用户名: 密码: 验证码:
陆地棉×黄褐棉种间全基因组SSR高密度遗传图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组庞大的棉花是世界上重要的农作物,传统育种结合DNA分子标记和分子育种技术在作物改良中逐步发挥核心作用。相对于利用形态学和地理学鉴定棉花种质资源的传统方法,分子途径在加速搜集遗传信息上更具潜力。
     变异与遗传是作物改良的重要手段。大部分的棉种间存在生殖隔离,种间杂交如不克服这种隔离则难以成功。利用传统育种方法,把野生资源中优良农艺和品质性状基因转移到栽培作物中已被证明难以凑效。如果克服棉种间的生殖隔离,则可以拓宽商业棉种的遗传基础。为了加强拓宽棉花的遗传基础,多种不同的棉种被用来杂交,以得到拥有最大产量和优异性状潜力的栽培棉种。通常来说亲本间遗传距离越远,杂种优势越强。
     近年来分子标记技术的发展为高密度遗传图谱的构建提供了基础,高密度遗传图谱有助于基因组测序、序列组装、基因定位和目标基因标记,它能更好解析棉花遗传信息,从而达到改良棉花的目的。
     本研究,构建了一张完全基于SSR标记的陆地棉x黄褐棉种间高密度遗传图谱。该图谱覆盖棉花基因组大部分区域,其中2029个SSR标记覆盖4026.10cM的遗传距离,位点间平均距离为2.20cM,染色体上的标记数在23-127之间,染色体的平均长度在154.85cM; SSR标记在A基因组(51.70%)明显高于D基因组(48.30%),标记的遗传距离A基因组的2096.71cM也多于D基因组的1929.39cM。
     图谱中最长的染色体为209.96cM,最短为99.52cM。其中最大同源染色体对是Chr.19(D05)和Chr.05(A05),最小的同源染色体对&Chr.20(D10)。在构建的高密度遗传图谱中566个位点表现出偏分离,占27.89%。26条染色体中共发现55个SDRs。其中27个SDRs分布在A基因组中,28个在D基因组中。A基因组中的偏分离位点多于D基因组,所有大的SDRs偏向杂合子,SDR内的所有位点偏分离方向一致。在24号染色体(D08)中可以观察到一个独特的染色体内复制,其中4ON_CGR5433, MON_CGR0152和MON CGR5423这3个标记扩增出双位点,平均重组率为10cM。本研究中构建的完全基于SSR标记的高密度遗传图谱在对重要的数量性状的遗传分析、分子标记辅助育种、结构基因组学以及比较基因组学上都具有重要作用。此外,这张高密度遗传图谱可为高通量分子标记辅助选择,构建黄褐棉染色体片段置换系奠定基础,有助于将黄褐棉中优良基因转育到陆地棉种质资源中,特别是抗虫性。
Cotton, with large genome, is an important crop throughout the world. Conventional breeding has great potential and will play a central role in sustained genetic improvement by incorporating DNA marker technology and molecular breeding. The application of molecular methods to cotton germplasm which have been classified on the basis of morphology and geography has the potential to accelerate the accumulation of genetic information as compared to traditional methods.
     Extensive genetic variability and large effective breeding populations are essential bases for the crop improvement. Most of the Gossypium species being sexually incompatible, new interspecific hybrids are difficult to develop, unless sterility barrier is overcome. The conventional methods of plant breeding for the transference of desirable agronomic and quality traits of wild species to the commercial cotton have not been proved much helpful. The genetic basis of the commercial cotton can considerably be broadened by overcoming the incompatibility among various species of Gossypium. To enhance the wide genetic basis of cotton genotypes the most diversed cotton genotypes were crossed to develop genetically diverse cultivars having maximum potential for yield and having desireable traits. Genetically more distinct parents will produce maximum hybrid vigor.
     Recent advances in molecular technology provide a base to construct a high density genetic map which can facilitate genome sequencing, sequence assembly, gene mapping and the design of targeted genetic markers for better understanding and improvement of the cotton plant.
     In this study, an entire microsatellite (Simple sequence repeat, SSR) PCR-based high density genetic map was constructed using the interspecific cross of G.hirsutum x G.mustelinum and covering a large region of cotton genome. This high density genetic map constitutes of2029SSR mapped markers covering4026.10cM with an average inter-marker distance of2.20cM. Number of marker anchored on the chromosomes varied from23to127with an average of154.85cM. More markers were anchored on At sub-genome (51.70%) than Dt-subgenome (48.30%).The At-subgenome span more distance (2096.71cM) than the Dt-subgenome (1929.39cM).
     The maximum length of chromosome was209.96cM and the minimum was99.52cM. The largest homeologous chromosome pair was Chr.19(D05) and05(A05) smallest is Chr.20(D10) as far mapped loci are concerned. In this map566loci showed segregation distortion and accounting for27.89%. A total of55segregating hotspot (SDRs) were found on the26cotton chromosomes with27SDRs on the At subgenome and28on the Dt subgenome. More distorted loci were located on the At subgenome than the Dt sub-genome. All the large SDRs revealed skewness toward the heterozygous allele and all the skewed alleles within the SDR segregate in the same direction. A unique intra-chromosomal duplications observed in chromosome24(D08), where3markers viz MON_CGR5433, MON_CGR0152and MON_CGR5423each revealed duplicate loci and their recombination rates on an average is lOcM respectively. The SSR-based map constructed in this study will be useful for further genetic analysis of important quantitative traits, marker assisted selection and genome organization architecture in cotton as well as for comparative genomics between cotton and other species. Moreover this map will lay the foundation for developing chromosome segment substitution lines (CSSLs) from G. mustelinum in an upland cotton background by marker-assisted high throughput selection and also enrich the cotton germplasm by incorporating superior genes especially insect resistance from wild genetic resources.
引文
1. Abdalla AM, Reddy OUK, El-Zik KM. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor. Appl. Genet.,2001,102:222-229.
    2. Altaf MK, Stewart JMCD, Wajahatullah MK, Zhang J. Molecular and morphological genetics of a trispecies F2 population of cotton. Proc. Beltwide Cotton Conf.,1997 pp.448-452.
    3. Arumuganathan K, Earl ED, Nuclear DNA content of some important plant species. P1. Mol. Biol. Rep.,1991,9:208-218.
    4. Babu R, Nair SK, Prasanna BM. Integrating markerassisted selection in crop breeding-Prospects and challenges. Curr. Sci.,2004,87:607-619.
    5. Bernatzky R, Tanksley SD., Towards a saturated linkage map in tomato based on isozyme and random cDNA sequences. Genetics.,1986,112:887-898.
    6. Bradshaw HD, Stettler RF, Molecular genetics of growth and development in Populus. II Segregation distortion due to genetic load. Theor. Appl. Genet.,1994,89:551-558.
    7. Brickell, C.D., Baum, B.R., Hetterscheid, W.L.A., Leslie, A.C., McNeill, J., Trehane, P., Vrugtman, F., and Wiersma, J, International code of nomenclature for cultivated plants. Regnum Vegetable,2004,144:1-123.
    8. Brown HB, Ware JO, Cotton. Mc Graw Hill, New York,1958,p 566.
    9. Brubaker CL, Bourland FM, Wendel JF, The origin and domestication of cotton. In:C. Smith J. Cothren eds. Cotton; origin, history, technology and production. New York:John Wiley and Sons, 1999b, pp 3-31.
    10. Burr B, Burr FA, Thompson KH, et al., Gene mapping with recombinant inbreds in maize. Genetics,1988,118:519-526.
    11. Byrne M, Murrell JC, Allen B, Moran GF (1995). An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theor. Appl. Genet.91:869-875.
    12. Cloutier S, Cappadocia M, Landry BS, Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theoretical Applied genetics,1995,91:841-847.
    13. Collard BCY, Jahufer MZZ, Brouwer JB, et al., An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica,2005,142:169-196.
    14. Dejoode, D. R., Wendel, J. F. Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Amer J. Bot,1992,79:1311-1319.
    15. Dib C, Faure S, Fizamer CD. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature,1996,380:152-154.
    16. Dietrich WF, Miller J, Steen R. A comprehensive genetic map of the mouse genome. Nature,1996, 380:149-152.
    17. Doerge R, Mapping and analysis of quantitative trait loci in experimental populations. Nature Rev., 2002,3:43-52.
    18. Echt C, Knapp S, Liu BH, Genome mapping with non-inbred crosses using G mendel 2.0. Maize Genet. Coop. Newslett.,1992,66:27-29.
    19. Ellegien H, Genomic analysis with microsatellite markers. Ph.D Dissertation. University of Agricultural Science, Swedish (1993).
    20. Ferreira A, da Silva MF, da Costa e Silva L, Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol,2006,29:182-192.
    21. Fox SL, Jellen EN, Kianian SF. Assignment of RFLP linkage groups to chromosomes using monosomic F1 analysis in hexaploid oat. Theor. Appl. Genet.,2001,102:320-326.
    22. Freire EC, Viabilidade de cruzamentos entre algodoeiros trasgenicos e comerciais e silvestres do Brasil. Revista Brasileria de Oleaginosas e Fibrosas.,2002,6:465-470.
    23. Frelichowski JEJr, Palmer MB, Main D. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends. Mol. Genet. Gen.,2006,275(5),479-491.
    24. Fryxell, P.A., Phenetic analysis and the phylogeny of the diploid species of Gossypium L.(Malvaceae). Evolution.,1971,25:554-562.
    25. Fryxell, P.A., Taxonomy and germplasm resources in cotton. Agronomy Monograph.,1984.24 ASA-CSSA-SSA, Madison, Wisconsin, USA.
    26. Fryxell, P.A., The natural history of the cotton tribe. Texas A&M University Press, College Station, Texas.1979.
    27. Fryxell, P.A.,A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 1992, 2:108-165.
    28. Gepts P A comparison between crop domestication, classical plantbreeding, and genetic engineering. Crop Sci,2002,42:1780-1790.
    29. Goodman MM., Plant breeding requirements for applied molecularbiology. Crop Sci,2004,44: 1913-1914.
    30. Greuter, W., Mcneill, J., Barrie, F.R., Burdett, H.M., Demoulin, V., Filgueiras, T.S., Nicolson, D.H., Silva, P.C., Skog, J.E., Trehane, P., Turland, N.J., and Hawksworth, D.L. (eds. And compilers). (2000). International Code of Botanical Nomenclature (St. Louis Code).
    31. Gulati, A.N., and Turner, A.J., A note on the early history of cotton. Tech.Bull. B. Ser. No. 3.,1928Indian Central Cotton Committee, Bombay.
    32. Gupta PK, Balyan HS, Sharma PC. Microsatellites in plants:a new class of molecular markers. Current Sci.1996,70:45-53.
    33. Gupta PK, Varshney RK, Cereal genomics:an overview In:Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Press, Dordrecht, The Netherlands,2004, p 639.
    34. Gutierrez OA, Basu S, Saha, S. Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci,2002.42:1841-1847.
    35. Hackett CA, Broadfoot LB., Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity,2003,90: 33-38.
    36. Han Z. G., Wang C. B., Song X. L., Guo W. Z., Gou J. Y., Li C. H, Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton,2006, Theor. Appl. Genet.112,430-439.
    37. Han ZG, Guo WZ, Song XL. Genetic mapping of EST-derived microsatellites from the diploid. Mol Gen Genomics.,2004,272:308-325.
    38. Harlan JR.,Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison, WI,1992.
    39. Hard D, Jones E, Genetics:Analysis of Genes and Genomes, Jones and Bartlett Publishers, Sudbury,MA,2001.
    40. Harushima Y, Kurata N, Yano M. Detection of segregation distortions in an indica japonica rice cross using a high-resolution molecular map. Theor. Applied Genet.,1996,92:145-150.
    41. He DH, Lin ZX, Zhang XL. QTL mapping for economic traits based on a dense genetic map of cotton with PCRbased markers using the interspecific cross of Gossypium hirsutum x Gossypiurn barbadense. Euphytica.,2007,153:181-197.
    42. He P, Li JZ, Zheng XW. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci,2001,41:1240-1246.
    43. Hutchinson, J.B. and H.L. Manning., The Sea Island cottons. Empire Journal of Experimental Agriculture,1945,13:80-92.
    44. ICAC, Cotton:Review of the world situation, International cotton advisory Committee, Washington D.C, USA,2012,66 (2).
    45. Illahi, N., Somro, A.R., Mahmood, Z., and Khan, K., To study whether Fibre Characters of cotton are under influence of planting dates. The Indus Cottons,2004, Vol.2, Page:33-36.
    46. Jain SM, Brar DS, Ahloowalia BS, Molecular techniques in crop improvement. Kluwer Academic Publishers, The Netherlands,2002.
    47. Jiang CX, Wright RJ, El-Zik KM. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci.,1998,95:4419-4424.
    48. Jones N, Ougham H, Thomas H, Markers and mapping:We are all geneticists now. New Phytol. 1997,137:165-177.
    49. Kearsey M, Pooni H, The genetical analysis of quantitative traits. Chapman & Hall, London, 1996.
    50. Khan MA, Stewart JMCD, Zhang J. Addition of new markers to trispecific cotton map. Proc. Beltwide Cotton Conf.,1999, pp.439.
    51. Koebner RMD, Marker-assisted selection in the cereals:the dream and the reality. In:Gupta PK, (2004).
    52. Korzun V, Use of molecular markers in cereal breeding. Cell Mol Biol Lett,2002,7:811-820
    53. Kosambi DD, The estimation of map distances from recombination values. Ann. Eugen.,1944, 12:172-175.
    54. Kruckeberg, A. R., Rabinowitz, D. Biological aspects of endemism in higher plants.-Annu. Rev. Ecol. Syst.1985,16:447-479.
    55. Kumar S., Gill B. S. and Faris J. D, Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat.2007, Mol. Genet. Genomics 278,187-196.
    56. Lacape JM, Jacobs J, Arioli T. A new interspecific, Gossypium hirsutum x G. barbadense, RIL population:towards a unified consensus linkage map of tetraploid cotton. Theor. Appl. Genet. 2009,119:281-292.
    57. Lacape JM, Nguyen TB, Thibivilliers S. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome,2003, 46:612-626.
    58. Lan TH, Cook CG, Paterson AH, Identification of a RAPD marker linked to male fertility restoration gene in cotton(Gossypium hirsutum L.). J.ournal of Agri. Genomics.,1999,1:1-5
    59. Lander ES, Botstein D, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    60. Lander ES, Green P, Abrahamson J. Mapmaker:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987, 1:174-181.
    61. Lefebvre V, Palloix A, Caranta C. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome,1995,38:112-121.
    62. Li G, Quiros CF.,Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor. Appl. Genet.,2001,103:455-461.
    63. Lin Z, He D, Zhang X. Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed.,2005,124:180-187.
    64. Litt M, Luty JA, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. AmrJ Hym Genet,1989,44:397-401.
    65. Liu S, Saha S, Stelly D. Chromosomal assignment of microsatellite loci in cotton. J. Heredity, 2000,91(4):326-32.
    66. Liu, HB, Statistical Genomics, Linkage, Mapping and QTL Analysis. CRC, Boca Raton, Florida, 1998, pp 611.
    67. Lu H, Romero-Severson J, Bernardo R, Chromosomal regions associated with segregation distortion in maize. Theor. Applied Genet,2002,105:622-628.
    68. Lynch M, Walsh B, Genetic Analysis of Quantitative Traits. Sinauer Associates, Sunderland, Massachusetts,1998, pp 980.
    69. Lyttle TW, Segregation distorters. Annu. Rev. Genet.,1991,25:511-557.
    70. Mangelsdorf PC, Jones DF. The expression of mendelian factors in the gametophyte of maize. Genetics,1926,11:423-455.
    71. Manly KF, Cudmore Jr RH, Meer JM, Map Manager QTX, cross platform software for genetic mapping. Mamm. Genome,2001,12:930-932.
    72. Manosh K. B., Chai L. and Mohamed H.A., Comparative analysis of genetic diversity n citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers,2011, Sci,Hort 129: 798-803.
    73. Matsushita S, Iseki T, Fukuta Y, Araki E, Kobayashi S, Osaki M, Yamagishi M., Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica,2003,134:27-32.
    74. Mauer, F.M. (1954). Proiskhozhdeniye I Sistematiki Khlopchatnika [Origin andSystematics of Cotton]. Tashkent:Akad. Nauk Uzbek. S.S.R. [in Russian].
    75. Maughan PJ, Seghai MA, Maroof GR. Amplified fragment length polymorphism in soyabean: species diversity, inheritance and near -isogenic line analysis. Theor. Appl. Genet.,1996,93: 392-401.
    76. Mei M, Syed NH, Gao W. Genetic mapping and QTL analysis of fibre related traits in cotton. Theor. Appl. Genet.,2004,108:280-291.
    77. Meiying H, Caiping C, Shuwen Z, Wangzhen G, Tianzhen Z, Baoliang Z, construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossupium tomentosum,2013, Journal of Genetics 92:445-459.
    78. Meredith WR.,RFLP association with varietal origin and heterosis. In:Proc. Beltwide Cotton Conf. (ed. D. Herber), Nashville, TN.,1992,pp.607.
    79. Meredith WR, Yield and Fiber-Quality Potential for Second-Generation Cotton Hybrids, Crop Sci, 1999,1045-1048.
    80. Mergeai G, Baudoin JP, Vroh BI, Production of high gossypol cotton plants with low gossypol seed from trispecific hybrids including Gossypium sturtianum. World Cotton Research Conference-2, Athens, Greece,1998, pp.74.
    81. Michaelson MJ, Price HJ, Ellison JR. Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. American J. Bot.,1991,78(2):183-188.
    82. Mohan M, Nair S, Bhagwat A. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed,1997,3:87-103.
    83. Newsletter of the cotton physiology program,1997,8:13-22.
    84. Nguyen TB, Giband M, Brottier P. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet,2004,109:167-175.
    85. Ortiz JPA, Pessino SC, Bhat V, Hayward MD, Quarin CL (2001). A genetic linkage map of diploid Paspalum notatum. Crop Sci.41:823-830.
    86. Paterson AH, Bowers JE, Burow MD. Comparative genomics of plant chromosomes. The Plant Cell,2000,12:1523-1539.
    87. Paterson AH, Making genetic maps. In:Paterson AH (ed.) Genome mapping in plants, San Diego, California:Academic Press, Austin, Texas,1996, pp.23-39.
    88. Percival, E., and Kohal, R.J. (1990). Distribution, collection and evaluation of Gossypium. Advance Agronomy,44:225-256.
    89. Percy RG, Kohel RG.1999. Cotton qualitative genetics. In:Cotton (ed.C.W. Smith and J.T. Cothren), John Wiley & Sons, NY, pp.319-360.
    90. Phillips RL, Vasil IK, DNA-based markers in plants. In:Phillips RL, Vasil IK (eds) DNA-based
    91. Plomion C, O'Malley DM, Durel CE, Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor. Appl. Genet.1995,90:1028-1034.
    92. Rafalski JA, Randomly amplified polymorphic DNA (RAPD) analysis. In:DNA markers: Protocols, Applications and Overviews (eds. GC.Anolles and P.M. Gresshoff), Wiley-Liss, Inc. USA,1997, p.364.
    93. Rahman M, Hussain D, Zafar Y, Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology. Crop Sci,2002,42:2137-2144.
    94. Rahman M, Yasmin T, Tabassum N. Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genetic Res, Crop Evo,2008,55, 331-339.
    95. Rana MK, Bhat KV, A comparison of AFLP and RAPD markers for genetic diversity and cultivar identification in cotton. J. Plant Biochemistry and Biotechnology,2004,13:19-24.
    96. Reddy OUK, Pepper AE, Abdurakhmonov I. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cott Sci,2001,5:103-113.
    97. Reinisch MJ, Dong J, Bruaker CL. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense:chromosome organization and evolution in a disomic polyploid genome. Genetics,1994,138:829-847.
    98. Reiter RS, Williams JGK, Feldman KA. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci. USA,1992,89:1477-1481.
    99. Risch N, Genetic linkage:Interpreting LOD scores. Science,1992,255:803-804.
    100. Roder MS, Korzun V, Wendehake K. A microsatellite map of wheat. Genetics,1998,149: 2007-2023.
    101. Rong JK, Abbey C, Bowers JE. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics,2004,166,389-417.
    102. Ronin Y, Mester D, Minkov D, Korol A, Building reliable genetic maps:different mapping strategies may result in different maps,2010, Nat Sci 02:576-589.
    103. Saha S, Karaca M, Jenkins JN. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica,2003,130(3),355-364.
    104. Sandler L, Golic K, Segregation distortion in Drosophila. Trends Genet.,1985,1:181-185.
    105. Sandler L, Novitski E, Meiotic drive as an evolutionary force. Amer. Naturalist,1957,41: 105-110.
    106. Saunders, J.H. The Wild Species of Gossypium and Their Evolutionary History.1961,Oxford University Press, London.
    107. Schmidt T, Heslop HJs, Genomes, genes and junk:the largescale organization of plant chromosome. Trends in Pit. Sri.,1998,3:195-198.
    108. Schon CG, Hayes PM, Blake TK, Knapp SJ (1991). Gametophytic selection in a winter x spring barley cross. Genome 34:918-922.
    109. Semagn K, Bj(?)rnstad A, Ndjiondjop MN, An overview of molecular markers for plants. African Journal of Biotechnology,2006a 5:2540-2568.
    110. Shappley ZW, Jenkins JN, Meredith WR. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor. Appl. Genet.,1998a,97:756-761.
    111. Shappley ZW, Jenkins JN, Watson CE. Establishment of molecular markers and linkage groups in two F2 population of upland cotton. Theor. Appl. Genet.,1996,92:915-919.
    112. Shappley ZW, Jenkins JN, Zhu J. Quantitative trait loci associated with agronomic and fibre traits of upland cotton. J. Cotton Sci.,1998b,4:153-163.
    113. Shen X. L., Guo W. Z., Zhu X. F., Yuan Y. L., Yu J. Z., Kohel R. J, Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers.2005,Mol. Breed.15, 169-181.
    114. Shields DC, Collins AK, Buetow H, Morton NE., Error filtration, interference, and the human linkage map. Proc. Natl. Acad. Sci. USA,1991,88:6501-6505.
    115. Shull GH., A pure-line method in corn breeding. Am Breeders Assoc Rep,1909,5:51-59.
    116. Sibov ST, de Souza Jr CL, Garcia AAF, Garcia AF, Silva AR, Mangolin CA, Benchimol LL, de Souza AP., Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1. Map construction and localization of loci showing distorted segregation. Hereditas (Lund), 2003,139:96-106.
    117. Sobrino B, Briona M, Carracedoa A., SNPs in forensic genetics:a review on SNP typing methodologies. Forensic Sci Int,2005,154:181-194.
    118. Soller MT, Broddy T, GeniziA, On the power of experimental designs for detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet,1976, 47:35-39.
    119. Stam P., Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J.,1993a,3:739-744.
    120. Stam P., JoinMap Version 1.4:A computer program to generate genetic linkage maps. CPRO-DLO, Wageningen. Centre for Plant Breeding and Reproduction Research CPRO-DLO, Wageningen,1993b,The Netherlands.
    121. Stam, P., Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. The Plant Journal,1993,3:739-744.
    122. Staub JE, Serquen FC, Gupta M, Genetic markers, map construction and their application in Plant Breed. HortScience,1996,31(5):729-741.
    123. Stephens SG, Philips LL, The history and geographical distribution of a polymorphic system in New World cotton. Biotropica,1972,4:49-60.
    124. Strauss SH, Conkle MT, Segregation, linkage, and diversity of allozymes in knobcone pine. Theor. Appl. Genet.,1986,72:483-493.
    125. Suiter KA, Wendel JF, Case JS, Linkage-I:A pascal computer program for the detection and analysis of genetic linkage. J. Hered.1983,74:203-204.
    126. Sunyaev S, Hanke J, Aydin A, Wirkner U, Zastrow I, Reich J, Bork P (1999) Prediction of nonsynonymous single nucleotide polymorphisms in human disease-associated genes. J Mol Med 77:754-760.
    127. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P, High density molecular linkage maps of the tomato and potato genomes,1992,Genetics 132,1141-1160.
    128. Tanksley SD, Young ND, Paterson AH. RFLP mapping in plant breeding:new tools for an old science. Biotechnology,1989,7:257-264.
    129. Tanksley SD., Molecular markers in plant breeding. Plant Mol.Biol.1983,Rep.,1:3-8.
    130. Torres AM, Mau-Lastovicka T, Williams TE, Soost RK (1985). Segregation distortion and linkage of Citrus and Poncirus isozymes genes. J. Hered.76:289-294.
    131. Ulloa M, Cantrell RG, Percy RG. QTL analysis of stomatal conductance and relationship to lint yield in interspecific cotton. J. Cotton Sci.,2000,4:10-18.
    132. Ulloa M, Meredith WR (Jr), Shappley ZW. Genetic linkage maps from four F23 populations and a join map of Gossypium hirsutum L. Theor. Appld. Genet,2002,101:200-208.
    133. Van Esbroeck GA, Bowman DT, Calhoun DS. Changes in the genetic diversity of cotton in the U.S. from 1970 to 1995. Crop Sci,1998,38:33-37.
    134. Van Ooijen JW, Voorrips RE (2001). JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands.
    135. Vollesen, K.1987. The native species of Gossypium (Malvaceae) in Africa, Arabia and Pakistan. Kew Bull.42:337-349.
    136. Vos P, Hogers R, Bleeker M. AFLP:a new technique for DNA fingerprinting. Nucl Acids Res, 1995,23:4407-4414.
    137. Vroh BI, Baudoin JP, Mergeai G, Potentialities of DNA markers to monitor introgression of the glandless-seed and glanded plant trait from Gossypium sturtianum into upland cotton. World Cotton Research Conference-2, Athens, Greece,1998, pp.54.
    138. Vroh BI, Jardin PD, Mergeai G, Baudoin JP (1997). Optimisation and application of RAPD in a recurrent selection programme of cotton. Biotechnology, Agronomy, Society and Environment, 1(2):142-150.
    139. Vroh BI, Mergeai G, Baudoin JP. Breeding for "lowgossypol seed and high-gossypol plants" in upland cotton. Analysis of trispecies hybrids and backcross progenies using AFLP's and mapped RFLP's. Theor. Appl. Genet.,1999,99:1233-1244.
    140. Wajahatullah MK, Stewart JM, Genomic affinity among Gossypium subgenus sturtia species by RAPD analysis. Proc. Beltwide Cotton Conf., National Cotton Council, Memphis, TN, USA,1997, pp.452.
    141. Watt, G 1907. The Wild and Cultivated Cotton Plants of the World. Longmans, Green and Co., London.33-36.
    142. Wendel JF, Albert VA, Phylogenetics of the cotton genus (Gossypium):character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Sys Bot,1992,17:115-143.
    143. Wendel JF, Parks CR., Distorted segregation and linkage of alcohol dehydrogenase ec-1.1.1.1 genes in camellia-japonica theceae Biochem. Genet,1984,22:739-748.
    144. Wenzel G., Molecular plant breeding:achievements in green biotechnology and future perspectives. Appl Microbiol Biotechnology,2006,70:642-650.
    145. Williams JGK, Kubelik AR, Livak KJ. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res,1990,18:6531-6535.
    146. Wright R J, Thaxton PM, El-Zik KM. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium suggests that polyploid formation has created novel avenues for evolution. Genetics, 1998,149:1987-1996.
    147. Wright R J, Thaxton PM, El-Zik KM, Paterson AH. Molecular mapping of genes affecting pubescence of cotton. The American Genetic Association.,1999,90:215-219.
    148. Yu Y, Yuan DJ, Liang SG. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G barbadense. BMC Genomics,2011,12:15.
    149. Yu JZ, Kohel RJ, Fang DD. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome, G3:Genes|Genomes|Genetics,2012, 2(1):43-58.
    150. Zhang J, Guo W, Zhang T, Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population. Theor. Appl. Genet.,2002, 105:1166-1174.
    151. Zhang J, Stewart JM, Economical and Rapid Method for Extracting Cotton Genomic DNA. The J. Cotton Sci.,2000,4:193-201.
    152. Zhang JF, Lu YZ, Yu SX, Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton. Theoretical and Applied Genetics,2005a,111:1385-1395.
    153. Zhang Z. S., Hu M. C., Zhang J., Liu D. J., Zheng J., Zhang K, Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.),2009,Mol. Breed.24,49-61.
    154. Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y Construction of a genetic linkage map and QTL analysis of fibre related traits in upland cotton. Euphytica,2005,144:91-99.
    155. Zhao L, Lv YD, Cai CP. Toward allotetraploid cotton genome assemble:integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012,13:539.
    156. Zietkiewicz E, Rafalski A, Labuda D, Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176-183
    157. Zivy M, Devaux P, Blaisonneaux J, Jean R, Thiellement H. Segregation distortion and linkage studies in microspore-derived double haploid lines of Hordeum vulgare L. Theor. Appl. Genet. 1992,83:919-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700