用户名: 密码: 验证码:
轮轨滚动接触疲劳与磨损耦合关系及预防措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国重载与高速铁路的快速发展,轮轨滚动接触疲劳与磨损变得越来越严重,已成为影响铁路运输安全的重要因素。因此,轮轨接触疲劳与磨损机理及预防措施的研究对减轻轮轨损伤,提高铁路运输的经济效益和社会效益具有重要的指导意义。
     本文利用JD-1轮轨模拟试验机和往复滚动磨损试验装置,借助光学显微镜(OM)、激光共聚焦扫描显微镜(LCSM)、扫描电子显微镜(SEM)等表面分析测试设备研究了干态下轮轨滚动接触疲劳与磨损行为,分析了轮轨滚动磨损过程中磨损率对疲劳裂纹损伤的影响机理;利用三维弹性体非Hertz滚动接触理论及数值程序CONTACT分析了轨底坡、轨距和曲线半径等参数对轮轨接触斑行为的影响;研究了疲劳与磨损钢轨预防措施的差异。取得的主要结果和结论如下:
     1.车轮磨损量随制动力、蠕滑率和轴重的增加而增加,切向摩擦力增大会使车轮磨损机制从磨粒磨损向粘着磨损与疲劳磨损转变,导致疲劳裂纹及白层的出现,加剧了车轮的塑性变形及疲劳剥离。材料含碳量对车轮钢的滚动摩擦系数基本无影响,但改变车轮钢的磨损机制;降低含碳量可减轻车轮的疲劳剥离损伤,但由于材料耐磨性的降低会导致车轮磨损量的明显增加。
     2.PD3钢轨的强度性能和耐磨性均优于U71Mn钢轨,但U71Mn钢轨表现出更好的抗疲劳损伤和裂纹扩展性能;疲劳裂纹沿钢轨塑性变形方向萌生并沿一定角度向深度方向扩展,且存在两种不同的裂纹扩展形态;增加轴重、减小曲线半径及施加制动力均会增加钢轨的磨损量,加重钢轨疲劳损伤及塑性变形。建立了带有一个随机变量的钢轨钢疲劳裂纹扩展速率的概率模型,利用极大似然估计法确定了概率条件下两种钢轨材料疲劳裂纹扩展速率不确定性方程的上限值,结果表明疲劳裂纹扩展速率的不确定性方程与试验结果相符。
     3.利用BP神经网络建立了钢轨磨损量的预测模型,结果表明该模型具有较高的预测精度;利用训练良好的BP神经网络模型预测了试验参数对钢轨磨损量的影响,结果表明速度、轮轨冲角及轴重对钢轨磨损量具有不同的影响规律。
     4.广深铁路钢轨疲劳斜裂纹与侧磨量的调查表明,钢轨侧磨严重时,钢轨疲劳斜裂纹现象就表现轻微;轮轨滚动疲劳损伤与磨损之间表现为相互竞争与制约的耦合作用关系,即磨损严重时,疲劳损伤往往较轻;而疲劳损伤严重时,磨损相对轻微;实际中增加磨损率能减轻钢轨的疲劳裂纹损伤,延长轮轨的疲劳寿命。
     5.使用1/40轨底坡情况下磨耗型车轮踏面的轮轨接触行为不能达到最佳匹配状态,建议对磨耗型踏面进行优化设计;增加轨距能改变轮轨接触几何参数、蠕滑行为、接触应力和接触斑粘滑区的分布;减小曲线半径导致接触斑纵向、自旋蠕滑、摩擦功和总滑动量剧增,粘着区的减小;曲线轨道设计中,对于高速铁路应尽可能地增大曲线半径值。
     6.重载铁路钢轨损伤主要以磨损为主,并伴随强烈的塑性变形;高速铁路钢轨主要表现为疲劳损伤。由于钢轨损伤形式不同,导致重载与高速钢轨在轮轨润滑、车轮型面、钢轨打磨等方面产生很大差异。根据疲劳裂纹损伤与磨损的耦合作用关系,提出了不同于重载曲线轨头非对称打磨的高速钢轨非对称打磨技术,结果表明打磨能有效预防和减缓钢轨斜裂纹的形成与发展。重载与高速铁路钢轨选材的技术要求不尽相同,应根据钢轨具体损伤形式而决定。
The rolling contact fatigue and wear of wheel-rail become more and more serious with rapid development of the heavy-haul and high-speed railway in our country. They are becoming an important influencing factor on transportation safety of railway. So, the studies on the mechanism of the contact fatigue and wear of wheel-rail and preventive measures have important guiding significance for alleviating the damage of wheel-rail, increasing the economic and social benefits and of railway transportation.
     The rolling contact fatigue and wear behaviours of wheel-rail have been investigated under unlubricated condition using JD-1 wheel/rail simulation facility and a reciprocating rolling wear testing apparatus with the help of optical microscopy (OM), laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM). The effect of wear rate on fatigue crack damage has been analyzed in the rolling wear of wheel-rail process. The effects of rail base slope, rail gauge and curve radius on the wheel-rail contact patch behaviours have been analyzed using the rolling contact theory of three-dimensional elastic bodies with non-Hertz form and numerical program CONTACT. The differences of prevention measures of fatigue and wear rails have been studied in detail. Main conclusions are drawn as follows.
     1. The increase of brake force, creep ratio and axle load lead to the increase in wear volume of wheel. The wear mechanism of wheel steel could accompany a transition from mild abrasive wear to severe adhesive and fatigue wear with the friction force increasing, which result in the initiation of fatigue crack and white layer, and then aggravate plastic deformation and fatigue spalling on the wheel roller surface. The carbon content of material has no effect on rolling friction coefficient of wheel steel, but wear mechanism of wheel steel depends strongly upon carbon content of material. Decreasing carbon content of wheel steel may alleviate fatigue spalling damage evidently, but could increase the wear volume of wheel rapidly due to poor wear resistance of material.
     2. The strength character and wear resistance of PD3 are superior to U71Mn rail's. But U71Mn rail has better fatigue damage resistance and resistance to fatigue crack growth. The fatigue crack would initiate along the direction of plastic deformation and grow toward depth direction along a sharp angle. There are two types of different crack growth forms. Increasing axle load, decreasing curve radius and application of brake force would increase wear volume of rail, aggravate fatigue damage and plastic deformation of rail roller. The probabilistic model of fatigue crack growth rate with a random variable is established. By means of maximum likelihood method of estimation, the upper limit values of fatigue crack growth uncertainty equations of rail material are given under the probability condition. The results indicate that the uncertainty equations of fatigue crack growth rate have a good agreement with the testing results.
     3. The forecasting model of rail wear volume using BP neural network is established. The results indicate that the BP neural network forecasting model has high prediction accuracy. The trained BP neural network model has been used to forecast the effect of test parameters on rail wear volume. The results indicate that the speed, angle of attack of wheel-rail and axle load have different influence laws on rail wear volume.
     4. The investigation on rail fatigue oblique crack and side wear volume on the Guangzhou-Shenzhen high-speed railway shows that when side wear of rail is severe, the rail fatigue oblique crack is slight. The relationship between rolling wear and fatigue damage of wheel-rail is manifested as mutual competitive and restrictive coupling mechanisms. That is to say, while the wear is serious, the fatigue damage is relatively slight. On the contrary, while the fatigue damage is serious, the wear is slight. In the practical application, increasing wear rate can alleviate fatigue crack damage of rail and prolong the fatigue life.
     5. The contact behavior of wheel/rail of worn wheel tread is not achieving the optimal state when the rail base slope is 1/40. So, it is suggested that the profile of worn tread is optimized over again. The increase in rail gauge can change contact geometrical parameters of wheel-rail, creepages, contact stresses and stick-slip areas of wheel-rail contact patch. Decreasing curve radius would make longitudinal and spin creepages, friction work and total slip of wheel/rail contact patch increase rapidly, minish stick area of wheel/rail contact patch. Especially for the high-speed railway, it is suggested that the curve radius should increase as far as possible in the curved track design process.
     6. The wear and the plastic deformation are dominant for heavy-haul curve rail. However, the damage of high-speed rail is fatigue mainly. The wheel-rail lubrication, wheel profile and rail grinding of heavy-haul and high-speed railway would present very great difference due to the difference of rail damage. On the basis of the coupling relationship between fatigue crack damage and wear, the curve railhead asymmetrical grinding of high-speed railway is given. Moreover, it is different from the curve railhead asymmetrical grinding of heavy-haul railway. The results indicate that the asymmetrical grinding can prevent and alleviate effectively the formation and development of rail oblique crack damage. The selection requirements of rail material of heavy-haul and high-speed railway are not the same. Rail material should be selected and used according to practical rail damage.
引文
[1]沈志云.关于高速铁路及高速列车的研究.振动、测试与诊断,1998,18(1):1-7
    [2]V150列车在创记录中证明了AGV技术.Railway Gazette International.2007.10-12
    [3]郭俊.轮轨滚动接触疲劳损伤机理研究.西南交通大学博士学位论文,2006
    [4]史密斯.钢轨滚动接触疲劳的进一步研究.中国铁道科学,2002,23(3):6-10
    [5]金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社,2004
    [6]金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析.机械强度,2002,24(2):250-257
    [7]Kalker J J.Three-dimensional elastic bodies in rolling contact.Kluwer Academic Publishers,Dordrech,1990
    [8]Shen Z,Hedrick J K,Elkins J A.A comparison of alternative creep-force models for rail vehicles dynamic analysis.Proc.8th IAVSD Symp.,Cambridge,MA,1984,591-605
    [9]Cannon D F,Pradier H.Rail rolling contact fatigue research by the European Rail Research Institute.Wear,1996,191:1 - 13
    [10]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题.工程力学,2004,21(增刊):901-104
    [11]V.Gupta,G.T.Hahn,P.C.Bastias,C.A.Rubin.Thermal-mechanical modeling of the rolling-plus-sliding with frictional heating of a locomotive wheel.ASME Journal of Engineering for Industry,1995,117(8):418-422
    [12]Stone,Daniel.H,Moyer.Interpretive review of railway wheel shelling and spalling.Winter annual meeting of the Amerrican society of mechanical engineers.CA,USA,1992,5:97-103
    [13]张斌,卢观健,付秀琴,张颍智,邢丽贤,刘彤蕾.铁道车轮、轮箍失效分析及伤损图谱.北京:中国铁道出版,2002
    [14]程隆华,沈伟俊.上海地铁1号线直流传动列车车轮踏面的剥离及擦伤问题.机车电传动,2001,1:37-38
    [15]D.H.Stone,B.R.Rajkumar,S.M.Belport,K.Hawthorne,G.L.Moyar.Theoretical and experimental study of wheel spalling in heavy haul hopper cars.10~(th)International Wheelset Congress,1992,92:1-8
    [16]李岳恒.浅谈减缓机车车轮剥离.铁道机车车辆,2004,24(3):13-14
    [17]A.Srivastava,V.Joshi,R.Shivpuri.Computer modeling and prediction of thermal fatigue cracking in die-casting tooling.Wear.2004,256:38-43
    [18]K.Knothe,S.Liebelt.Determination of temperature for sliding contact with applications for wheel-rail systems.Wear,1995,189:91-99
    [19]G.J.Moyer,D.H.Stone.An analysis of the thermal contributions to railways wheel shelling.Wear,1991,144:117-138
    [20]Johan Ahlstrom,Birger Karlsson.Modelling of heat conduction and phase transformations during wheel sliding-theoretical predictions and comparison with results of full-scale experiments.5th International Conference of contact mechanics and wear of rail/wheel systems,Tokyo,Japan,2000,287-292
    [21]Jin Xuesong,Wen Zefeng,Wang Kaiyun.Effect of track irregularities on initiation and evolution of rail corrugation.Journal of Sound and Vibration.2005,285(1-2):121 - 148
    [22]Jin Xuesong,Wang Kaiyun,Wen Zefeng,Zhang Weihua.Effect of discrete supports of rail on initiation and evolution of rail corrugation.Journal of Mechanical Engineering,2005,18(1):37-41
    [23]Jin Xuesong,Wen Zefeng,Wang Kaiyun,Xiao Xinbiao.Effect of passenger car curving on rail corrugation at a curved track.Wear,2006,260(26):619-633
    [24]Vadillo E G,Tarrago J A,Zubiaurre G G,Duque C A.Effect of sleeper distance on rail corrugation.Wear,1998,217:140-146
    [25]Hans-Dieter Grohmann,Wolfgang Schoech Contact geometry and surface fatigue-minimizing the risk of headcheck formation.Wear,2002,253:54-59
    [26]J Jergéus,C Odenmarck,R Lundén,P Sotkovszki,B Karlsson,P Gullers.Full-scale railway wheel flat experiments.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,1999,213(1):1-13
    [27]Sun J,Sawly K J,Stone D H,Teter D F.Progress in the reduction of wheel spalling.Proceeding of the 12~(th)International Congress on Wheelset,China,Sept.21 to 25,1998,18-29
    [28]吴磊,温泽峰,金学松.车轮原地打滑时轮轨接触界面摩擦温升分析.工程力学,2007,24(10):150-155
    [29]T C Kennedy,C Way,R F Harder.Modeling of martensite formation in railcar wheels due to Hertzian wheel slides.Processing of 6th international conference on contact mechanics and wear of rail/wheel systems,Sweden,June,10-13,2003,511-516
    [30]Hermann T Hone.Rectification of rail profiles on the Sishen-Saldanha Iron-Ore export line with the rail planning machine.Proceedings of IHHA'99 STS-Conference,Masco,1999,389-397
    [31]Wu Cai,Zefeng Wen,Xuesong Jin,Wanming Zhai.Dynamic stress analysis of rail joint with height difference defect using finite element method.Engineering Failure Analysis,2007,14(8):1488-1499
    [32]杨克,卢观健,袁龙英,李惠贞.钢轨伤损图谱.北京:中国铁道出版社,1992
    [33]Mitao S,Yokoyama H,Yamamoto S.High strength bainitic steel rails for heavy haul railways with superior damage resistance.Proceeding of IHHA'99,Moscow,Russia,1999,489-496
    [34]Makoto Ishida,Noritsugi Abe,Takuya Moto.Experimental study on the effect of preventive grinding on RCF defects of Shikansen rails.In:Proceedings of IHHA'99 STS-Conference,Masco,1999,511-516
    [35]Connon D F,Pradier H.Rail rolling contact fatigue research by the European Rail Research Institute.Wear,1996,191:1-13
    [36]Hans Muster,Herbert Schmedders,Klaus Wick,Henri Pradier.The performance of naturally hard and head-hardened rails in track. Wear,1996,191(1-2):54-64
    [37]A.J.Perez-Unzueta,J.H.Beynon.Microstructure and wear resistance of pearlitic rail steels.Wear,1993,162-164:173-182
    [38]M.Ueda,K.Uhcino,A.Kobayashi.Effects of carbon content on wear property in pearlitic steels.Wear,2002,253:107-113
    [39]M.Ueda,K.Uchino,H.Kageyama.Development of bainitic steel rail with excellent surface damage resistance.Proceedings of IHHA'99STS-Conference,Masco,1999,259-266
    [40]Olofsson U,Telliskivi T.Wear,plastic deformation and friction of two rail steels-a full-scale test and a laboratory study.Wear,2003,254:80-93
    [41]M.Sato,P.M.Anderson,D.A.Rigney.Rolling-sliding behavior of rail steels.Wear,1993,162-164:159-172
    [42]D.Markov.Laboratory tests for wear of rail and wheel steels.Wear,1995,181-183:678-686
    [43]D I Fletcher,J H Beynon.Equilibrium of crack growth and wear rates during unlubricated rolling-sliding contact of pearlitic rail steel.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2000,214(2):93-105
    [44]Ludger Deters,Matthias Proksch.Friction and testing of rail and wheel material.Wear,2005,258:981-991
    [45]C.W.Chan,L.K.Y.Li.An analysis of the effect of slide-to-roll ratio and surface velocity on wear using energy pulse and mean surface temperature approaches.Wear,1999,236:276-284
    [46]Q.Y.Liu,Z.R.Zhou.Effect of tangential force on wear behaviour of steels in reciprocating rolling and rolling-sliding contact.Wear,2001,250(1-12):357-361
    [47]李加驹,杨开庭,应惠敏,董泽发.车轮和钢轨硬度匹配的研究.中国铁道科学,1984,5(1):49-59
    [48]盛光敏,范镜泓,彭向和.PD3钢轨钢接触疲劳裂纹扩展行为研究.金属学报,2000,36(2):131-134
    [49]盛光敏,范镜泓.彭向和.工艺状态和应力水平对PD3钢轨钢接触疲劳寿 命的影响.金属学报,2000,36(11):1157-1160
    [50]陈扬枝,杨东亮,马冀,全永昕.轮轨滚滑磨损试验研究.大连铁道学院学报,1995,16(1):47-50
    [51]马腾,朱桂兰.热处理钢轨的轨/轮匹配关系研究.物理测试,1999,(5):1-3
    [52]李晶晶,田常海,汪越胜.U71Mn和U75V钢轨钢疲劳短裂纹的扩展行为.钢铁研究学报,2006,18(4):38-40
    [53]Martin Ertz,Klaus Knothe.A comparison of analytical and numerical methods for the calculation of temperature in wheel/rail contact.Wear,2002,253:498-508
    [54]F.D.Fischer,W.Daves,E.A.Werner.On the temperature in the wheel-rail rolling contact.Fatigue Fracture Engineering Material structure,2003,26:999-1006
    [55]A.Bohmer,M.Ertz,K.Knothe.Shakedown limit of rail surface including material hardening and thermal stresses.Fatigue Fracture Engineering Material Structure,2003,26:985-998
    [56]裵有福,金元生,温诗铸.轮轨接触温升的有限元分析.中国铁道科学,1996,17(4):48-58
    [57]王步康,董光能,谢友柏.滑动接触中摩擦发热的数值分析.中国机械工程,2002,13(21):1880-1883
    [58]F.J.Franklin,G.J.Weeda,A.Kapoor,E.J.M.Hiensch.Rolling contact fatigue and wear behavior of the infrastar two-material rail.Wear,2005,258:1048-1054
    [59]D.Benuzzi,E.Bormeti,G.Donzella.Stress intensity factor range and propagation mode of surface cracks under rolling-sliding contact.Theoretical and Applied Fracture Mechanics,2003,40:55-74
    [60]M.Wallentin,H.L.Bjarnehed,R.Lunden.Cracks around railway wheel flats exposed to rolling contact loads and residual stresses.Wear,2005,258:1319-1329
    [61]Dubourg M.C.,Villechaise B.,Godet M.Analysis of multiple fatigue cracks- part Ⅱ:results.Journal of Tribology,1992,114:462-468
    [62]J.W.Ringsberg,M.Loo-Morrey,B.L.Josefson,A.Kapoor,J.H.Beynon. Prediction of fatigue crack initiation for rolling contact fatigue.International journal of fatigue,2000,22:205-215
    [63]邢丽贤,张颖智,林吉忠.车轮钢Ⅱ型裂纹的疲劳及断裂试验研究,中国铁道科学,1998,19(1):90-94
    [64]江晓禹,金学松.轮轨间的液态介质和表面微观粗糙度对接触表面疲劳损伤的影响.机械工程学报,2004,40(8):18-23
    [65]I.Haque,D.A.Latimer,E.H.Law.Computer-aided wheel profile design for railway vehicles.ASME Journal of Engineering for Industry,1989,111:288-291
    [66]W.Choromafiski,K.Zboifiski.Optimization of wheel and rail profiles for various conditions of vehicle motion.Vehicle System Dynamics,1992,20(6):84-98
    [67]H.M.Wu.Investigation of wheel rail interaction on wheel flange climb derailment and wheel rail profile compatibility.Illinois Institute of Technology,2000
    [68]R.Smallwood,J.C.Sinclair,K.J.Sawley.An optimization technique to minimize rail contact stres ses.Wear,1991,144(1-2):373-384
    [69]佐藤荣作.车轮踏面形状设计的科学化.国外内燃机车,2000,3:39-43
    [70]Y.Sato.History study on designing Japanese rail profiles.Wear,2005,258(7-8):1064-1070
    [71]杨国桢,张孝珂.对磨耗形踏面的研究.铁道学报,1983,2:9-19
    [72]刘新民.机车车辆弧形踏面外形研制.铁道车辆,2000,38(2):24-28
    [73]张剑,孙丽萍.车轮型面动态高速曲线通过性比较.交通运输工程学报,2007,7(6):6-11
    [74]Stuart L.Grassie,Jonn A.Elkins.Tractive effort,curving and surface damage of rails.Part 1.Forced on the rails.Wear,2005,258:1235-1244
    [75]Heinz Ossberger.Successful introduction of kinematic gauge option(KGO)in Heavy Haul Turnouts.In:Proceedings of the 8th International Heavy Haul Conference,Brazil,2005,457-466
    [76]Daniel Boulanger,Louis Girardi,Andre Galtier,Gilles Baudry.Prediction and prevention of rail contact fatigue.The Proceedings of IHHA'99 STS-Conference,Mascow,Russia,June 14-17,1999,229-237
    [77]Huimkin Wu,Stephen S.Woody,Robert W Blank.Optimization of rail grinding on a North American Haul Railroad Line.In:Proceedings of the 8th International Heavy Haul Conference,Brazil,2005,419-427
    [78]Makoto Ishida,Noritsugi Abe.The Effect of preventive grinding for Sinkansen rails.Proceedings 6th International Heavy Haul Conference,Cape town,1999:65-71
    [79]缪闯波.钢轨打磨对轮轨作用的影响.铁道标准设计,2002,22(7):31-32
    [80]Mark Mulrihill.A new approach to wheel/rail lubrication.Spokesman,1995
    [81]R.Goyan.Biodegradable lubricants.Lubrication Engineering,1998
    [82]#12
    [83]杨启罅,刘晓峰.近10年新型轮轨润滑剂的发展与展望.中国铁道科学,2001,22(3):96-102
    [84]Wang Wen-jian,Guo Jun,Liu Qi-yue,Zhou Zhong-rong.Experimental study on wear and spalling behaviors of railway wheel.Proceedings of 7th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems,2006,vol.2:629-637,Brisbane,Australia,September 24-27,2006
    [85]刘启跃,周仲荣,石心余.45钢/GCr15钢摩擦副的滚动磨损特性研究.摩擦学学报,2001,21(1):33-36
    [86]Q.Y.Liu,X.S.Jin,Z.R.Zhou.An investigation of friction characteristic of steels under rolling-sliding condition.Wear,2005,259:439-444
    [87]赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析.摩擦学学报,2005,25(4):358-359
    [88]朱旻昊,周仲荣,刘家浚.摩擦学白层的研究现状.摩擦学学报,1999,19(3):281-287
    [89]Anders E.,Elena K.Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview.Wear,2005,(258):1288-1300
    [90]郭俊,王文健,张伟,刘启跃.轮踏面剥离试验研究.铁道车辆,2006,44(4):1-4
    [91]王文健.车轮滚动剥离磨损特性研究.西南交通大学硕士学位论文,2004
    [92]Pham Duc Chinh.Shakedown theory for elastic-perfectly plastic bodies revisited.International Journal of Mechanical Sciences,2003,(45):1011-1027
    [93]Paolo Fuschi.Structural shakedown for elastic-plastic materials witl hardening saturation surface.Internatonal Journal of Solids and Structures:,1999,(36):219-240
    [94]刘启跃.钢轨安定状态研究.西南交通大学学报,1995,30(4):465-471
    [95]魏先祥.轮轨静接触时的屈服问题.铁道学报,1993,15(2):1-7
    [96]张伟.轮轨滚动接触疲劳试验研究.西南交通大学硕士学位论文,2005
    [97]束德林.金属力学性能.北京:机械工业出版社,1999
    [98]崔振源.表面裂纹理论及其应用.西安:西北工业大学出版社,1987
    [99]胡宏玖,李培宁.各种表面裂纹疲劳扩展分析方法的比较.华东理工大学学报.1996,22(5):577-582
    [100]钟群鹏,金星,洪廷姬,陶春虎.断裂失效的概率分析和评估基础.北京:北京航空航天大学出版社,2000
    [101]Jonas.W.Ringsberg.Life prediction of rolling contact fatigue crack initiation.International journal of fatigue,2001,(23):575-586
    [102]蔡力勋.MTS与金属材料断裂力学性能测试基础.全国MTS用户测试技术培训教材,2005
    [103]卢志明,陈冰冰,高增梁.16MnR钢在液氨环境中的应力腐蚀裂纹扩展研究.材料工程,2007,(10):7-10
    [104]祖小涛,吴继红,刘民治.环境介质对ABS疲劳裂纹扩展的影响.成都科技大学学报,1995,(5):97-102
    [105]Zhao Yong-xiang.A methodology for strain-based fatigue reliability analysis.Reliability Engineering System Safe,2000,70(2):205-213
    [106]杨冰,赵永翔,何朝明,王明新.考虑概率与置信度的疲劳裂纹扩展率模型及其参数测定方法.机械工程学报.2004,40(6):183-187
    [107]陈南平,顾守仁,沈万慈.机械零件失效分析.北京:清华大学出版社,1988
    [108]徐建生,赵源,邹岚.双路输入多层神经网络计算模型研究.郑州大学学报,2000,32(3):57-60
    [109]刘志杰,季令,叶玉玲,耿志民.基于径向基神经网络的铁路货运量预测.铁道学报,2006,28(54):1-5
    [110]徐建生,赵源.BP神经网络在摩擦学设计计算机中的应用.机械设计报,2000,(10):16-18
    [111]谢庆生,尹健,罗延科.机械工程中的神经网络方法.北京:机械工业出版社,2003
    [112]王永骥,涂健.神经元网络控制.北京:机械工业出版社,1997
    [113]Rao K P,Prasad Y.Neural network approach to flow stress evaluation in hot deformation.Journal of Materials Processing Technology,1995,52:552-566
    [114]徐流杰,魏世忠,王强,邢建东,张永振,龙锐.基于BP神经网络的V92Cr42M03高速钢冷轧辊磨损模型.摩擦学学报,2006,26(6):541-545
    [115]李旗号,赵卫东.刀具磨损的人工神经网络估计.天津大学学报,2000,33(4):447-450
    [116]靳蕃.神经计算智能基础原理方法.成都:西南交通大学出版社,2000
    [117]王晓慧,鞠颂东.稀土钢轨的耐磨寿命分析及预测.铁道物资科学管理,1997,15(1):31-32
    [118]P.C.Paris,F.Erdogan.A critical analysis of crack propagation laws.Journal of Basic Engineering,1963,85:528-534
    [119]Kapoor A,Fletcher D I,Franklin.The role of wear in enhancing rail life.Tribology Research and Design for Engineering Systems,2003 Elsevier B V,331-340
    [120]Kapoor A.Wear fatigue interaction and maintenance strategies.In proceedings of the Advanced Railway Centre on Why Failures Occur in Wheel-Rail Systems,The University of Sheffield,2001
    [121]Franklin F J,F J Chung,Kapoor A.Ratcheting and fatigue-led wear in rail-wheel contact.Fatigue & Fracture of Engineering Materials &Structures,2003,26(10):949-956
    [122]Garg V G,Dukkipati R V.Dynamics of rail way vehicle systems.Orlando:Academic Press,1984
    [123]詹斐生.机车动力学.北京:中国铁道出版社,1990
    [124]金学松.轮轨蠕滑理论及其试验研究.成都:西南交通大学出版社,2006
    [125]温泽峰,金学松,刘兴奇.两种型面轮轨滚动接触蠕滑率和摩擦功.摩擦学 学报,2001,21(4):288-292
    [126]J.J.Kalker.Three-dimensional elastic bodies in rolling contact.Kluwer Academic Publishers,Dordrecht,The Netherlands,1990
    [127]金学松,温泽峰,张卫华.轮对运动状态对轮轨滚动接触应力的影响.工程力学,2004,21(2):165-173
    [128]金学松,温泽峰,张卫华.两种型面轮轨滚动接触应力分析.机械工程学报,2004,40(2):5-11
    [129]徐芝纶.弹性力学简明教程.北京:人民教育出版社,1979
    [130]王福天.车辆系统动力学.北京:中国铁道出版社.1994
    [131]F.J.Franklin,G.J.Weeda,A.Kapoor,E.J.M.Hienschb.Rolling contact fatigue and wear behavior of the infrastar two-material rail.Wear,2005,258:1048-1054
    [132]Bolton PJ,Clayton P,McEwan IJ.Rolling-sliding wear damage in rail and tyre steels.Wear,1987,120:145-165
    [133]俞展猷.轮轨内部剪切应力及其影响因素的研究.中国铁道科学.20(3):11-19
    [134]刘启跃,王文健,周仲荣.高速与重载铁路钢轨损伤及预防技术差异研究.润滑与密封,2007,32(11):11-14,68
    [135]Hempelmann K,Hiss F,Knothe K.The formation of wear patterns on rail tread.Wear.1991,144(4):179-195
    [136]Sato Y,Matsumoto A.Review on rail corrugation studies.Wear,2002,253(1-2):130-139
    [137]Ishida M,Moto T,Takikawa M.The effect of lateral creepage force on rail corrugation on low rail at sharp curves.Wear,2002,253(1-2):172-177
    [138]Thelen G,Lovette M.A parametric study of the lubrication transport mechanism at the rail-wheel interface.Wear,1996,191:113-120
    [139]吴乐轩,刘启跃.轮轨涂油润滑研究.合成润滑材料,1991,(4):55-58
    [140]周奇才,李振海,陈扬新.山区铁路钢轨磨损情况调查与防治技术试验研究.中国工程机械学报,2006,4(1):93-97
    [141]王步康,董光能,谢友柏.润滑材料特性对接触疲劳裂纹的影响.润滑与密封,2002,(6):4-5,8
    [142]王开云,翟婉明,蔡成标.两种类型踏面的车辆与轨道耦合动力学性能比较.西南交通大学学报,2002,37(3):260-264
    [143]何华武.快速发展的中国高速铁路.学术动态,2006,(4):1-16
    [144]Magel,M Roney,J Kalousek,P.Sroba.The blending of theory and practice in modern rail grinding.Fatigue & Fracture of Engineering Materials &Structures.2003,26(10):921-929
    [145]Hananfious J,Steele R.Studying the effects of rail profile grinding.Railway Track and Structures,1994,90(11):25-28
    [146]J Kalousek,P Sroba,C Hegeland.Analysis of rail grinding tests and implications for corrective and preventive grinding.Proceedings of the Fourth International Heavy Haul Conference,Brisbane,Australia,1989
    [147]J Kalousek,E Magel.The magic wear rate.Railway Track and Structure.1997
    [148]贺振中.国外钢轨打磨技术的应用及思考.中国铁路,2000,(9):38-40
    [149]Stuart Grassie,Paul Nilsson,Kjell Bjurstrom,Anders Frick,Lars Goran Hansson.Alleviation of rolling contact fatigue on Sweden's heavy haul railway.Wear,2002,253:42-53
    [150]王文健,陈明韬,郭俊,刘启跃.高速铁路钢轨打磨技术及应用.西南交通大学学报,2007,42(5):574-577
    [151]刘启跃,王夏秋.轮轨接触几何参数匹配对应力值影响的探讨.西南交通大学学报,1992,27(4):13-18
    [152]Kapoor,Schmid F,Fletcher D I.Managing the critical wheel/rail interface.Railway Gazette International,2002,158(1):25-28
    [153]D I Fletcher,P Hyde,A Kapoor.Growth of multiple rolling contact fatigue cracks driven by rail bending modelled using a boundary element technique.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2004,218(3):243-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700