用户名: 密码: 验证码:
不同工况下轮轨材料摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮轨接触问题一直是铁路运行中最基本、最复杂的问题之一。当今世界的铁路运输网络所具有的几大特点是运输量提高、轴重加大、速率增加、行车量密集。由此衍生出的轮轨材料接触面磨损程度加剧、减短轮轨材料的使用寿命、增粘剂的使用对轮轨材料的深层影响等轮轨接触带来的问题,都对铁路运输系统有着深远的影响。
     利用MMS-2A型摩擦磨损试验机进行不同工况下轮轨材料的摩擦磨损实验,分析了同一加载情况下,干态、水态以及水砂态对轮轨材料摩擦磨损性能的影响,研究了水态下不同的加载情况对轮轨材料摩擦磨损性能的影响;结合前述模拟试验部分,利用有限元软件ANSYS得到轮轨静接触工况下的应力、接触斑等特征数值。
     论文通过研究得到以下几个结论:
     1.相比于干态,水会使轮轨材料的摩擦因数、磨损量明显下降;水介质下撒砂可增加轮轨材料滚动摩擦因数和磨损量,且加重轮轨表面的损伤,撒砂后续的干摩擦会使摩擦因数恢复到干态下的正常水平;随水态、干态到水砂态工况的变化,车轮试样表面从粗糙凸起并伴有轻微剥落向严重剥落损伤转变,钢轨材料的表面损伤主要表现为片层状剥离并伴有剥落现象,但较车轮材料的剥落损伤程度轻微。
     2.随着载荷的增加,轮轨材料的磨损程度降低,其中摩擦因数、磨损量有所下降;载荷从110N到170N的增加过程中,车轮材料表面从多处分布点蚀及剥离到仅极少的呈现出点蚀的情况,钢轨材料表面也呈现同样的变化趋势,且车轮材料损伤程度重于钢轨材料。
     3.有限元模拟结果表明:在相同的载荷条件下,轮轨材料静接触面间代入不同的摩擦因数计算时,对接触面间的最大接触应力及接触斑的影响不大;当代入相同的摩擦因数时,随着载荷的增加,轮轨材料接触面的接触半径呈平缓的上升趋势,接触区域面积渐增。接触面的最大接触应力随载荷的增加呈现非线性增长趋势,且随着载荷的不断增大,接触应力变化趋于平缓。
The wheel/rail contact is the most basic and complex problem in the operation of the railway system. In today's world of railway transport network has there are several primary characteristics of railway-transportation network, which concluding increased amount of carriage,axle load on rail and rate, high density of transportation. Thus it comes to the results that contact surface of wheel/rail material wearing aggravated, the servicing life of wheel/rail material shorten, the impact of using tackifier on the wheel/rail materials and so on. Such problems have a profound influence on railway transportation system.
     The friction and wear experiments of wheel/rail materials were carried out using MMS-2A friction and wear tester under different working conditions. Furthermore, the effect of dry, water and sanding conditions on friction and wear behaviors of wheel/rail materials was explored in detail. The effect of axle load on friction and wear behaviors of wheel/rail materials was investigated and analyzed under the water condition. The contact stress and contact zone of wheel/rail specimens were calculated using finite element software ANSYS according to the simulation experimental parameters.
     Main conclusions are drawn as follows.
     1. The water medium obviously decrease rolling friction coefficient and wear volume of wheel/rail specimens. Sanding can increase rolling friction coefficient and wear volume of wheel/rail specimens under the water condition. Furthermore, sanding can aggravate the surface damage of wheel/rail specimens. Rolling friction coefficient can come to the normal level during the dry condition after sanding. With the conditions changing from water, dry and water sanding, the surface damage of wheel specimen transforms from slight delamination to serious spalling damage. The delamination damage is dominant for the rail specimen. However, the spalling damage of rail specimen is slighter than that of wheel specimen.
     2. With an increase of axle load, rolling friction coefficient and wear volume of wheel/rail materials decrease. With the increase from110N to170N, the surface damage of wheel specimen transforms from slight delamination to serious spalling damage. However, the spalling damage of rail specimen is slighter than that of wheel specimen.
     3. Finite element simulation results show that the friction coefficient of wheel/rail has no obvious effect on the maximal contact stress and the contact zone of the wheel/rail interface under the same loading condition. With an increase of axle load, the contact radius and area of wheel/rail contact zone increase under the same friction coefficient condition. The maximal contact stress of contact zone presents a nonlinear growth with an increase of axle load. Furthermore, the increase of contact stress becomes flat with an increase of axle load.
引文
[1]何华武.快速发展的中国高速铁路[J].学术动态.2006,(4):1-16.
    [2]金学松,温泽峰,张卫华,等.世界铁路发展及其关键力学问题[J].全国结构工程学术会议特邀报告.2003.
    [3]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断.1998,18(1):1-7.
    [4]失名.世界铁路发展的共同趋势[J].工业设计.2011(1):14-17.
    [5]李世斌.世界高速铁路发展的动向[J].铁道技术监督.2007,35(1):35-37.
    [6]何邦模.高速铁路的技术经济优势[C].世界轨道交通.2004,(8).
    [7]赵映莲,淑梅.国外高速铁路区间渡线设置状况分析及对我国的启示[J].中国铁路.2002,(8).
    [8]马超,郭军利,张晓东,等.美国铁路发展历史及现状[J].铁道运输与经济.2011,33(9):58-61.
    [9]肖朝福.简论我国铁路发展现状及趋势[J].福建广播电视大学学报.2007,65:72-75.
    [10]张聪.高速铁路发展若干问题探析[J]. China Collective Economy. 2010.02(上):170-171.
    [11]强志.中国铁路发展面临机遇和挑战[J].铁道知识.2009,1:11-13.
    [12]覃为刚,唐怀平.轮轨水介质粘着分析[J].西南交通大学学报.2000,35(5):509-512.
    [13]杨翊仁,张继业,金学松.轮轨水介质接触的完全数值分析方法[JJ].铁道学报,1998,20(4):31-36.
    [14]邓建华,译著.计算机辅助优化法[M].西安:西北工业大学出版社,1988:50-100.
    [15]金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报.2001,23(2):92-108.
    [16]宋建华,申鹏,王文健,等.水介质条件下轮轨黏着特性试验研究[J].中国铁道科学.2010,31(3):52-56.
    [17]熊嘉阳,金学松.铁路曲线钢轨初始波磨演化分析[J].机械工程学报.2006,42(6):60-66.
    [18]JINY,ISHIDA M,NAMURA A. Experimental simulation and prediction of wear of wheel flange and rail gauge corner[J]. Wear.2011,271:259-267.
    [19]SHUR E A,BYCHKOVA N Y,TRUSHEVSKY. Physical metallurgy aspects of rolling contact fatigue of rail steels [J]. Wear.2005,258:1165-1171.
    [20]ARIAS-CUEVASA O,LIA Z,LEWISB R. A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel-rail contact[J]. Wear.2011,271:14-24.
    [21]CHEN H,BAN T,ISHIDA M,et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions [J]. Wear.2008,265:1504-1511.
    [22]CHEN H,ISHIDA M,NAKAHARA T. Adhesion between rail/wheel under water lubricated contact [J]. Wear.2002,253:75-81.
    [23]江晓禹,金学松.轮轨间的液态介质和表面微观粗糙度对接触表面疲劳损伤的影响[J].机械工程学报.2004,40(8):18-23.
    [24]Liu Q Y,Zhang B,Zhou Z R. An experimental study of rail corrugatio [J]. Wear.2003, 255:1121-1126.
    [25]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [26]王文健.车轮滚动剥离磨损特性研究[D].西南交通大学硕十学位论文,2004.
    [27]王优强,林秀娟,李志文.水润滑橡胶/镀镍钢配副摩擦磨损机理研究[J].机械工程材料.2006,30(1):63-65.
    [28]刘家浚.材料磨损原理及耐磨性[M].北京:清华大学出版社,1993.
    [29]陈战,王家序,秦大同.以水作润滑介质的摩擦副的研究[J].农业机械学报.2001,32(3):124-125.
    [30]王文中,王顺,胡元中,等.全膜润滑到边界润滑的过渡研究[J].润滑与密封.2006,31(9):32-35.
    [31]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995.
    [32]Ohy Ama T, Maruyama H. Traction and slip at big h rolling speeds-some ex pediments under dry friction and water lubrication [A]. In:Proc. Int. Symp. on Contact Mechanics and Wear of Rail/Wheel System [C]. Vancouver, B. C.1982:395-418.
    [33]Ohy Ama T. Influence on surface contamination on adhesion force between wheel and rail at high speeds effects of friction coefficients and tangential rigidity on adhesion force [J]. J. of Jpn. Soc. Lubr.Eng.1989,10:115-120.
    [34]Ohy Ama T, Ohno K, Nakano S. Influence on surface contamination on adhesion force between wheel and rail at big h speeds behavior of adhesion force under the surface contaminated with a small amount of liquid paraffin [J]. J.of Jpn. Soc. Lubr. Eng.1989,10:111-114.
    [35]Ohy ama T, Nakano S. Influence on surface contaminate ion on adhesion force between w heel and rail at high speeds behavior of adhesion force under the formation of lubricant film[J]. J.of Jpn.Soc.Lubr.Eng.1989,10:121-124.
    [36]Ohy ama T. Tribological studies on adhesion phenomena between wheel and rail at big h speeds [J]. Wear.1991,144:263-275.
    [37]申鹏,王文健,张鸿斐,等.撒砂对轮轨粘着特性的影响[J].机械工程学报.2010,46(16):74-78.
    [38]申鹏,宋建华,李自彬,等.轮轨黏着特性试验研究[J].润滑与密封2009,34(7):10-13.
    [39]Oscar Arias-Cuevas,Z. Li, R. Lewis. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts [J]. Wear.268:543-551.
    [40]孙琼,臧其.喷撒颗粒的增粘机理研究[J].中国铁道科学.2000,21(4):44-50.
    [41]王文健,郭俊,刘启跃.接触应力对轮轨材料滚动摩擦磨损性能影响[J].摩擦学学报.2011,31(4):352-356.
    [42]Oscar Arias-Cuevas, Zili Li, Roger Lewis. A laboratory investigation on the influence of the particles size and slip during sanding on the adhesion and wear in the wheel-rail contact[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009),Frieze,Italy.2009,15-18.
    [43]王文健,郭俊,刘启跃.不同介质作用下轮轨粘着特性研究[J].机械工程学报.2012,489(7):100-103.
    [44]张卫华,周文祥,陈良麒,等.高速轮轨粘着机理试验研究[J].铁道学报.2000,22(2):20-24.
    [45]肖乾,王成国,周新建,等.不同摩擦系数条件下的轮轨滚动接触特性分析[J1.中国铁道科学.2011,32(4):66-70.
    [46]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [47]大野熏.轮轨间滚动摩擦及其控制[J].国外铁道车辆.2001,38(1):36-40.
    [48]王文健,郭俊,刘启跃.钢轨磨损对滚动疲劳裂纹损伤影响研究[J].机械工程材料.2010,34(1):17-19.
    [49]王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D].成都:西南交通大学博士学位论文,2008.
    [50]刘启跃,张波,周仲荣,等.滚动轮波形磨损实验研究[J].摩擦学学报.2003,23(2):132-135.
    [51]KOAN-SOK B,KEIJI K,TSUNAMITSU N. An Experimental investigation of transient traction Characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions [J]. Wear.2007(263):169-179.
    [52]CHEN H,ISHIDA M,NAKAHARA T. Analysis of adhesion under wet condition for three-dimensional contact considering surface roughness[J]. Wear. 2005,(258):1209-1216.
    [53]Kaoru Ohno,等.替代撒砂改善粘着新方法的研制[J].国外铁道车辆.996,(3):48-52.
    [54]S. Kumar,等.北美机车在撒砂和不撒砂情况下的轮轨磨损与粘着[J]. Journal of Engineering for Industry.1986,(5):141-147.
    [55]申鹏,宋健华,王海洋,等.环境条件对轮轨黏着特性影响的试验研究[J].铁道学报.2011,23(5):26-30.
    [56]郭静,王文健,刘启跃,等.不同工况下轮轨材料的摩擦磨损行为[J].机械工程材料.2013,37(1):43-46.
    [57]张澎湃,井秀海.轮轨接触应力的有限元计算[J].铁道车辆.2007,45(6):4-7.
    [58]马昌红,史生良,吴亚平,等.轮轨接触应力的有限元分析[J].石家庄铁道学院学报.2006,19(3):32-35.
    [59]肖乾,王成国,周新建,等.不同摩擦系数条件下的轮轨滚动接触特性分析[J].中国铁道科学.2011,32(4):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700