用户名: 密码: 验证码:
机车轮缘磨耗问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮对作为机车车辆重要承载部件所承受的负荷越来越恶劣,其暴露的疲劳可靠性方面的问题越来越多。轮轨接触表面之间反复传递十几吨的载荷,而接触斑面积仅为120mm2左右。所以,轮轨滚动接触疲劳破坏现象,如波浪形磨损、钢轨侧磨、压溃、剥离、断裂等现象十分严重。
     本文现场调研沈阳铁路局SS4型机车轮缘磨耗问题,统计了苏家屯机务段电力机车轮对检修数据,得到该段机车轮缘磨耗量与运行公里数的关系。总结得出机车轮缘磨耗大致可以分为三个阶段:初期剧烈磨耗阶段、较长期的稳定磨耗阶段、快速磨耗阶段。
     利用轮轨型面测量仪实测SS4机车JM3型磨耗车轮型面和小半径曲线钢轨型面,采用样条曲线拟合方法获得车轮几何型线和钢轨几何型线,对比分析不同磨耗阶段轮轨几何型线。不同磨耗阶段,轮轨剧烈磨耗的位置有所不同,轮轨几何型线改变量存在差异,轮缘磨耗比踏面磨耗剧烈,导致车轮提前镟修,钢轨侧面磨耗程度严重,磨耗量较大,成为小半径曲线段外股钢轨下道的主要原因。
     选取Ⅰ-Ⅳ型5种不同磨耗程度的车轮型面与曲线钢轨型面,建立三维轮轨接触有限元模型并进行弹塑性计算。计算结果表明:Ⅰ型磨耗车轮与磨耗钢轨接触,接触斑面积最小,高应力主要集中在轮缘根部,初期轮缘磨损剧烈;Ⅲ型磨耗车轮与磨耗钢轨接触,接触斑面积明显增大,轮轨接触应力相对减小,应力分布比较均匀,轮轨型面配合良好,轮缘磨耗减缓,车轮处于稳定磨耗阶段;Ⅳ型磨耗车轮与磨耗钢轨接触,轮缘处Mises应力相对Ⅲ时,增加了3.6倍,高应力集中位置逐渐从轮缘根部转移到轮缘处,车轮进入快速磨耗阶段。磨耗车轮与标准曲线钢轨接触。轮缘处接触斑面积很小,轮轨接触应力较大,高应力集中在轮缘根部附近,严重影响车轮正常通过曲线的性能,加剧轮缘磨耗和钢轨侧磨。
     干线铁路,曲线钢轨更新的周期远大于机车轮缘更新或镟修的周期,因此不同磨耗程度的机车车轮均有可能与曲线标准或磨耗钢轨接触。本文主要通过研究磨耗状态下车轮与曲线钢轨接触力学行为,重点分析磨耗状态下轮轨型面配合对机车轮缘磨耗问题的影响,从而为优化轮轨型面,减缓轮轨磨耗提供理论依据和参考。
The Wheels of locomotives bear lots of loads which become worse and worse, so the fatigue reliability problem exposed of wheels becomes more and more. Ten tons of load transfer repeatedly between contact spots of wheels and rails, which area is only 120mm2 around. So, The phenomenon of rolling contact fatigue damage, such as wavy wear, rail side grinding, crushing, peel, breaking, become more serious.
     This paper investigate flange wear problem of locomotives SS4 in SHENGYANG railway station, and process maintenance data from SU JIATUN loco. Shed, study the relationship between locomotive flange wear volumes and stem mileage. Summarize locomotive wheels wear and draw the conclusion that there may be three stages on flange wear:the early stage, acuteness wear relatively long-term stable wear stage, rapid abrasion stage.
     The wear wheel-rail profiles of SS4 locomotive JM3 type and small radius curve rail type were measured with profile measuring apparatus, and wheel-rail geometrical lines were obtained by using the spline curve fitting methods, and then complete the comparison and analysis of the different wear stage of wheel/rail geometrical line. Different wear stages, the position of wear between wheel/rail acuteness differs somewhat, wheel/rail geometrical line change quantity differences exist. Flange wear is more acute than tread wear, so lead to the wheels repair early, rail side ahead of wear degree badly, wear volumes bigger, become small radius curve segment outside shares under the main reason of rail way.
     Three wheel-rail finite element models were built includingⅠ-Ⅴtype wear wheels profiles and wear curve rails profiles. Then the elastic-plastic calculations were processed. The results show that the contact patch ofⅠtype wear wheel -wear curve rail mainly located flange root, where high equivalent stress occurs and the area is the smallest, so the flange wear initially was acuteness, the contact patch area ofⅢtype wear wheel-wear curve rail increased obviously, the contact stress relatively decrease, the stress distribution is evener, the wheel-rail profile is matching, the wear become slow in a stable wear stage. The contact stress ofⅣtype wear wheel-wear rail increase 3.6 times as large asⅢtype, the high stress concentrated position gradually transferred from flange root to the wheel flange place, wheel flange become rapid wear. The contact patch of wear wheel and standard curve rail is mainly located in flange root where high equivalent stress concentrated, the area is so small and the stress is so large that it is seriously impact reason for the wheel flange and rail side wear, and seriously affects the normal performance through curve.
     In railway, the curve rail updated cycle far outweigh the locomotive wheels update or the cycle of repair, so different wear degrees of locomotive wheels are possible rolling on the curve standards or wear rail. The effects of wheel-rail profiles to contact mechanics behavior were analyzed. Especially the effect of wear wheel-rail profiles to locomotive flange wear.so the research provided a theoretical basis for optimizing the wheel-rail profiles and reducing wheel-rail wear
引文
[1]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题.南昌,全国结构工:程学术会议.2004:90-104
    [2]金学松,张立民.轮轨蠕滑力分析计算中几种蠕滑力模型的比较.铁道学报.1998,20(增刊):56-61.
    [3]董仲美,王自力,蒋海波.车轮踏面外形对机车曲线通过性能的影响.电力机车与城轨车辆.2006.29(2):13-15
    [4]Romen Y. S等.转向架技术条件对车轮磨耗的影响.国外铁道车辆.1997:18-25
    [5]孙国瑛,刘学毅.钢轨侧面磨耗因子.西南交通大学学报.1992,84(2):57-63
    [6]刘新明.关于车轮磨耗形踏面和经济旋削的问答五则.铁道车辆.1997,35(4):35-37.
    [7]于文健,刘启跃,周仲荣.车轮钢滚动剥离摩擦磨损特性研究.摩擦学学报.2005.9.25(5)
    [8]金学松,温泽峰,肖新标.曲线钢轨初始波磨形成的机理分析.机械工程学报.2008.3.44(3)
    [9]李霞.车轮磨耗预测初步研究.西南交通大学硕士学位论文.2007
    [10]沈志云.轮轨磨损的动力学预浦及减少轮轨磨损的措施.铁道学报.1992.6.14
    [11]侯传伦,翟婉明,邓锐.曲线磨耗状态下轮轨弹塑性接触有限元分析.中国铁道科学.2009,9:30(5).
    [12]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析.中国铁道科学.2008,7,29(4)
    [13]陈鹏,高亮,郝建芳.铁路曲线上轮轨磨耗影响参数的仿真研究.中国铁道科学.2007.9.28(5)
    [14]戴兵.SS1型电力机车轮缘磨耗的原因分析及改进措施.机车电传动.1996.4
    [15]Carter F W. On the action of a locomotive driving wheel. In:Poc of the Royal Society of London. A112,1962:151-157
    [16]Kalker J J. On the rolling contact of two elastic bodies in the presence of dry friction., Delft University, The Netherlands,1967:16-62.
    [17]Kalker J J. Simplified theory of rolling contact. Delft Progress Report 1.Delft University Press, The Netherlands,1973.1-10.
    [18]金学松,沈志云.轮轨滚动力学的发展.力学进展.2001,31(1):33-46.
    [19]FriesRH, DvilaCG. Analytical methods for wheel and rail wear Prediction.Proceedings10th IAVSD symPosium. Swets and Zeitlinger,1988:112-125.
    [20]PearceTG, Sherratt ND. Predietion of wheel Profile wear. Wear,1991(144):343-35
    [21]LiZL, KalkerJJ, WiersmaPK, SnijdersER. Non-Herztian wheel rail wear simulation in vehicle dynamical systems. Proceedings 4th international conference on railway bogies and running gears. Budapest,1998:187-196
    [22]Magele. Kalousekj. Caldwellr. A numerical simulation of wheel wear. Wear,2005,258:1245-1254.
    [23]Smallwood R, Sinclair JC, Sawley K J.An optimization technique to minimize rail Contact stresses. Wear,1991,144 (122):373-384.
    [24]WU Huimin, Investigation of wheel rail interaction on wheel flange climb derailment and wheel rail profile compatibility. Minions Institute of Technology,2000
    [25]闫丽丽.机车轮缘磨耗浅议.内蒙古石油化工.2003,29:63-66
    [26]王志平.SS7型电力机车轮缘偏磨问题的探讨.机车电传动.2005,2(5):70-72
    [27]王惠银,步启军.轮轨关系与磨耗.铁道建筑.2007,1:82-83
    [28]许金国,傅茂海.重载铁路轮轨磨损原因探讨.铁道机车车辆.2008,28(4):12-15
    [29]陈建平,臧建岗.改善轮缘磨耗延长轮对寿命,机车车辆工艺.2004,10(5):43-44
    [30]于文健,郭俊,刘启跃.车轮型面对轮轨滚动接触行为影响及选用.机械强度,2009,31(4):645-649.
    [31]陈火红.Marc有限元实例分析教程.北京.机械工业出版社.2002
    [32]Kalker JJ. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction. Ph.D. Thesis, Delft University The Netherlands,1967
    [33]Kalker JJ. The Compution of Three-dimension rolling contact with dry friction Int J.for Num.Meth.Eng.1979,14:1293-1307
    [34]KalkerJJ. Variation principles of contact elastostatics. J.Inst. Maths. Applic,1977,20:199-219
    [35]Pau M, Aymerich F, Ginesu F. Distribution of contact pressure in wheel-rail contact area. Wear,2002, 253:265-274
    [36]于开平,周传月,谭惠丰等.HyperMesh从入门到精通.北京.科学出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700