用户名: 密码: 验证码:
面向新一代运载火箭的网格加筋柱壳结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于较高的比强度和比刚度,加筋柱壳结构已广泛应用于运载火箭中的燃料贮箱和级间段等部段。加筋柱壳的轻量化设计理论与方法是保证火箭运载能力不可回避的需求。本文首先提出了两种基于等效刚度模型和精细模型的加筋柱壳混合优化方法,然后发展了适合多变量加筋柱壳优化问题的高效优化方法,继而系统地研究了加筋柱壳的缺陷敏感性问题,发展了最不利多点扰动载荷搜索方法。此外,本文还提出了面向低缺陷敏感性的加筋柱壳设计理念,建立了两种低缺陷敏感层级加筋柱壳构型,并构造了计及缺陷敏感度的优化模型。最后将加筋柱壳的前期分析优化经验集成固化为基于ABAQUS的快速设计软件。
     本文主要内容如下:
     (1)研究了两种基于等效模型和精细模型的加筋柱壳混合优化方法。面向我国新一代运载火箭和未来重型运载火箭箭体设计,针对加筋柱壳后屈曲分析计算成本较大的现状,首先对于均匀轴压工况,提出了加筋柱壳尺寸布局两步优化方法。对于非均匀轴压工况,本文还提出了同一壁板结构参数相同、不同壁板结构参数不同的分区设计理念,进而发展了一种基于等效刚度模型和精细模型的代理模型混合优化方法。算例结果表明两种优化方法的优化效益显著。
     (2)面向发射阶段承受非均匀分布轴压荷载的助推器液氧贮箱设计需求,提出了基于自适应抽样方法并考虑设计偏好的代理模型优化方法。通过变量分组和定义合适的变量敏感性指标,发展了一套能够考虑设计偏好的自适应抽样方法,可理性地缩减设计空间,从而大大提高优化效率。三维刚架算例结果表明:该方法能够极大提高计算效率,且优化结果十分接近全局最优解。助推器液氧贮箱算例证明:该方法能以更少的计算成本,获得更为优异的结构设计。
     (3)针对火箭薄壁结构中具有高发概率的凹陷缺陷,提出了最不利多点扰动载荷搜索方法。首先研究了不同类型加筋柱壳对不同类型缺陷的敏感性,然后以单点凹陷为例系统地研究了凹陷方向和发生位置对结构屈曲临界载荷的影响规律,继而提出一种多点凹陷组合模型,用于考察凹陷间的交互作用及其对结构承载能力的影响。在这些研究成果基础上,进一步发展了最不利多点扰动载荷搜索方法,用以寻找限定缺陷幅度的最不利缺陷工况及其对应的结构轴压承载力下限,并为新一代运载火箭及未来重型运载火箭的薄壁结构设计提供改进的折减因子。
     (4)提出了面向低缺陷敏感性的加筋柱壳设计理念,建立了两种低缺陷敏感层级加筋柱壳结构构型,并构建了计及缺陷敏感度的优化模型。针对提出的双曲母线加筋柱壳和双向多级加筋柱壳构型,深入地研究了其优异性能的力学本质。双曲母线加筋柱壳算例的数值分析结果表明:对于弹性屈曲加筋柱壳,外凸双曲母线既可提高完善结构轴压承载力,又可大大提高非完善加筋柱壳的承载性能;对于塑性屈曲加筋柱壳,内凹双曲母线可小幅提高完善结构承载力,但外凸双曲母线则可大大提高非完善加筋柱壳的承载性能,表现为结构对整体型和局部型缺陷的低敏感性。双向多级加筋柱壳算例的数值分析结果表明:此类结构可将缺陷引发的初始局部出平面变形尽量限制在主筋格栅中,减缓了其向整体失稳模式的演化,降低了对初始几何缺陷的敏感性。基于这两种新型加筋柱壳结构构型,本文构建了计及缺陷敏感度的加筋柱壳优化模型,并完成数值算例验证。
     (5)开发了完美(善)与非完美(善)加筋柱壳强度稳定性分析软件,以及基于ABAQUS的有限元模型质量检查软件等4个辅助设计软件,形成了一系列能够体现后续优化设计意图、实现整箭整弹的积木式模块化建模的专用模板,为弹箭体结构设计提供了更加方便快捷的设计工具。上述软件已应用于我国运载火箭及导弹型号的一线研发中。
     本博士论文得到大连理工大学优秀博士学位论文特别资助基金、973项目青年科学家专题“计及缺陷敏感性的网格加筋筒壳结构轻量化设计理论与方法”(批准号:2014CB049000,2014-2019年)、国家自然科学基金重大研究计划重点基金项目“面向近空间飞行器多功能超轻质结构设计优化理论”(批准号:90816025,2009-2012年)、总装预研重点项目“航天箭体结构优化减重设计的关键技术”(批准号:625010345,2011-2014年)、中央高校基本科研业务费重点资助项目“X体典型筒壳结构轻量化设计方法与应用”(批准号:DUT11ZD (G)04,2011-2012年)及多项国防课题的资助,在此一并表示感谢。
Due to high specific strength and stiffness, stiffened shells have been widely used in the fuel tanks and interstages of launch vehicles. Lightweight design methodology of stiffened shells becomes unavoidable to guarantee the carrying capacity of launch vehicles. Firstly, two hybrid optimization methods based on equivalent stiffness model and exact model were proposed. Then, another efficient optimization method was developed for multi-variable optimization of stiffened shells. Subsequently, imperfection sensitivity of stiffened shells was investigated systematically, and Worst Multiple Perturbation Loads Approach (WMPLA) was studied. Futhermore, two concepts of hierarchical stiffened shells with low imperfection sensitivity were proposed, together with the corresponding optimization formulations considering imperfection sensitivity. Finally, several rapid design softwares based on ABAQUS were developed, taking the previous analysis and optimization experiences into account.
     The main works of this dissertation are given as follows:
     (1) Two hybrid optimization methods based on equivalent model and exact model were investigated. With regard to China's new generation and future heavy-lift launch vehicles, due to the high computational cost of post-buckling analysis for stiffened shells, a bi-step size-layout optimization framework was presented for uniform axial compression, while a concept of partition design was utilized for non-uniform axial compression, and then a surrogate-based hybrid optimization framework was further developed. Results indicated that the optimization benefits of these two methods were significant.
     (2) Motivated by the design requirement of liquid oxygen tanks in the boosters of launch vehicles under non-uniform axial compression during ascent, a surrogate-based optimization framework with adaptive sampling allowing for user's preference was proposed. Based on variable category and various sensitivity indices, an adaptive sampling method allowing for user's preference was further developed, by which design space could be reduced rationally, and thus optimization efficiency was improved. Results of a three-dimensional rigid frame showed that the optimization efficiency was improved significantly, and the optimum result was proved to be potentially close to the global optimum. Results of a liquid oxygen tank model indicated that a more superior design could be achieved with less computation cost.
     (3) Based on dimple-shape imperfections, which probably occurs in thin-walled structures of launch vehicles, WMPLA was proposed. Firstly, the sensitivities to imperfections with various forms were studied in detail for various types of stiffened shells. Then the influence of a single dimple-shape imperfection on the load-carrying capacity of cylindrical shells was investigated by varying the amplitudes, directions and positions of imperfections. Further, a combined dimpe-shape imperfection was developed to investigate the interaction of dimples and the reduction of the load-carrying capacity. Finally, WMPLA was presented to find the worst imperfection and lower bound of load-carrying capacity, aiming at providing a reference for improving knockdown factors of thin-walled structures in China's new generation and future heavy-lift launch vehicles.
     (4) The concept of stiffened shells for low imperfection sensitivity was put forward, and two configurations of hierarchical stiffened shells with low imperfection sensitivity were proposed herein. Further, two optimization formulations considering imperfection sensitivity were also developed. For stiffened shells with hyperbolic generatrix shape and bi-directional hierarchical stiffened shells, and the mechanical essences of their low imperfection sensitivities were studied. Numerical results showed that the outward hyperbolic generatrix shape could improve the load-carrying capacities of both perfect and imperfect elastic-buckling stiffened shells, while for the plastic-buckling stiffened shell, the inward hyperbolic generatrix shape could increase the collapse loads of perfect structures in a small amplitude, and the outward hyperbolic generatrix shape could improve the load-carrying capacities of imperfect structures significantly, reflected as the low sensitivity to global-and local-pattern imperfections. Numerical results also indicated that the existence of major stiffeners in hierarchical stiffened shell had the ability to restrict the development of the initial out-of-plane deformation, thus the evolution to the global-pattern deformation was slowed down, and the imperfection sensitivity was further decreased. Furthermore, two optimization formulations considering imperfection sensitivity were proposed to search for the hierarchical optimum design. Finally, the effectiveness of the proposed optimization formulations was validated.
     (5) Strength and stability analyses software of perfect and imperfect stiffened shells was developed, together with another four design-aided softwares, including quality verification software of FEM model based on ABAQUS, etc., which formed a series of modular softwares for the modeling of whole launch vehicle and missile, and also provided a convenient design tool for structural designs of launch vehicle and missile. The above softwares have been successfully utilized in the developments of new launch vehicles and missiles in China.
     The research of this dissertation was supported by the Excellent Doctoral Dissertation Sustentation Fund of Dalian University of Technology, the973program (2014CB049000,2014-2019), the National Natural Science Foundation of China (90816025,2009-2012), the Advanced Research Project of Equipment Department (625010345,2011-2014), the Fundamental Research Funds for the Central Universities (DUT11ZD(G)04,2011-2012) and several national defense projects. The financial contributions are gratefully acknowledged.
引文
[1]李东,程堂明.中国新一代运载火箭发展展望[J].中国航天,2008,2:7-10.
    [2]中华人民共和国国务院新闻办公室白皮书.中国的航天[R],2010.
    [3]Ory H, Reimerdes H G, Schmid T, et al. Imperfection sensitivity of an orthotropic spherical shell under external pressure[J]. International journal of non-linear mechanics,2002,37(4):669-686.
    [4]Noor A K, Samuel L, Venneri D B, et al. Structure technology for future aerospace system [J]. Computers and Structures,2000,74(5):507-519.
    [5]Vasiliev V V, Razin A F. Anisogrid composite lattice structures for spacecraft and aircraft applications [J]. Composite Structures,2006,76(1-2):182-189.
    [6]中国科学院力学研究所固体力学研究室板壳组.加筋圆柱曲板与圆柱壳[M].北京:科学出版社,1983.
    [7]利津B T,皮亚特金B A.薄壁结构设计[M].北京:国防工业出版社,1983.
    [8]Huybrechts S M, Hahn S E, Meink T E. Grid stiffened structures:Survey of fabrication, analysis and design methods[C]. Proceedings of the 12th International Conference on Composite Materials, Paris,1999.
    [9]Huybrechts S M, Meink T E. Advanced grid stiffened structures for the next generation of launch vehicles[C].1997 IEEE Aerospace Conference,1997.
    [10]韩涵.运载火箭加筋壳结构稳定性分析[D].长沙:国防科技大学,2005.
    [11]Hou A, Gramoll K. Design and fabrication of cfrp interstage attach fitting for launch vehicles[J]. Journal of Aerospace Engineering,1999,12(3):935-943.
    [12]Reddy A D, Valisetty R R, Rehfield L W. Continuous filament wound composite concepts for aircraft fuselage structures[J]. Journal of Aircraft,1985,22(3):249-255.
    [13]刘晋春.特种加工[M].北京:机械工业出版社,1986.
    [14]顾超宇ISOGRID结构的力学特性研究以及在炮塔上的应用[D].南京:南京理工大学,2006.
    [15]Seide P, Weingarten V I, Morgan E J. The development of design criteria for elastic stability of thin shell structures[R]. Final Report:STL/TR-60-0000-19425, Space Technology Laboratories, Inc., Los Angles, CA, December 1960.
    [16]Anonymous. Buckling of thin-walled circular cylinders[R]. NASA Space Vehicle Design Criteria, NASA SP-8007,1968.
    [17]中华人民共和国国务院新闻办公室白皮书.2011年中国的航天[R],2011.
    [18]Timoshenko S P, Gere J M. Theory of elastic stability. New York:McGraw-Hill,1936:285-286.
    [19]Donnell L H. A new theory for the buckling of thin cylinders under axial compression and bending[J]. Trans. ASME,1934,56(11):795-806.
    [20]Karman V, Tsien H S. The buckling of thin cylinders under axial compressionfJ]. Journal of Aeronaut Sci,1941,8:303-312.
    [21]Koiter W T. On the stability of elastic equilibrium[D]. Amsterdam:University of Delft,1945.
    [22]Stein M. The influence on prebuckling deformations and stresses on the buckling of perfect cylinders[R]. NASA TR-190,1964.
    [23]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [24]黄克智,夏之熙.板壳理论[M].北京:清华大学出版社,1987.
    [25]周承倜.薄壳弹塑性稳定性理论[M].北京:国防工业出版社,1979.
    [26]Hohe J, Becker W. Effective elastic properties of triangular grid structures[J]. Composite Structures,1999,45(2):131-145.
    [27]Hohe J, Beschorner C, Becker W. Effective elastic properties of hexagonal and quadrilateral Grid Structures[J]. Composite Structures,1999,46(1):73-89.
    [28]Timoshenko S P, Woinowsky K S. Theory of plates and shells[M].2nd Ed. New York: McGraw-Hill,1959.
    [29]Kollar L, Hegedus I. Analysis and design of space frames by the continuum method[M]. Amsterdam:Elsevier Science Publishing Company,1985.
    [30]温玄玲,陈浩然.等网格加筋复合材料圆柱壳的总体稳定性和中间框临界刚度计算[J].强度与环境,1986,6:19-25.
    [31]Chen H J, Tsai S W. Analysis and optimum design of composite grid Structures[J]. Journal of Composite Materials,1996,30(4):503-534.
    [32]张志峰.先进复合材料格栅加筋结构优化设计与损伤分析[D].大连:大连理工大学,2008.
    [33]Meyer R R, Harwood O P, Orlando J I. Isogrid design handbook[R]. NASA CR-124075,1973.
    [34]Phillips J L, Gurdal Z. Structural analysis and optimum design of geodesically stiffened composite panels[R]. NASA CCMS-90-50,1990.
    [35]Jaunky N, Knight N F, Ambur D R. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels[J]. Composites Part B:Engineering,1996, 27(5):519-526.
    [36]Wodesenbet E, Kidane S, Pang S S. Optimization for buckling loads of grid stiffened composite panels[J]. Composite Structure,2003,60(2):159-169.
    [37]Kidane S, Li G, Helms J, et al. Buckling load analysis of grid stiffened composite cylinders[J]. Composites Part B:Engineering,2003,34(1):1-9.
    [38]吴德财,徐元铭,贺天鹏.新的复合材料格栅加筋板的平铺等效刚度法[J].力学学报,2007,39(4):495-502.
    [39]吴德财,徐元铭,万青.先进复合材料格栅加筋板的总体稳定性分析[J].复合材料学报,2007,24(2):168-173.
    [40]Slinchenko D, Verijenko V E. Structural analysis of composite lattice shells of revolution on the basis of smearing stiffness[J]. Composite Structures,2001,54(2-3):341-348.
    [41]Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs[J]. Journal of Engineering Materials and Technology,2003,126(2):137-156.
    [42]Buragohain M, Velmurugan R. Buckling analysis of composite hexagonal lattice cylindrical shell using smeared stiffener model[J]. Defence Science Journal,2009,59(3):230-238.
    [43]崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,2006:7-8.
    [44]John Higgins P E, Wegner P, Viisoreanu A, et al. Design and testing of the Minotaur advanced grid-stiffened fairing[J]. Composite structures,2004,66(1):339-349.
    [45]Kim G I, Tuttle M E. Buckling analysis for a stiffened panel[C].35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Hilton Head, AIAA-1994-1496,1994.
    [46]Williams F W, Kennedy D, Butler R, et al. VICONOPT-Program for exact vibration and buckling analysis for design of prismatic plate assemblies[J]. AIAA Journal,1991,29(11): 1927-1928.
    [47]Ambur D R, Rehfield L W. Effect of stiffness characteristics on the response of composite grid-stiffened structures[J]. Journal of Aircraft,1993,30(4):541-546.
    [48]张志峰,陈浩然,白瑞祥.一种分析AGS结构的三角形加筋板/壳单元[J].工程力学,2006,23(Sup I):203-208.
    [49]Rankin C C, Brogan F A, Loden W A, et al. STAGS User's Manual Version 2.4[M]. Lockheed Martin Advanced Technology Center, Rept. LMSC PO32594,1997.
    [50]Thurston G A, Brogran F A, Stehlin P. Postbuckling analysis using a general purpose core[J]. AIAA Journal,1986,24:1013-1020.
    [51]Bushnell D, Rankin C. Optimization of perfect and imperfect ring and stringer stiffened cylindrical shells with PANDA2 and evaluation of the optimum designs with STAGS[C].43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, AIAA-2002-1408,2002.
    [52]ABAQUS Standard User's Manual Version 6.10[M]. Pawtucket:Karlsson and Sorensen Inc., 2010.
    [53]ANSYS User's Manual Version 10.0[M]. Canonsburg:Swanson Analysis Sys. Inc,2005.
    [54]NASTRAN, M. S. C, and MARC User's Manual[M]. Santa Ana:MSC Software Corporation, 2000.
    [55]Shanmugam N E, Arockiasamy M. Local Buckling of stiffened plates in offshore structures[J]. Journal of Constructional Steel Research,1996,38(1):41-59.
    [56]熊晓枫.薄壁结构非线性有限元数值计算及其稳定性分析研究[D].西安:西北工业大学,2006.
    [57]Zimmermann R, Rolfes R. POSICOSS—improved postbuckling simulation for design of fibre composite stiffened fuselage structures[J]. Composite Structures,2006,73(2):171-174.
    [58]Degenhardt R, Rolfes R, Zimmermann R, et al. COCOMAT—improved material exploitation of composite airframe structures by accurate simulation of postbuckling and collapse[J]. Composite Structures,2006,73(2):175-178.
    [59]Wu H, Yan Y, Yan W, et al. Adaptive approximation-based optimization of composite advanced grid-stiffened cylinder[J]. Chinese Journal of Aeronautics,2010,23(4):423-429.
    [60]Crisfield M A. A faster modified Newton-Raphson iteration[J]. Computer Methods in Applied Mechanics and Engineering,1979,20(3):267-278.
    [61]Degenhardt R, Kling A, Rohwer K, Orifici A C, Thomson R S. Design and analysis of stiffened composite panels including post-buckling and collapse[J]. Computers & Structures,2008,86(9): 919-929.
    [62]Riks E. An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures,1979,15(7):529-551.
    [63]Powell G, Simons J. Improved iteration strategy for nonlinear structures[J]. International Journal for Numerical Methods in Engineering,2005,17(10):1455-1467.
    [64]Crisfield M A. A fast incremental/iterative solution procedure that handles "snap-through"[J]. Computers & Structures,1981,13(1):55-62.
    [65]Crisfield M A. An arc-length method including line searches and accelerations[J]. International Journal for Numerical Methods in Engineering,1983,19(9):1269-1289.
    [66]Haynie W T, Hilburger M W. Comparison of methods to predict lower bound buckling loads of cylinders under axial compression[C].51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Orlando, AIAA-2010-2532,2010.
    [67]Shariati M, Saemi J, Sedighi M, et al. Experimental and numerical studies on buckling and post-buckling behavior of cylindrical panels subjected to compressive axial load[J]. Strength of Materials,2011,43(2):190-200.
    [68]Lanzi L. A numerical and experimental investigation on composite stiffened panels into post-buckling[J]. Thin-Walled Structures,2004,42(12):1645-1664.
    [69]Lanzi L, Giavotto V. Post-buckling optimization of composite stiffened panels:Computations and experiments[J]. Composite Structures,2006,73(2):208-220.
    [70]Huang C, Zhang X, Wang B, et al. Optimization of an axially compressed ring and stringer stiffener cylinder structure with explicit FEM method[C].6th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kyoto,2010.
    [71]Rikards R, Abramovich H, Kalnins K, Auzins J. Surrogate modeling in design optimization of stiffened composite shells[J]. Composite Structures,2006,73(2):244-251.
    [72]王斌.结构多性能优化设计及其在航天结构设计中的应用[D].大连:大连理工大学,2010.
    [73]Schmit L A, Kicher T P, Morrow W M. Structural synthesis capability for integrally stiffened waffle plates[J]. AIAA Journal,1963,1(12):2820-2836.
    [74]Jones R T, Hague D S. Application of multivariable search techniques to structural design optimization[R]. NASA CR-2038,1972.
    [75]Gendron G, Gurdal Z. Optimal design of geodesically stiffened composite cylindrical shell[J]. Composites Engineering,1993,3(12):1131-1147.
    [76]朴春雨,章怡宁.典型加筋板的优化设计[J].飞机设计,2003,4:29-32.
    [77]Chen B S, Liu G, Kang J, Li Y P. Design optimization of stiffened storage tank for spacecraft[J]. Structural and Multidisciplinary Optimization,2008,36(1):83-92.
    [78]龙连春,陈兴华,傅向荣,等.矩形加筋圆柱壳轴压屈曲承载力优化[J].中国农业大学学报,2009,14(4):124-130.
    [79]Simitses G J, Ungbhakorn V. Minimum-weight design of stiffened cylinders under axial compression[J]. AIAA Journal,1975,13(6):750-755.
    [80]Simitses G J. Optimization of stiffened cylindrical shells subjected to destabilizing loads[J]. Structural Optimization Status and Promise, Progress in Astronautics and Aeronautics, edited by M. P. Karmat, Vol.150, AIAA, Washinton, DC,1992:663-704.
    [81]马斌捷,盛祖铭,贾亮,王淑范.轴外压作用下复合材料网格加筋柱壳蒙皮铺层和筋条角度优化分析[J].导弹与航天运载技术,2009,299(1):41-47.
    [82]李亚丽,徐骏.LF6筒体内壁网格的结构设计及化铣加工[J].新技术新工艺,2000,2(6):15-16.
    [83]赵振,刘才山,陈滨,等.薄壁加筋肋圆柱壳稳定性分析的参数化研究[J].力学与实践,2004,26(2):17-21.
    [84]毛佳,江振宇,陈广南,张为华.轴压薄壁加筋圆柱壳结构优化设计研究[J].工程力学,2011,28(8):183-192.
    [85]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [86]Nagendra S, Haftka R T, Gurdal Z. Design of a blade stiffened composite panel by genetic algorithm[C].34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, La Jolla, AIAA-93-1584,1993.
    [87]Jaunky N, Knight N F Jr, Ambur D R. Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints[J]. Composite Structures,1998,41(3-4): 243-252.
    [88]Ambur D R, Jaunky N. Optimal design of grid-stiffened panels and shells with variable curvature[J]. Composite Structures,2001,52(2):173-180.
    [89]Sadeghifar M, Bagheri M, Jafari A A. Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load[J]. Thin-Walled Structures,2010,48(12):979-988.
    [90]Bagheri M, Jafari A A, Sadeghifar M. A genetic algorithm optimization of ring-stiffened cylindrical shells for axial and radial buckling loads[J]. Archive of Applied Mechanics,2011, 81(11):1639-1649.
    [91]张志峰,陈浩然,李煊,蒋元兴.先进复合材料格栅圆柱壳优化设计的混合遗传算法[J].复合材料学报,2005,22(2):166-171.
    [92]穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京:南京航空航天大学,2004.
    [93]Venter G, Haftka R T, Chirehdast M. Response surface approximations for fatigue life prediction[C].38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and AIAA/ASM/AHS Adaptive Structures Forum, Kissimmee, AIAA-97-1331,1997.
    [94]Ong Y S, Nair P B, Keane A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA journal,2003,41(4):687-696.
    [95]Rikards R, Abramovich H, Auzins J, et al. Surrogate models for optimum design of stiffened composite shells[J]. Composite Structures,2004,63(2):243-251.
    [96]李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计[J].机械工程学报,2006,42(11):115-119.
    [97]荣晓敏,徐元铭,吴德财.复合材料格栅结构优化设计中的计算智能技术[J].北京航空航天大学学报,2006,32(8):926-929.
    [98]周思达,刘莉,朱华光.网格整体加筋贮箱圆筒壳结构优化设计[J].南京航空航天大学学报,2010,42(3):363-368.
    [99]张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008,40(4):497-500.
    [100]Bushnell D. PANDA2-Program for minimum weight design of stiffened, composite, locally buckled panels[J]. Computers & Structures,1987,25(4):469-605.
    [101]Bushnell D. Recent enhancements to PANDA2[C].37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Salt Lake City, AIAA-96-1337, 1996.
    [102]Bushnell D, Bushnell W D. Approximate method for the optimum design of ring and stringer stiffened cylindrical panels and shells with local, inter-ring, and general buckling modal imperfections[J]. Computers & Structures,1996,59(3):489-527.
    [103]Venkataraman S. Modeling, analysis and optimization of cylindrical stiffened panels for reusable launch vehicle structures[D]. Gainesville:University of Florida,1999.
    [104]Lamberti L, Venkataraman S, Haftka R T, et al. Preliminary design optimization of stiffened panels using approximate analysis models[J]. International journal for numerical methods in engineering,2003,57(10):1351-1380.
    [105]Donnell L H, Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression[J]. Journal of Applied Mechanics,1950,17(1):73-83.
    [106]Anonymous. Buckling of thin-walled circular cylinders[S]. NASA Space Vehicle Design Criteria, NASA SP-8007,1965.
    [107]Anonymous. Buckling of thin-walled truncated cones[S]. NASA Space Vehicle Design Criteria, NASA SP-8019,1968.
    [108]Anonymous. Buckling of thin-walled doubly curved shells[S]. NASA Space Vehicle Design Criteria, NASA SP-8032,1969.
    [109]Peterson J P. Buckling of stiffened cylinders in axial compression and bending-A review of test data[R]. NASA TN D-5561,1969.
    [110]周家麟.推进剂金属贮箱设计规范[S].中国运载火箭技术研究院标准,1999.
    [111]Hilburger M W. Developing the next generation shell buckling design factors and technologies[C].53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, AIAA-2012-1686,2012.
    [112]Calladine C R. Understanding imperfection-sensitivity in the buckling of thin-walled shells[J]. Thin-walled structures,1995,23(1):215-235.
    [113]Arbocz J, Babcock C D. The effect of general imperfections on the buckling of cylindrical shells[J]. Journal of Applied Mechanics,1969,36(1):28.
    [114]Arbocz J, Babcock C D. Prediction of buckling loads based on experimentally measured initial imperfectionsfJ]. Buckling of structures,1976:291-311.
    [115]Arbocz J, Sechler E E. On the buckling of stiffened imperfect cylindrical shells[J]. AIAA Journal, 1976,14:1611-1617.
    [116]Arbocz J. Imperfection surveys on a 10-ft-diameter shell structure[J]. AIAA Journal,1977,15(7): 949-956.
    [117]Singer J, Abramovich H. The development of shell imperfection measurement techniques[J]. Thin-walled structures,1995,23(1):379-398.
    [118]Arbocz J. The imperfection data bank, a mean to obtain realistic buckling loads[M]. Springer Berlin Heidelberg,1982:535-567.
    [119]Hilburger M W, Nemeth M P, Starnes J H. Shell buckling design criteria based on manufacturing imperfection signatures[J]. AIAA journal,2006,44(3):654.
    [120]Anonymous. Eurocode 3:Design of steel structures[S]. European Committee for Standardisation, ENV 1993-1-6,1999.
    [121]Teng J G, Song C Y. Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections[J]. International journal of solids and structures,2001,38(18): 3263-3280.
    [122]Huhne C, Rolfes R, Breitbach E, et al. Robust design of composite cylindrical shells under axial compression—Simulation and validation[J]. Thin-walled structures,2008,46(7):947-962.
    [123]Haynie W T, Hilburger M W. Validation of lower-bound estimates for compression-loaded cylindrical shells[C].53rd A IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, AIAA-2012-1689,2012.
    [124]Haynie W T, Hilburger M W. Comparison of methods to predict lower bound buckling loads of cylinders under axial compression[C].51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando,2010.
    [125]Prabu B, Raviprakash A V, Venkatraman A. Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression!J]. Thin-Walled Structures,2010,48(8):639-649.
    [126]Yu C L, Chen Z P, Wang J, Yan S J, and Yang L C. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells[J]. Journal of Zhejiang University-Science A,2012, 13(2):79-90.
    [127]Thornburgh R P, Hilburger M W. Longitudinal weld land buckling in compression-loaded orthogrid cylinders[R]. NASA/TM-2010-216876,2010.
    [128]Thornburgh R P. Axial-weld land buckling in compression-loaded orthogrid cylinders[J]. Journal of Spacecraft and Rockets,2011,48(1):199-207.
    [129]Arbocz J, Hol J. Collapse of axially compressed cylindrical shells with random imperfections[J]. Thin-Walled Structures,1995,23(1):131-158.
    [130]Biagi M. Equivalent imperfection amplitude concept for probabilistic design of buckling sensitive composite cylinders[J].49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg,2008.
    [131]Safa B C. Advances in computational stability analysis[M]. Rijeka:InTech,2012:1-16.
    [132]Scheurkogel A, Elishakoff I, Kalker J. On the error that can be induced by an ergodicity assumption[J]. Journal of Applied Mechanics,1981,48:554-556.
    [133]Qiu Z P, Wang X J, Li Z. Post-buckling analysis of a thin stiffened plate with uncertain initial deflection via interval analysis[J]. International Journal of Non-Linear Mechanics,2009,44(10): 1031-1038.
    [134]马丽红,邱志平,王晓军.不确定初始几何缺陷壳的动态屈曲分析[J].固体力学学报,2009,30(3):301-308.
    [135]Kristanic N, Korelc J. Optimization method for the etermination of the most unfavorable imperfection of structures[J]. Computational Mechanics,2008,42(6):859-872.
    [136]Lindgaard E, Lund E, Rasmussen K. Nonlinear buckling optimization of composite structures considering "worst" shape imperfections[J]. International Journal of Solids and Structures,2010, 47(22):3186-3202.
    [137]主登峰,曹平周.考虑焊缝几何缺陷影响时整体与局部轴向压力共同作用下薄壁圆柱壳稳定性分析[J].工程力学,2009,26(8):65-73.
    [138]Reitinger R, Ramm E. Maximizing structural efficiency including buckling and imperfection sensitivity[C].5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach,1994.
    [139]Reitinger R, Ramm E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-walled structures,1995,23(1):159-177.
    [140]Bushnell D. Optimization of composite, stiffened, imperfect panels under combined loads for service in the postbuckling regime[J]. Computer methods in applied mechanics and engineering, 1993,103(1):43-114.
    [141]Bushnell D, Rankin C. Difficulties in optimization of imperfect stiffened cylindrical shells[C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, AIAA-2006-1943,2006.
    [142]Lakes R. Materials with structural hierarchy[J]. Nature,1993,361(6412):511-515.
    [143]Giesa T, Arslan M, Pugno N M, et al. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness[J]. Nano letters,2011,11(11):5038-5046.
    [144]Fratzl P, Weinkamer R. Nature's hierarchical materials[J]. Progress in Materials Science,2007, 52(8):1263-1334.
    [145]Meyers M A, Chen P Y, Lin A Y M, et al. Biological materials:structure and mechanical properties[J]. Progress in Materials Science,2008,53(1):1-206.
    [146]Waller S D. Mechanics of novel compression structures[D]. Cambridge:University of Cambridge, 2006.
    [147]Waller S D. Optimisation of hierarchical and branched compression structures[M]. Saarbrucken: VDM Verlag,2008.
    [148]Obrecht H, Fuchs P, Reinicke U, et al. Influence of wall constructions on the load-carrying capability of light-weight structures[J]. International Journal of Solids and Structures,2008,45(6): 1513-1535.
    [149]Obrecht H, Rosenthal B, Fuchs P, et al. Buckling, postbuckling and imperfection-sensitivity:Old questions and some new answers[J]. Computational Mechanics,2006,37(6):498-506.
    [150]Hrinda G A. Effects of shell-buckling knockdown factors in large cylindrical shells [C].53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu,2012.
    [151]Tomas A, Tovar J P. The influence of initial geometric imperfections on the buckling load of single and double curvature concrete shells[J]. Computers & Structures,2012.
    [152]Mazzolani F M, Mandara A, Di Lauro G. Plastic buckling of axially loaded aluminium cylinders: A new design approach[C].4th International Conference on Coupled Instabilities in Metal Structures, Rome,2004.
    [153]石姗姗.先进复合材料格栅加筋壳体稳定性分析与优化设计[D].大连:大连理工大学,2011.
    [154]Whitney J M. Structural analysis of laminated anisotropic plates[M]. Lancaster:Technomic, 1987.
    [155]Powell G, Simons J. Improved iteration strategy for nonlinear structures[J]. International Journal for Numerical Methods in Engineering,2005,17(10):1455-1467.
    [156]朱菊芬,汪海,徐胜利.非线性有限元及其在飞机结构设计中的应用[M].上海:上海交通大学出版社,2011.
    [157]Carrera E. A study on arc-length-type methods and their operation failures illustrated by a simple model[J]. Computers & structures,1994,50(2):217-229.
    [158]Zhu J F, Chu X T. An improved arc-length method and application in the post-buckling analysis for composite structures[J]. Applied Mathematics and Mechanics,2002,23(9):1081-1088.
    [159]Dokainish M A, Subbaraj K. A survey of direct time-integration methods in computational structural dynamics—Ⅰ. Explicit methods[J]. Computers & Structures,1989,32(6):1371-1386.
    [160]Priyadarsini R S, Kalyanaraman V. Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression[J]. International Journal of Structural Stability and Dynamics,2012,12(4):
    [161]邓亚权.基于代理模型的结构疲劳寿命优化方法、软件及应用[D].南京:南京航空航天大学,2010.
    [162]高月华.基于Kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学,2009.
    [163]苏永华,杨红波.基于代理模型的边坡稳定可靠度算法[J].应用力学学报,2012,29(6):705-711.
    [164]张凯.基于改进降维法的可靠性算法及其在重载操作机中的应用[D].大连:大连理工大学,2012.
    [165]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,2011.
    [166]Fang K T, Li R, Sudjianto A. Design and modeling for computer experiments[M]. Boca Raton: CRC Press Inc.,2006.
    [167]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [168]王晓锋,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    [169]Fisher R A. Statistical methods for research workers[M]. Guildford:Genesis Publishing Pvt Ltd, 1925.
    [170]McKay M D, Beckman R J, Conover W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics,1979,21(2): 239-245.
    [171]Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments[J]. Statistical science,1989,4(4):409-423.
    [172]Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference,2005,134(1):268-287.
    [173]Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1):50-79.
    [174]Giunta A A, Watson L T, Koehler J. A comparison of approximation modeling techniques: polynomial versus interpolating models[C].7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Design,1998:392-404.
    [175]刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J],计算力学学报,2006,23(3):344-362.
    [176]王红涛,竺晓程,杜朝辉.自适应Kriging近似模型及其在二维扩压器优化设计中的应用[J],计算力学学报,2011,28(1):15-19.
    [177]Jansson N, Wakeman W D, Manson J A E. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms[J]. Composite structures,2007,80(1): 21-31.
    [178]Hardy R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of geophysical research,1971,76(8):1905-1915.
    [179]Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization,2001,23(1):1-13.
    [180]Franke R. Scattered data interpolation:Tests of some methods[J]. Journal of Mathematical Computation,1982,38(157):181-200.
    [181]Venter G, Haftka R T, Chirehdast M. Response surface approximations for fatigue life prediction[C].38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and AIAA/ASM/AHS Adaptive Structures Forum, Kissimmee,1997.
    [182]向国齐.支持向量回归机代理模型设计优化与应用研究[D].成都:电子科技大学,2010.
    [183]王晓峰,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    [184]Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global optimization,1998,13(4):455-492.
    [185]Keane A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA journal,2006,44(4):879-891.
    [186]王红涛,竺晓程,杜朝辉.改进EGO算法在跨声速翼型气动优化设计中的应用[J].上海交通大学学报,2009(11):1832-1836.
    [187]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [188]Hilburger M W, Lovejoy A E, Thornburgh R P, et al. Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development[C].53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, AIAA-2012-1865,2012.
    [189]Murphy A, Price M, Curran R, et al. Integration of strength and process modeling of friction-stir-welded fuselage panels[J]. Journal of Aerospace Computing, Information, and Communication,2006,3(4):159-176.
    [190]Azarm S, Li W C. A two-level decomposition method for design optimization[J]. Engineering Optimization,1988,13(3):211-224.
    [191]Li W C, Azarm S. Parameter sensitivity analysis in two-level design optimization[J]. Journal of mechanical design,1990,112(3):354-361.
    [192]Goodman E, Averill R, Sidhu R. Multi-level decomposition for tractability in structural design optimization[J]. Evolutionary Computation in Practice,2008:41-62.
    [193]Li G, Zhou R G, Duan L, et al. Multiobjective and multilevel optimization for steel frames[J]. Engineering Structures,1999,21(6):519-529.
    [194]Ragon S A, Haftka R T, Tzong T J. Global/local structural wing design using response surface techniques[C].38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, AIAA-1997-1051,1997.
    [195]Liu B, Haftka R T, Akgun M A. Two-level composite wing structural optimization using response surfaces[J]. Structural and Multidisciplinary Optimization,2000,20(2):87-96.
    [196]Thompson S K, Seber G A F. Adaptive sampling[M]. New York:Wiley,1996.
    [197]Lermusiaux P F J. Adaptive modeling, adaptive data assimilation and adaptive sampling[J]. Physica D:Nonlinear Phenomena,2007,230(1):172-196.
    [198]Bucher C G. Adaptive sampling—An iterative fast Monte Carlo procedure[J]. Structural Safety, 1988,5(2):119-126.
    [199]Thompson S K, Collins L M. Adaptive sampling in research on risk-related behaviors[J]. Drug and Alcohol Dependence,2002,68:57-67.
    [200]Perez V M, Renaud J E, Watson L T. Adaptive experimental design for construction of response surface approximations[J]. AIAA journal,2002,40(12):2495-2503.
    [201]Sasena M J, Parkinson M, Reed M P, et al. Improving an ergonomics testing procedure via approximation-based adaptive experimental design[J]. Journal of mechanical design,2005, 127(5):1006-1013.
    [202]Degenhardt R, Kling A, Bethge A, et al. Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells[J]. Composite Structures,2010,92(8):1939-1946.
    [203]Meyer-Piening H R, Farshad M, Geier B, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading-experiments and computations[J]. Composite structures,2001,53(4):427-435.
    [204]Rotter J M, Teng J G. Elastic stability of cylindrical shells with weld depressions[J]. Journal of Structural Engineering,1989,115(5):1244-1263.
    [205]Williams F W. Stiffened panels with varying stiffener sizes[J]. Journal of the Royal Aeronautical Society,1973,77(751):350-354.
    [206]Bushnell D, Rankin C. Optimum design of stiffened panels with substiffeners[C].46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, AIAA-2005-1932,2005.
    [207]Watson A, Featherston C A, Kennedy D. Optimization of postbuckled stiffened panels with multiple stiffener sizes[C].48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, AIAA-2007-2207,2007.
    [208]Quinn D, Murphy A, McEwan W, et al. Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening[J]. Thin-Walled Structures,2009,47(12):1457-1468.
    [209]Quinn D, Murphy A, McEwan W, et al. Non-prismatic sub-stiffening for stiffened panel plates—Stability behaviour and performance gains[J]. Thin-Walled Structures,2010,48(6): 401-413.
    [210]王国梁.ABAQUS GUI二次开发技术在材料领域的研究与应用[D].兰州:兰州理工大学,2009.
    [211]邵祝涛.层合板机械连接强度分析与优化及软件开发[D].大连:大连理工大学,2012.
    [212]宋吉广.Python核心编程[M].北京:人民邮电出版社,2008.
    [213]曹金凤,王旭春,孔亮.Python语言在Abaqus中的应用[M].北京:机械工业出版社,2011.
    [214]ABAQUS Scripting User's Manual Version 6.10[M]. Pawtucket:Karlsson and Sorensen Inc., 2010.
    [215]ABAQUS GUI Toolkit User's Manual Version 6.10[M]. Pawtucket:Karlsson and Sorensen Inc., 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700