J].锻压机械,1997:8-9
    [28]周月成,李磊.冷辗轴承套圈工艺研究[J].哈尔滨轴承,2006,27(1):34-35
    [29]左治江,华林。环件冷辗扩技术现状和发展[J].锻压技术,2005,(4):102-105
    [30]王志慧.环件轧制技术现状和发展[J].机械制造,2003,41(469):31-33
    [31]李新东,时大方,王雅红.冷辗扩工艺在轴承套圈加工中的应用[J].轴承,2004,(12):39-40
    [32]王卫荣,史守超,时大方.轴承套圈冷辗扩加工过程有限元模拟分析[J].轴承,2005,(3):22-44
    [33]华林,赵仲治.环件轧制的极限参数[J]。兵器材料科学与工程,1994,17(6):26-30
    [34]华林,赵仲治.环件轧制原理和设计方法[J].机械工程学报,1996,32(6):66-70
    [35]锻压技术手册编委会.锻压技术手册[M].北京:国防工业出版社,1989:1306-1307
    [36]Hawkyard.J Betal.Int J Mech Sci.,1973,15(11)873
    [37]李普曼H.金属成过程的工程塑性理论(乔端等译)[M].北京:冶金工业出版社,1998:321-323
    [38]张蒙.辗环理论进给规程研究[J].锻压技术,1993
    [39]时大方,杨建国,李丹.轴承套圈冷辗扩过程分析[J].轴承,2003,(6):14-15
    [40]华林.环件阕式轧制力和力矩上限计算[J].力学与实践,1994,16(3):39-43
    [41]华林。扎环机工作参数理论设计[J].锻压机械,2000,3:8-10
    [42]钱东升.基于有限元模拟的环件轧制锻透及残余应力研究[D].武汉:武汉理工大学,2006
    [43]袁银良.外台阶截面环件轧制成规律研究[D].武汉:武汉理工大学,2006
    [44]刘建生,陈慧琴.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003
    [45]俞汗青,陈金德.金属塑性成原理[M].北京:机械工业出版社,2003
    [46]李兰云。环件冷辗扩过程材料参数与芯辊进给速度的耦合作用研究[D].西安:西北工业大学,2005
    [47]庄茁,张帆,岑松等。ABAQUS非线性有限元分析与实例[M].科学出版设,2005:390-406
    [48]石亦平,周玉蓉。ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006
    [49]江雄心,万平荣.三维有限元模拟中的网格重划[J],金属成工艺,2002,(2):2-3
    [50]杨瑞成,安丽丽,季根顺.GCr轴承钢压缩苏醒流动研究[J].甘肃工业大学学报,1993,19(1):8-10
    [51]罗洲,华林,周勇强等.环件轧制过程中的显示有限元模拟分析[J].塑性工程学报,2004,11(1):68-70
    [52]钱东升,华林,左治江等.环件轧制三维有限元模拟中质量缩放方法的运用[J].塑性工程学报,2005,12(5):86-91
    [53]华林,梅雪松,吴序堂.轧环机进给速度设计[J].汽车工艺与材料,1999,(3):8-9
    [54]冯利民,房秀锦,芦素玲.环件轧制进给速度之设计[J].2004,(37):31-32
    [55]N.K.Kim,S.Machida,S.Kobayashi.Ring rolling process simulation by the three dimensional finite element method.Int.J.Mach.Tools Manuf.,1990,30:569-577
    [56]Rajiv Shivpuri and Erden Eruc.Planning and simulation of the ring rolling process for improved productivity.Int.J.Mach.Tools Manuf., 1993,33(2):153-173
    [57]李新东,王雅红.冷辗环机圆度辊结构分析[J].轴承,2005,(1):17-18
    [58]Hua Lin,Zhao Zhongzhi.The Extremum Parameters in Ring Rolling.J.Journal of Materials Processing Technology,1997,69(1):273-276
    [59]华林,左治江,兰箭,钱东升.环件冷辗扩中单辊随动导向运动规律研究[J].中国机械工程,2006,17(10):1082-1086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700