用户名: 密码: 验证码:
小麦条锈菌中国鉴别寄主尤皮Ⅱ号抗条锈病基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是当今我国小麦生产上最为严重的病害之一,严重影响小麦的品质和产量。小麦条锈菌是专性寄生菌,目前利用鉴别寄主的抗病基因仍是鉴定条锈菌小种致病基因的唯一有效方法。因此,明确小麦条锈菌鉴别寄主抗条锈病基因及遗传特点和抗性特点,进行分子标记定位,并通过转录组测序进行分析,利于在基因水平和转录水平上进行小麦条锈菌生理专化研究和抗病性分析。尤皮Ⅱ号是小麦条锈菌鉴别寄主,对我国小麦条锈菌具有特别的鉴别能力,对其所携带的抗条锈病基因进行遗传分析和标记定位,并予以命名,具有重要的理论和实际意义。
     本研究通过常规杂交分析,以轮回亲本铭贤169为母本与近等基因系铭贤169*6/YrJu4(N9)杂交构建F2代作图群体。采用SSR和EST-SSR技术,利用已有的引物,并通过共线性分析设计引物,用高通量测序技术对铭贤169和铭贤169*6/YrJu4的不同时间点样品进行转录组测序并开发SSR引物,对基因供体尤皮Ⅱ号、轮回亲本铭贤169及抗条锈病近等基因系铭贤169*6/YrJu4基因组DNA进行PCR扩增和变性聚丙烯酰胺凝胶电泳分析,通过近等基因系铭贤169*6/YrJu4,对其基因供体尤皮Ⅱ号中抗条锈病基因YrJu4进行了分子标记筛选和精确定位;以轮回亲本铭贤169和铭贤169*6/YrJu4的N9株系为试材,接种CYR17②,选取时间点为0h、6h、12h、24h和48h,分别提取叶片总RNA用于转录组测序,筛选候选基因。研究结果如下:
     (1)通过4种方法,筛选出31对引物,即pTtksuG5、CFD6、CFD168、WMC702、WMS445、CFA2058、GPW2111、GPW2125、PSP3153、GPW7379、BE407000、BE423182、BE444378、BE497393、BE606324、BG606824、R2-10-2、R3-7、R6-1-2、R8-1-2、R11-6-2、R12-3、6a、12b、18a、19b、25a、40a、47a、49b和54b在近等基因系铭贤169*6/YrJu4与轮回亲本铭贤169间能稳定扩增出差异DNA片段,经40株抗感单株和354株F2代作图群体的遗传连锁性检测,发现有7对引物(GPW7379、49b、GPW2125、R2-10-2、BE423182、WMC702、WMS445)的扩增位点与目的基因YrJu4具有遗传连锁性,遗传距离依次为17.1cM、14.6cM、14.1cM、13.5cM、4.1cM、11.7cM和15.2cM。Xbe423182与Xwmc170(王冬梅,2013)可作为YrJu4的两个侧翼标记,将YrJu4标定在小麦染色体4.6cM范围内,可用于目的基因的分子标记与定位。尤皮Ⅱ号抗条锈病基因YrJu4在小麦2A染色体上的位置为:Xgpw7379—X49b—Xgpw2125—XR2-10-2—YrJu4—Xbe423182—Xwmc702—Xgwm445。鉴于尤皮Ⅱ号是具有特别鉴别力的小麦条锈病中国鉴别寄主,其中所含YrJu4基因是不同于其它抗条锈病基因的未知新基因,建议将YrJu4按国际命名为Yr60。
     构建了用于目的基因YrJu4精细定位的4253株F2代作图群体,并采用常规杂交分析方法,接种条锈菌系CYR17②,对轮回亲本铭贤169、基因供体尤皮Ⅱ号和近等基因系铭贤169*6/YrJu4及其杂交后代进行苗期抗性鉴定及统计分析,结果显示,近等基因系铭贤169*6/YrJu4对CYR17②的抗病性是由1对隐性基因控制。
     (2)转录组测序结果显示,测序结果理想,质量较高,共获得241947条N50值为1021的unigenes序列,平均长度为640nt,丰富了小麦的转录组信息。经过blast比对,在Nr库中比对上unigenes数目最多的前3个物种依次是大麦、二穗短柄草和粳稻;19404个unigene被注释到KOG数据库中24种类别中,包含样本基因最多的3个类别分别为信号转导机制、翻译后修饰和一般功能预测;有21496个unigene被注释到KEGG数据库,在KEGG中注释最多的3个代通路分别是核糖体通路(ko03010)、植物-病原菌互作通路(ko04626)和淀粉和蔗糖代谢通路(ko00500);有49019个unigene被注释到3大类65亚类的GO分类上,与抗真菌病害有关的unigenes共有90个。分析了接种条锈菌CYR17②生理小种6h和12h后近等基因系铭贤169*6/YrJu4与铭贤169的转录组表达差异,发现上调表达unigenes共有46个,下调表达unigenes共有39个;以接种12h后为起点,以铭贤169作为对照,发现近等基因系铭贤169*6/YrJu4中21个unigenes表达在12h、24h和48h呈现持续上调,有31个unigenes在12h、24h和48h呈现持续下调表达。以上分析结果为进一步研究抗病基因YrJu4调控途径提供重要信息。
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), has been one of the mostdestructive diseases of wheat in China. It could cause great wheat yield losses and decrease wheatproduct quality. The pathogen is an obligate fungus. The effective identification of the virulence gene(s)in races of Pst is achieved with the aid of resistance gene(s) of a set of wheat differentials. Therefore, itwas important to find out the genetic traits and defense characteristics of the resistance genes ofdifferential varieties. Through resistance gene mapping and transcriptome sequencing, results would beused in the characterization of race-specific resistance of differential varieties. The differential varietyJubilejina Ⅱ has special identification ability for the races ofPst found in China. It had importanttheoretical significance and application value to genetically analyze and map the resistance gene(s) anddesignate it in Jubilejina Ⅱ.
     In this study, we used classic hybridization analysis and constructed F2mapping population byhybridization of Mingxian169as recurrent female parent and N9line of the near-isogenic line (NIL)Mingxian169*6/YrJu4as male parent. SSR and EST-SSR methods were used and primers weredesigned on the base of colinearity analysis between wheat and rice. Transcriptome sequencing analysisof Mingxian169and N9line of Mingxian169*6/YrJu4was conducted with de novo sequencingtechnology. The PCR products with the DNA templates of gene donor Jubilejina Ⅱ, recurrent parentMingxian169and N9line was analyzed with polyacrylamide gel electrophoresis for fine mapping ofthe resistance gene YrJu4. Mingxian169and N9line of Mingxian169*6/YrJu4were inoculated with thePst race CYR17. The total RNA of Mingxian169and N9line of Mingxian169*6/YrJu4after beinginoculated with CYR17for0h,6h,12h,24h and48h was isolated for the transcriptome sequencinganalysis. The results were shown as follows:
     1.There were31pairs of primers selected could stably amplify special DNA bands betweenMingxian169and Mingxian169*6/YrJu4, such as pTtksuG5, CFD6, CFD168, WMC702, WMS445,CFA2058, GPW2111, GPW2125, PSP3153, GPW7379, BE407000, BE423182, BE444378,BE497393, BE606324, BG606824, R2-10-2, R3-7, R6-1-2, R8-1-2, R11-6-2, R12-3,6a,12b,18a,19b,25a,40a,47a,49b and54b. Seven primers (GPW7379,49b, GPW2125, R2-10-2, BE423182,WMC702,WMS445) were found to be genetically linked with YrJu4after detection with20resistantand20susceptible plants and354F2plants. The genetic distance between the7markers above andYrJu4was17.1cM,14.6cM,14.1cM,13.5cM,4.1cM,11.7cM,15.2cM, respectively. Xbe423182andXwmc170(Wang Dongmei,2013) were the flanking markers of YrJu4in the region of4.6cM. Thelocation of YrJu4on wheat chromosome2A was Xgpw7379—X49b—Xgpw2125—XR2-10-2—YrJu4—Xbe423182—Xwmc702—Xgwm445. YrJu4in Jubilejina Ⅱwas different from other wheat stripe rustresistance genes located on chromosome2A. We suggested that it should be designated as Yr60.
     A fine mapping population of4253F2plants was constructed. Using classic hybridization analysismethod, Mingxian169, Jubilejina II, N9line of Mingxian169*6/YrJu4and the F2plants wereinoculated with CYR17and phenotype scoring was conducted.The results showed that the resistance of Mingxian169*6/YrJu4to CYR17②was controlled by a pair of recessive genes.
     2.The transcriptome sequencing results revealed that the isolated mRNA was of high quality and241947unigenes of which N50value was above1021were found totally, and their average length was640nt. The transcriptome results would enrich the wheat transcription data. After being blasted with Nrdatabase, the most annotated unigenes were hitted in the databases of Hordeum vulgare, Brachypodiumdistachyon and Oryza sativa japonica.19404unigenes were annotated and classified into24categoriesin KOG database, and the first three categories were related to signal transduction mechanisms,posttranslational modification and protein turnover, chaperones, and general function prediction only.21496unigenes were annotated in KEGG database. The first three pathways were ribosome (ko03010),plant-pathogen interaction (ko04626) and starch and sucrose metabolism (ko00500). Besides,49019unigenes were annotated in3categories and65subclasses of GO database.
     The expression pattern differences between Mingxian169and N9line of Mingxian169*6/YrJu4at6h and12h after being inoculated with CYR17were analyzed and46up-regulated unigenes and39down-regulated unigenes were found. We took12h after inoculation as the start point and Mingxian169as control, and found21unigenes continuously up-regulated and31unigenes continuouslydown-regulated from12h to48h post inoculation. These results could provide important information forfurther investigation of the regulatory pathways of resistance gene YrJu4.
引文
1.白耀博,等.普通小麦-柔软滨麦草异位系M852-1抗条锈病基因的遗传分析和分子作图.植物病理学报,2013,43(2):166-172.
    2.曹张军,等.小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记.遗传学报,2005,32(7):738-743.
    3.陈峰,等.中国小麦条锈菌鉴别寄主维尔对条锈病的温敏抗性研究.植物保护,2008,34(6):85-88.
    4.陈晓红,等.用变性PAGE-银染法鉴定小麦抗条锈病基因Yr5的RAPD标记.遗传学报,2004,31(3):270-274.
    5.邓泱泱,等.nr数据库分析及其本地化.计算机工程,2006,32(5):71-76.
    6.房体麟,等.小麦条锈病抗源S2199抗病基因分子标记及其与Yr5的关系.作物学报,2008,34(3):355-360.
    7.傅艳萍,等.基于高通量测序的小麦转录组学研究.见:郭泽键,侯明生.中国植物病理学辉2011年学术年会论文集.北京:中国农业科学技术出版社,2011,429.
    8.淦爱华.中国小麦条锈菌5个鉴别寄主抗性基因解析及定位[硕士学位论文].北京:中国农业大学,2003.
    9.葛昌斌.小麦种植贵农775抗条锈病基因标记的相关片段克隆及荧光原位杂交[硕士学位论文].贵州:贵州大学,2006.
    10.葛昌斌,等.小麦贵农775抗条锈病新基因YrGA的研究.河南农业科学,2008,7:20-24.
    11.郭爱国.小麦抗病性基因推导方法的应用及其发展.河北农业大学学报,1993,16(2):98-103.
    12.关海涛,等.小麦条锈菌生理小种国际鉴别寄主Spaldings Prolific中抗条锈病基因YrSpP的微卫星标记.中国农业科学,2005,38:1574-1577.
    13.何海旗.小麦条锈病的发生与防治.植物保护,2012(5):29-30.
    14.何名召,等.硬粒小麦-粗山羊草人工合成小麦CI108抗条锈病新基因的鉴定、基因推导与分子标记定位.作物学报,2007,33(7):1045-1050.
    15.吉万全,等.一种小麦抗条锈病相关的If2类翻译起始因子基因.CN101643734A,20120210.
    16.贾秋珍,等.小麦条锈菌生理小种条中32号及水源14致病类型在甘肃的流行与发展趋势.植物保护学报,2007,34(3):263-267.
    17.井金学,等.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报,1999,29(2):147-150.
    18.康振生,等.小麦品种对条锈病低反应型抗性的组织学和超微结构研究.中国农业科学,2003,36(9):1026-1031.
    19.李春莲,等.普通小麦抗条锈新种质—WT212的细胞遗传学分析及其抗性基因的RAPD标记.西北农林科技大学学报(自然科学版).2004,32(S1):11-14.
    20.李勇,等.小麦抗条锈病基因晰分子标记初步研究.华北农学报,2007,22(4):189-192.
    21.李进斌,等.不同栽培模式对小麦条锈菌群体结构的影响.云南农业大学学报,2014,29(1):11-15.
    22.李振岐.我国小麦品种抗条锈性丧失原因及其解决途径.中国农业科学,1980(3):72-77.
    23.李振岐.我国小麦品种抗条锈性丧失原因及其控制策略.大自然探索,1998,17(66):21-24.
    24.李振岐,等.中国小麦锈病.北京,中国农业出版社,2000.
    25.梁丹,等.利用STS标记检测CIMMYT小麦品种(系)中Lr34/Yr18、Rht-B1b和Rht-D1b基因的分布.中国农业科学,2009,42(1):17-27.
    26.梁根云,等.条锈菌侵染慢锈性小麦品种川麦107后的蛋白质组学分析.麦类作物学报,2007,27(2):335-340.
    27.林凤,等.小麦抗条锈病基因Yr2的SSR标记.麦类作物学报,2005,25(1):17-19.
    28.蔺瑞明,等.中国小麦条锈病菌鉴别寄主中4抗病基因遗传组成分析.植物保护学报,2007,34(6):573-579.
    29.刘洁,等.源于中间偃麦草的抗条锈病基因YrCH223遗传分析及SSR定位.山西农业科学,2013,41(1):1-7.
    30.刘静.小麦抗条锈病品系Taichung29*6/Yr5的蛋白质组学分析[博士学位论文].哈尔滨:东北农业大学,2008.
    31.刘孝坤.小麦抗源对条锈病的抗性遗传研究初报.植物保护学报,1988,15(1):33-39.
    32.刘新龙,等.甘蔗SSR和AFLP分子遗传连锁图谱构建.作物学报,2010,36(1):177-183.
    33.刘亚萍,等.小麦抗条锈病基因Yr24的SSR标记.植物病理学报,2005,35(5):478-480.
    34.马成,等.抗条锈病小麦品系Taichung29*6/Yr5接种条锈菌CYR32后的蛋白质组学分析.中国农业科学,2009,42(5):1616-1623.
    35.马渐新.小麦抗条锈病新基因的鉴定、定位及分子作图[博士学位论文].北京:中国农业科院研究生院,1999.
    36.马蕾蕾,等.小麦条锈菌中国鉴别寄主阿夫的抗条锈病基因单体分析.植物保护,2006,32(1):27-29.
    37. Mrognewegen L.J..西欧小麦抗病育种的经验、困难和展望.(杨作民,曾士迈),北京:中国农业大学出版社,1997,192-197.
    38.蒲宗君,等.源于叙利亚小麦ICA31抗条锈病基因分析及分子标记研究.中国农学通报.2006,22(2):65-68.
    39.邵映田,等.小麦抗条锈病基因Yr10的A FL P标记.科学通报,2001,46(8):669-672.
    40.田战旗.小麦高产管理的10项措施.中国农业信息,2013(2):22-23.
    41.仝淑梅,等.小麦抗源Holdfast和Flinor抗条锈病主效、微效基因的遗传分析.中国农业科学,2006,39(1):2243-2249.
    42.万安民.小麦条锈病的发生状况和研究现状.世界农业,2000,5:39-40.
    43.万安民.小麦条锈菌鉴别寄主和小种命名现状.植物病理学报,2003,33(6):481-486.
    44.万安民,等.1991-1996年我国小麦条锈菌生理专化研究.植物病理学报,1999,29(1):13-21.
    45.汪可宁,等.我国小麦条锈菌生理专化研究.植物保护学报,1963,2(1):23-36.
    46.汪可宁,等.我国小麦条锈病防治研究的进展.中国农业科学,1988,21(2):1-8.
    47.汪可宁,等.1975-1984年我国小麦条锈菌生理专化研究.植物病理学报,1986,16(2):79-85.
    48.王长有,等.分子标记技术在小麦遗传育种中的应用现状.麦类作物学报,2000,20(4):75-80.
    49.王晨芳.小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究[博士学位论文].陕西:西北农林科技大学,2008.
    50.王殿波,小麦品种小偃6号抗条锈病基因的遗传分析及SSR标记[硕士学位论文].2004,陕西:西北农林科技大学.
    51.王冬梅.小麦条锈菌中国鉴别寄主尤皮II号抗条锈病基因的SSR标记与定位[硕士学位论文].北京:中国农业科学院,2012.
    52.王凤乐,等.我国小麦重要抗源材料抗条锈病基因推导及成株抗病性分析.植物病理学报,1994,24(2):175-180.
    53.王海.Chinese166抗条锈病基因Yr1分子标记建立及基因定位[硕士学位论文].哈尔滨:东北农业大学,2008.
    54.王建华.小麦条锈菌鉴别寄主和抗条锈病近等基因系抗性遗传与分子标记[硕士学位论文].武汉:华中农业大学,2007.
    55.王丽娟.小麦抗条锈病基因YrSp的分子标记研究[硕士学位论文].北京:中国农业科学院,2005.
    56.王瑞义,中国小麦条锈菌鉴别寄主尤皮II、阿夫抗条锈病基因定位及分子标记[硕士学位论文].北京:中国农业科学院,2004.
    57.王悦冰,等.小麦条锈菌国际鉴别寄主Vilmorin23的抗条锈病基因YrV23微卫星标记.遗传,2006,28(3):306-310.
    58.翁东旭,等.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报,2005,32:937-941.
    59.吴自明.水稻基因的图位克隆技术.安徽农业科学,2008,36(34):14905-14906.
    60.辛碧芬.谷类作物基因组的共线性.上饶师范学院学报.2006,26(3):98-105.
    61.徐阿炳,等.连锁的两个基因间最大重组值不会超过50%的证明.生物学通报,1991,(5):15-16.
    62.徐世昌,等.以Taichung29为背景的小麦抗条锈病近等基因系转育进展.植物保护,2004,2:19-22.
    63.严引娣.三个中国小麦条锈菌鉴别寄主的抗条锈性遗传研究[学位论文].陕西:西北农林科技大学,2008.
    64.严引娣,等.中国小麦条锈菌鉴别寄主水源11的抗条锈病基因分析及其SSR标记.植物保护学报,2009,36(3):285-286.
    65.杨华安,等.中国小麦条锈菌鉴别寄主抗条锈病基因初步分析.植物保护学报,1990,17(1):67-72.
    66.杨敏娜,等.普通小麦-柔软滨麦草异位系抗条锈病基因的遗传分析和微卫星标记.西北农林科技大学学报,2008,36(4):188-192.
    67.杨雪,等.小麦农家品种红麦(苏1661)中一个主效抗条锈病基因的微卫星标记定位.植物遗传资源学报.2008,9(2):131-137.
    68.杨卫路.世界小麦生产与贸易.中国粮食经济,2000(5):13-15.
    69.姚强,等.春小麦品种青春39的抗条锈性遗传分析.麦类作物学报,2013,34(1):38-41.
    70.姚占军,等.小麦条锈鉴别寄主Lee中抗性基因Yr7的微卫星标记.中国农业科学,2006,39(4):1146-1152.
    71.殷学贵.小麦抗条锈新基因YrTp1和YrTp2的发现和分子标记定位[博士学位论文].甘肃:甘肃农业大学,2005.
    72.殷贵鸿.小麦抗条锈病和白粉病基因的分子标记[博士学位论文].陕西:西北农林科技大学,2009.
    73. Zadoks J.C.,部分的过去.(杨作民,曾士迈).北京:中国农业大学出版社,1997,9-18.
    74.张超,等.偏凸山羊草的抗条锈病新基因YrG775的AFLP标记.西北农林科技大学学报,2005,z1(33):268.
    75.张敬原,等.重要抗源京核8811品系抗小麦条锈病主效基因的单体分析.作物学报,2001,27(3):273-277.
    76.张增艳,等.小麦新种质YW243抗条锈病新基因的AFLP标记.中国农学通报,2005,21(12):56-59.
    77.赵环环.小麦慢锈性抗性及抗白粉病基因分子标记定位研究[博士学位论文].北京:中国农业大学,2004.
    78.赵文生.三个中国小麦条锈菌鉴别寄主抗性遗传基础研究[硕士学位论文].北京:中国农业科学院,2000.
    79.赵文生,等.中国小麦条锈菌鉴别寄主维尔抗条锈性遗传分析.植物保护学报,2005,32(4):348-352.
    80.赵文生,等.小麦抗条锈菌鉴别寄主尤皮II号抗条锈性遗传分析.植物保护学报,2004,31(2):127-133.
    81.钟鸣,等.小麦品种Triticum spelta album中抗条锈病基因Yr5的RAPD标记.遗传学报,2002,29(8):719-722.
    82.周祥椿,等.小麦条锈病抗原材料筛选和抗条锈病基因库组建研究.麦类作物学报,2005,25(1):6-12.
    83.周延清. DNA分子标记技术在植物研究中的应用.北京,化学工业出版社,2005,5-5.
    84.周艳丽.小麦条锈菌中国鉴别寄主维尔抗条锈病基因YrVir1的分子标记及定位[硕士学位论文].北京:中国农业科学院,2007.
    85.周艳丽,等.小麦条锈菌中国鉴别寄主维尔中抗条锈病基因YrVir1的微卫星标记.中国农业科学,2008,41(4):1023-1029.
    86.庄巧生.中国小麦品种改良及系谱分析.北京,中国农业出版社,2003.
    87.朱桂清,等.小麦抗秆锈病基因推导的计算机应用程序及应用.沈阳农业大学学报,1998,29(3):205-209.
    88. Admas M. D., et al.Complementary DNA sequencing: expressed sequence tags and human genomeproject. Science1991,252(5031):1651-1656.
    89. Ahn S., et al.Comparative linkage map of the rice and maize genomes. Proceedings of the NationalAcademy Sciences USA1993,90:7980-7984.
    90. Allan R.E..Stripe rust resistance of Suwon92and its relationship to several morhphologicalcharacteristics in wheat. Plant Disease Reporter1961,45:778-779.
    91. Antrique,et al.RFLP mapping of genes associated with differ agronomic traits and diseaseresistance in wheat.Abstract of Internation Plant Genome Ⅲ1995,17:316-319.
    92. Bariana H., et al.New sources of resistance to rust diseases in wheat.Wheat breeding assembly2013,30.
    93. Bariana H.S., et al.Cytogenetic studies in wheat XIV.Location of rust resistance genes in VPM1and their genetic linkage with other disease resistance genes in chromosome2A.Genome1993,36:476-482.
    94. Bariana H.S., et al.Identification and characterization of stripe rust resistance gene Yr34incommon wheat.Theoretical and Applied Genetics2006,112:1143-1148.
    95. Bansal U. K., et al.Characterisation of a new stripe rust resistance gene Yr47and geneticassociation with the leaf rust resistance gene Lr52. Theoretical and Applied Genetics2011,122:1461-1466.
    96. Basnet B.R., et al.Characterization of Yr54and other genes associated with adult plant resistance toyellow rust and leaf rust in common wheat Quaiu3.Molecular breeding2014,33:385-399.
    97. Barret A..The cystatins:a new class of peptidase inhibitors.Trends in Biochemical Sciences1987,12:193-197.
    98. Bassam B. J., et al.Fast and sensitive silver staining of DNA in polyacrylamide gels. AnalyticalBiochemistry1991,196:80-83.
    99. Biffen R.H.. Mendel’s law of inheritance and wheat breeding.Agricultural Science1905,1:4-8.
    100. Bormer A., et al.The detection and molecular mapping of a major gene for non specific adult plantdisease resistance against stripe rust (Puccinia striiformis) in wheat. Theoretical and AppliedGenetics2000,100:1095-1099.
    101. Botstein D., et al.Construction of genetic linkage map in man using restriction fragment lengthpolymorphism.American Journal of Human Genetics1980,32:314-331.
    102. Bossolini E., et al.Comparison of orthologous loci from small grass genomes Brachypodium andrice: implications for wheat genomics and grass genome annotation.Plant Journal2007,49:704-717.
    103. Boudet A. M., et al.DNA sequences coding f or a cinnamoyl COA reductase, and applicationsthereof in the control o f lignin contents in plants. US6211432B1. USA:20010403.
    104. Brad D., et al.Battling immune kinases in plants. Cell Host Microbe2010,22:7(4):259-261.
    105. Braun C.J., et al.Mutations in the maize mitoehondrial T-urfl3gene eliminate sensitivity to a fungalpathotoxin. Proceedings of the National Academy Sciences USA1989,86:4435-4439.
    106. Büschges R., et al.The barley Mlo gene:a novel control element of plant pathogen resistance.Cell1997,88:695-670.
    107. Caldwell R.M..Breeding for general and/or specific plant disease resistance. In: K.W.Findlay andK.W.Shepherd(eds). In: Porceedings of the3rd International Wheat Genetics Symposium.Australian Academy of Science Canberra,Australia.1968,263-272.
    108. Calonnec A., et al.Chromosomal location of genes for resistance to Puccinia Striiformis in thewheat line TP1295selected from the cross of Soisson-Desprez with Lemhi,European Journal ofPlant Pathology1998,104:835-847.
    109. Cantu D., et al. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f.sp. Tritici reveal polymorphic and haustorial expressed secreted proteins as candidateeffectors.BMC Genimics2013,14:270-288.
    110. Carleton M. A..A serious new wheat rust in this country.Science1915,42:58-59.
    111. Cheng P., et al.Molecular mapping of a gene for stripe rust resistance in spring wheat cultivarsIDO377s. Theoretical and Applied Genetics2010,121:195-204.
    112. Chen Q., et al.Expression of resistance to stripe rust,powdery mildew and the wheat curl mite inTriticum aestivum×Haynaldia villosa lines.Canadian Journal of Plant Science2002,82(2):451-456.
    113. Chen W., et al.Mapping translocation breakpoints by next-generation sequencing. GenomeResearch2008,18(7):1143-1149.
    114. Chen X.M., et al.Chromosomal location of genes for resistance to Puccinia striiformis in winterwheat cultivars Druchamp,Stephens and Yamhill. Phytopathology1994,84:1116.
    115. Chen X.M., et al.Chromosomal location of genes for stripe rust resistance in spring wheat cultivarsCompair, Fielder,Lee and Lemhi and interactions of aneuploid wheats with races of Pucciniastriiformis. Phytopathology1995c,85:375-381.
    116. Chen X.M., et al.Chromosomal location of genes for resistance to Puccinia striiformis in sevenwheat cultivars with resistance genes at the Yr3and Yr4loci.Phytopathology1996,86:1228-1233.
    117. Chen X.M., et al.Gene action in wheat cultivars for durable,high-temperature, adult-plantresistance and interaction with race-specific, seedling resistance to Puccina striiformis,Phytopathology1995b,85:567-572.
    118. Chen X.M., et al.Chromosomal location of genes for resistance to Puccinia striiformis in winterwheat cultivars Heines VII,Clement, Moro,Tyee,Tres and Daws.Phytopathology1995c,85:1362-1367.
    119. Chicaiza O., et al.Registration of five wheat isogenic lines for leaf rust and stripe rust resistancegenes.Crop Science2006,46:485-487.
    120. Costa V., et al.Uncovering the complexity of transcriptomes with RNA-Seq. Journal ofBiomedicine and Biotechnology2010,2010:1-19.
    121. Crawford J.E., et al. De novo transcriptome sequencing in Anopheles funestus usingIllumina RNA-seq technology. PLoS one2010,5(12): e14202.
    122. Dalloul R.A., et al.Multi-platform next-generation sequencing of the domestic turkey (Meleagrisgallopavo): genome assembly and analysis. PLοS Biology2010,8(9): e1000475.
    123. Devos K.M., et al.Comparative genetics in the grass.Plant Molecular Biology1997,35:3-15.
    124. Devos K.M., et al.Comparative RFLP maps of the homoeologous group-2chromosomes of wheat,rye and barley. Theoretical and Applied Genetics1993,85:784-792.
    125. Draper J., et al.Brachypodium distachyon. A new model system for functional genomics in grasses.Plant Physiology2001,127:1539-1555.
    126. Dunford R.P., et al.Conservation of fine-scale DNA marker order in the genomes of rice and theTriticeae.Nucleic Acids Research1995,23(14):2724-2728.
    127. Endo T.R..Complete identification of wheat chromosomes by means of the C-bangdingtechnique.The Japanese Journal of Genetics1986,61(1):89-93.
    128. Eriksen L., et al.Yr32for resistance to stripe rust present in the wheat cultivar CarstensV.Theoretical and Applied Genetics2004,108:567-575.
    129. FahimaT., et al.Identification of molecular makers linked to the Yr15stripe rust resistance gene ofwheat introgressed from wild emmer wheat,Triticum dicoccoides.Plant and Animal Genome V1997,93:12-16.
    130. Fang Z.T..Physiological specialization of Puccinia glumarum Erilss and Henn in China.Phytopathology1944,34:1020-1024.
    131. Flor H.H..Host parasite interaction in flax rust:its genetics and implication. Phytopathology1954,45:680-685.
    132. Friebe B., et al.Characterization of rust-resistant wheat-Agropyron intermedium derivatives byC-banding, in situ hybridization and isozyme analysis. Theoretical and Applied Genetics1992,83:775-782.
    133. Foote T.N., et al.Construction and analysis of a BAC library in the grass Brachypodiumsylvaticum:its use as a tool to bridge the gap between rice and wheat in elucidating gene content.Functional and Integrative Genomics2004,4:26-33.
    134. Fullwood M.J., et al.Next-genernation DNA sequencing of paired-end tags (PET) for transcriptomeand genome analyses. Genome Research2009,19(4):521-532.
    135. Gale M.D., et al.Comparative genetics in the grass. Proceedings of the National Academy SciencesUSA1998,95:1971-1974.
    136. Galiba G., et al.Localization of QTLs and candidate genes involved in the regulation of frostresistance in cereals. In:Tuberosa R.,Phillips R.L.,Gale M.D (eds). Proceedings of theInternational Congress:In the Wake of the Double Helix: From the Green Revolution to the GeneRevolution,Bologna, Italy,2005Avenue Media Bologna, Italy,2005,253-266.
    137. Gassner G., et al.über mutationen in einer biologischen Rasse von Puccinia glumarum tritici(Schmidt) Erikss. und Henn.Z.Indukt.Abstammungs-und Vererbungslehre1932,43:155-180.
    138. Gerechter-Amitai Z.K., et al.Yr15-a new gene for resistance to puccinia striiformis in Triticumdicoccoides sel.G-25.Euphytica1989,43:187-190.
    139. Gosal K.S.,Aspects of resistance to wheat stripe rust in Australia.PhD Thesis,The University ofSydney,2000.
    140. Gill B.S., et al.Giemsa C-bangding technique for cereal chromosome.Cerel ResearchCommunications1974,2:87-94.
    141. Grant M.R., et al.Structure of the Arabidopsis RPM1gene enabling dual specificity diseaseresistance. Science1995,269(5225):843-846.
    142. Hammond-Kosack K.E., et al.Resistance gene-dependent plant defense responses.Plant Cell1996,8:1773-1791.
    143. Harismendy O., et al.Evaluation of next generation sequencing platforms for populationtargeted sequencing studies. Genome Biology2009,10(3): R32.
    144. Herrera-Foessel S.A., et al.New slow-rusting leaf rust and stripe rust resistance genes Lr67andYr46in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics2011,122:239-249.
    145. Higgins V.J., et al.The gene-for-gene concept and beyond: interactions and signals. CanaianJournal of Plant Pathology1998,20:150-157.
    146. Humphrey H.B..Brief notes on plant desease.Plant Disease Reporter1941,25:337-338.
    147. Huang Q., et al.Genetic mapping of a putative Thinopyrum intermedium-derived stripe rustresistance gene on wheat chromosome1B. Theoretical and Applied Genetics2014,DOI10.1007/s00122-014-2261-7(on line).
    148. Huang S., et al.The genome of the cucumber, Cucumis sativus L. Nature Genetics2009,41:1275-1281.
    149. Huang W., et al. Eagle View: A genome assembly viewer for next-generationsequencing technologies. Genome Research2008,18(9):1538-1543.
    150. Jia J.Z., et al.Aegilops tauschii draft genome sequence reveals a gene repertoire for wheatadaptation.Nature2013,496:91-95.
    151. Joen I., et al.Gene tagging in rice: a high throughput system for functional genomics.Plant Science2001,161:211-219.
    152. Johnson R., et al.Genetics of resistance to yellow (stripe) rust of wheat in some differentialcultivars.Vortrage für Pflanzenzuchtung1992,24:227-229.
    153. Kim M.Y., et al.Whole-genome sequencing and intensive analysis of the undomesticated soybean(Glycine soja Sieb and Zucc.) genome. Proceedings of the National Academy of Sciences USA.2010,107:22032-22037.
    154. Kuraparthy V., et al.Characterization and mapping of cryptic alien introgression from Aegilopsgeniculata with new leaf rust and stripe rust resistance gene Lr57and Yr40in wheat.Theoreticaland Applied Genetics2007,114:1379-1389.
    155. Kurata N., et al.Conservation of genome structure between rice and wheat.Nature Biotechnology1994,12:276-278..
    156. Labrum K.E..The location of Yr2and Yr6genes conferring resistance to yellow rust.Proceedings ofthe5th European and Mediterranean Cereal Rusts Conference Bari. Italy,1980:41-45.
    157. Law C.C..The genetic control of day length response in T. spelta album.Plant Breeding Institute,Cambridge. Annual Report1976,108-109.
    158. Levene M. J., et al.Zero-mode waveguides for single-molecule analysis at high concentration.Science2003,299(5607):682-686.
    159. Lewellen R.T..Major and minor genes in wheat for resistance to Puccinia striiformis and theirresponses to temperature changes.Canadian Journal of Botany,1967,45:2155-2171.
    160. Li G.Q., et al.Molecular mapping of stripe rust resistance gene YrCH42in Chinese wheat cultivarChuanmai42and its allelism with Yr24and Yr26.Theoretical and Applied Genetics2006,112:1434-1440.
    161. Lin F., et al.Genetic and molecular mapping of genes for race-specific all-stage resistance andnon-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivarAlpowa.Theoretical and Applied Genetics2007,114:1277-1287.
    162. Ling H.Q., et al.Draft genome of the wheat A-genome progenitor Triticum urartu.Nature2013,496:87-90.
    163. Li Q., et al.Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome3D.Theoretical and Applied Genetics2011,122:189-197.
    164. Li R., et al.The sequence and de novo assembly of the giant panda genome. Nature2010,463:311-317.
    165. Li Z.F., et al.Molecular tagging of stripe rust resistance gene YrZH84in Chinese line Zhou8425B.Theoretical and Applied Genetics2006,112:1098-1103.
    166. Lincoln S., et al.Constructing genetic maps with Mapmaker/EXP3.0. Whitehead InstituteTechnical Report. Cambridge.1992.
    167. Liu J., et al.Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50maps onwheat chromosome arm4BL. Theoretical and Applied Genetics2013,126:265-274.
    168. Luo et al.Allelic analysis of stripe rust resistance gene on wheat chromosome2BS. Genome2008,51(11):922-927.
    169. Lupton F.C.H., et al.Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. and Henn.)in seven varieties of wheat. Transactions of the British Mycological Society1962,45:21-25.
    170. Ma D.F., et al.Genetic analysis and molecular mapping of a stripe rust resistance gene derivedfrom Psathynrostachys huashanica Keng in wheat line H9014-121-5-5-9.Molecular Breedig2003,32:365-372.
    171. Ma J.X., et al.Molecular mapping and detection of the yellow rust resistance gene Yr26in wheattransferred from Triticun turgidum L.using microsatellite markers.Euphytica2001,120:219-226.
    172. Macer R. C. F..Plant pathology in changing world. Transactions of the British Mycological Society1975,65(3):351-374.
    173. Marais F., et al.Transfer of leaf rust and stripe rust resistance genes Lr62and Yr42from Aegilopsneglecta Req.ex Bertol. to common wheat. Crop Science2009,9:871-879.
    174. Marais G.F., et al.Leaf rust and stripe rust resistance genes derived from Aegilop sharonensis.Euphytica2006,149:73-380.
    175. Marais G.F., et al.Leaf rust and stripe rust resistance genes Lr54and Yr37transferred to wheatfrom Aegilops kotschyi.Plant Breeding2005,124:538-541.
    176. Marais G.F., et al.Leaf and stripe rust resistance genes transferred to common wheat from Triticumdicoccoides. Euphytica2005,143:112-123.
    177. Markert C., et al.Multiple forms of enzymes:tissue,ontogenetic,and species specific patterns.Proceedings of the National Academy of Sciences of the USA.1959,45:753-763.
    178. Markell S. G., et al.Emergence of a novel population of Puccinia striiformis f. sp. tritici in easternUnited States. Phytopathology2008,98:632-639.
    179. Marioni J.C., et al.RNA-seq:an assessment of technical reproducibility and comparison with geneexpression arrays. Genome Resesarch2008,18(9):1509-1517.
    180. Mateos-Hernandez M., et al.Targeted mapping of ESTs linked to the adult plant resistance geneLr46in wheat using synteny with rice. Functional and Integrative Genomics2006,6:122-131.
    181. McDonald D., et al.Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27for resistance to stripe rust.Euphytica2004,2:1-10.
    182. McIntosh R.A., et al.Catalogue of gene symbols for wheat:2005supplement.Grain Genes Website,http://wheat.pw. usda.gov/ggpages/wgc/2005upd.html.
    183. McIntosh R. A., et al. Catalogue of gene symbols for wheat:2010supplement. Http://www. wheat.pw. usda.gov.
    184. McIntosh R.A., et al.Cytogenetical studies in wheat XVIII.Gene Yr24for resistance to stripe rust.Plant Breeding2000,119:81-83.
    185. McIntosh R.A., et al.Chapmen V..Cytogenetical studies in wheat XII.Lr28for resistance toPuccinia recondite and Sr34for resistance to P. graminis tritici, Zeitschrift für Pflanzenzuchtung1982,89:295-306.
    186. McIntosh R.A., et al.Cytogenetical studies in wheat XVII. Monosomic analysis and linkagerelationships of gene Yr15for resistance to stripe rust.Euphytica1996,89:395-399.
    187. McIntosh R.A., et al.CSIRO Australia.Wheat Rusts:An Altas of Resistance. Genes1995.
    188. McPherson J. D.. Next-generation gap. Nature Methods2009,6(4):2-5.
    189. Mettin D., et al.Studies on the nature and the possible origin of the spontaneously translocated1B-1R chromosome in wheat.Wheat Information Service1978,48:12-16.
    190. Metzger R.J., et al.Inheritance of resistance to stripe rust and its association with brown glumecolour in Tritucum aestivum L.PI178383.Crop Science1970,10:567-568.
    191. Michelmore R.W.,et al.Identification of markers linked to disease-resistance genes by bulkedsegregant analysis: a rapid method to detect markers in specific genomic regions by usingsegregation populations. Proceedings of the National Academy Sciences USA1991,88:9828-9832.
    192. Moore G., et al.Molecular analysis of small grain cereal genomes: current status and prospects.Nature Biotechnology1993,11:584-589.
    193. Mortazavi A., et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq.NatureMethods2008,5(7):621-628.
    194. Nelson J.C., et al.Molecular mapping of wheat. Homoeologous group2. Genome1995,38(3):516-524.
    195. Nelson J.C., et al.Molecular mapping of wheat. Homoeologous group2. Genome1995,38(3):525-533.
    196. Oono Y., et al.mRNA-seq reveals a comprehensive transcriptome profile of rice under phosphatestress.Rice2011,4:50-65.
    197. Paterson A.H..Making genetic maps.In:Paterson A.H.(ed.)Genome mapping in plants,SanDiego,California: Academic Press,Austin,Texas.1996, pp.23-39.
    198. Paux E., et al.A physical map of the1-gigabase bread wheat chromosome3B.Science2008,332(101):100-104.
    199. Peng J.H., et al.Microsatellite tagging of the stripe rust resistance gene YrH52derived from wildemmer wheat, Triticum dicoccoides, and suggestive negative crossover interference onchromosome1B. Theoretical and Applied Genetics1999,98:862-872.
    200. Pope W.K..Interaction of minor genes for resistance to stripe rust in wheat. In:Proceedings of the3rd International Wheat Genetics Symposium. Canberra1968,251-257.
    201. Qi L.L., et al.The compact Brachypodium genome conserves centromeric regions of a commonancestor with wheat and rice. Functional and Integrative Genomics2010,10:477-492.
    202. Randhawa M., et al.Molicular mapping of stripe rust resistance gene Yr51in chromosome4AL ofwheat. Theoretical and Applied Genetics2014,127:317-324.
    203. Ren R.S., et al.Characterization and molecular mapping of Yr52for high-temperature adult-plantresistance to stripe rust in spring wheat germplasm PI183527. Theoretical and Applied Genetics2012,125,847-857.
    204. Riley R., et al.Introduction of yellow rust resistance of Aegilops comosa into wheat by geneticallyinduced homoeologous recombination.Nature1968a,217:383-384.
    205. Riley R., et al.The incorporation of alien disease resistance in wheat by genetic interference withthe regulation of meiotic chromosome synapsis.Genetical Research, Cambridge1968b,12:199-219.
    206. Robert O., et al.Identification of molecular markers for the detection of the yellow rust resistancegene Yr17in wheat.Molecular Breeding1999,5(2):167-175.
    207. Robert J., et al.Automatable process for sequencing nucleotide. US patent, US4863849A,19890905.
    208. R der M.S., et al.A microsatellite map of wheat. Genetics1998,149:2007-2023.
    209. Rogers S. O., et al.Extraction of DNA from milligram amounts of fresh,herbarium and mummifiedplant tissues. Plant Molecular Biology1985,5:69-76.
    210. RuMales D., et al.Combination of mechanisms of resistance to rust fungi as a strategy to increasedurability; durum wheat improvement in the Mediterranium region, Proceeding, Zaragon,Spain.2000:333-340.
    211. Saal B., et al. Development of simple sequence repeat markers in rye (Secale cereal L.). Genome1999,42:964-972.
    212. Saavedra C., et al.Allozyme variation in European populations of the oyster Ostrea edulis. MarineBiology1993,115:85-95.
    213. Sakai H., et al.Massive gene losses in Asian cuotivated rice unveiled by comparative genomeanalysis.BMC Genomics2010,11:121-134.
    214. Sakai H., et al.Rice annotation project database (RAP-DB): an integrative and interactive databasefor rice genomics.Plant and Cell Physiology2013,54(2):1-11.
    215. Sanger F., et al.DNA sequencing with chain terminating inhibitors. Proceedings of the NationalAcademy Sciences USA.1977,74(12):5463-5467.
    216. Sears E.R..The aneuploids of common wheat. Missouri Agriculutral Experiment Station ReseacrhBulletin1954,572:59.
    217. Sharp E.L., et al.Additive genes in wheat conditioning resistance to stripe rust. Phytopathology1970,60:1146-1147.
    218. Shi Z. X., et al.Development of resistance gene analog polymorphism markers for the Yr9generesistance to wheat stripe rust. Genome2001,44:509-516.
    219. Singh R.P..Genetic association of leaf rust resistance gene Lr34with adult plant resistance to striperust in bread wheat.Phytopathology1992,82:835-838.
    220. Singh R.P..Indentification and mapping of the gene Yr31for resistancr to stripe rust in T.aestivumcultivar Parstor.In: Proceeding of the10th international wheat genetics symposium2003,411-413.
    221. Singh R.P., et al.Global monitoring of wheat rusts, and assessment of genetic diversity andvulnerability of popular cultivars.中国-CIMMYT小麦条锈病研讨会资料汇编,2002:38-40.
    222. Singh R.P., et al.Mapping Yr28and other genes for resistance to stripe rust in wheat. Crop Science2000,40:1148-1155.
    223. Smirnoff N..Ascorbic acid: metabolism and functions of a multi-facetted molecule.Current OpinionPlant Biology2000,(3):229-235.
    224. Smith P.H., et al.STS markers for the wheat yellow rust resistance gene Yr5suggest aNBS-LRR-type resistance gene cluster. Genome2007,50(3):259-265.
    225. Stakeman E. C.. The determination of biologic forms of puccunia graminis on Triticum spp.Technical Bulletin of the reactions patterns Minnesota Agricultural Experimental Station1922,8:l-10.
    226. Suenaga K., et al.Microsatellite markers for genes Lr34/Yr18and other quantitative trait loci forleaf rust and stripe rust resistance in bread wheat.Phytopathology2003,93:881-890.
    227. Sui X.X., et al.Molecular mapping of a stripe rust resistance gene in spring wheat cultivarZak.Genetics and resistance2009,99(10):1209-1215.
    228. Sybil A.. et al.New slow-rusting leaf rust and stripe rust resistance genes Lr67and Yr46in wheatare pleiotropic or closely linked. Theoretical and Applied Genetics2011,122:239-249.
    229. Sun G.L., et al.Identification of molecular markers linked to the Yr15stripe rust resistance gene ofwheat originated in wild emmer wheat, Triticum dicoccoides. Theoretical and Applied Genetics1997,95:622-628.
    230. Sun Q., et al.Microsatellite marker for yellow rust resistance gene Yr5in wheat introgressed fromspelt wheat. Plant Breeding2002,121:539-541.
    231. Sultan M.,S et al.A global view of gene activity and alternative splicing by deep sequencing of thehuman transeciptome. Science2008,321(5891):956-960.
    232. Tanka T., et al.The rice annotation project database (RAP-DB):2008update.Nucleic Acid Research2008,36: D1028-1033.
    233. The International Brachypodium Initiative. Genome sequencing and analysis of the model grassBrachypodium distachyon. Nature2010,463:763-768.
    234. The Nasonia Genome Working Group, Functional and evolutionary insights from the genomes ofthree parasitoid Nasonia species.Science2010,327:343-348.
    235. The Nasonia Genome Working Group,Genomic comparison of the ants Camponotus floridanus andHarpegnathos saltator. Science2010,329:1068-1071.
    236. The Potato Genome Sequencing Consortium, Genome sequence and analysis of the tuber croppotato. Nature2011,475:189-195.
    237. Uauy A., et al.High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36from Triticumturgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoreticaland Applied Genetics2005,112:97-105.
    238. Van Dijk P., et al.Characterization of the durable resistance to yellow rust in old winte wheatcultivars in the Netherlands. Euphytica1988,38:149-158.
    239. Van der plank J.E., Plant Disease: Epidemics and control. Academic Press New York and London1963:349.
    240. Varshney R., et al.Interspecific transferability and comparative mapping of barley EST-SSRmarkers in wheat, rye and rice. Plant Science2005,168:195-202.
    241. Velasco R., et al.The genome of the domesticated apple (Malus x domestica Borkh.). NatureGenetics2010,42:833-839.
    242. Vera J.C., et al.Rapid transcriptome characterization for a nonmodel organism using454prosequencing. Molecular Ecology2008,17(7):1636-1647.
    243. Wall P. K., et al.Comparison of next generation sequencing technologies for transcriptomecharacterization. BMC Genomics2009,10(1):347-365.
    244. Wang B.B., et al.Genomewide comparative analysis of alternative splicing in plants. Proceedingsof the National Academy Sciences USA2006,103(18):7175-7180.
    245. Wang L.F., et al.Molecular tagging of the yellow rust resistance gene Yr10in common wheat,P. I.178383(Triticum aestivum L.).Euphytica2002.,124:71-73.
    246. Wang Z., et al.RNA-Seq: a revolutionary tool for transcriptomics. Nature Review Genetics2009,10(1):57-63.
    247. Wellings C.R., et al.A new source of resistance to Puccinia striiformis f.sp.tritici in spring wheats(Triticum aestivum).Plant Breeding1988,100:88-96.
    248. Welsh J., et al.Finger printing genomes using PCR with arbitrary primers. Nucleic Acids Research1990,18(22):7213-7218.
    249. William H.M., et al.Molecular marker mapping of leaf rust resistance gene Lr46and its associationwith stripe rust resistance gene Yr29in wheat. Phytopathology2003,93:153-159.
    250. Williams J.G.R., et al.DNA polymorphism amplified by arbitrary primers as useful as geneticmarkers. Nucleic Acids Research1990,18(22):6531-6535.
    251. Winter J.C., et al.Molecular marker technologies for plant improvement.Word Journal ofMicrobiology and Biotechnology.1995,11:438-448.Smith J.S.C., Smith O.S., Fingerprinting CropVarieties.Advances in Agronomy1992,47:85-140.
    252. Worland A.J., et al.Genetic analysis of chromosome2D of wheat I.The location of genes affectionheight,day-length insensitivity,hybrid dwarfism and yellow-rust resistance. Zeitschrift fürPflanzenzuchtung1986,96:331-345.
    253. Xie C. J., et al.Chromosomal location of a Triticum dicoccoides-derived powdery mildewresistance gene in common wheat by using microsatellite markers. Theoretical andApplied Genetics2003,106:341-345.
    254. Xie C. J., et al.Identification of resistance gene analogue markers closely linked to wheat powderymildew resistance gene Pm31. Plant Breeding2004,123:198-200.
    255. Xu L.S., et al.Molecular mapping of Yr53,a new gene for stripe rust resistance in durum wheataccession PI480148and its transfer common wheat. Theoretical and Applied Genetics2013,126:523-533.
    256. Xu Z.Q., et al.Genetic analysis and molecular mapping of stripe rust resistance gene in wheat lineM8003-5.Acta Agronomica Sinica2010,36(12):2116-2123.
    257. Xu L.S., et al.Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheataccession PI480148and its transfer to common wheat. Theoretical and Applied Genetics2013,126:523-533.
    258. Xue F.,J et al.High-density mapping and marker development for the powdery mildew resistancegene PmAS846derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theoreticaland Applied Genetics2012,124:1549-1560.
    259. Yamamoto K., et al.Large-scale EST sequencing in rice.Plant Molecular Biology1997,35:114.
    260. Yan G. P., et al.Resistance gene-analog polymorphism markers co-segregating with the Yr5genefor resistance to wheat stripe rust. Theoretical and Applied Genetics2003,106:636-643.
    261. Yang Y., et al.Construction of a genetic linkage map of a bacterial blight resistance.ActaAgriculturae Zhejiangensis2012,24(5):846-852.
    262. Zabeau M., et al.Selective restriction fragment amplification:a general method for DNAfingerprinting. European Patent Application number924026297; Publication number034858A1,19930331.
    263. Zahravi M..Bulk segregation analysis of stripe rust resistance gene Yr33in wheat (T. aestivum)using microsatellite markers.In: Proceeding of the10th international wheat genetics symposium,Italia2003:861-863.
    264. Zeller F.J..1B-1R wheat-rye chromosome substitutions and translocations. In: Proceedings of the4th International Wheat Genetics Symposium, Columbia, USA,(Sears ER&Sears LMS eds.).1973,209-221.
    265. Zhang X.J., et al.Fine Mapping of Wheat Stripe Rust Resistance Gene Yr26Based on Collinearityof Wheat with Brachypodium distachyon and Rice.PLoS2013,8(3):1-9.
    266. Zhang Y., et al.Offspring-parent discrimination method for Chinese Hesitan milk low and itsspecial-use primer and reagent box.CN101024857A.USA.20020829.
    267. Zheng W.M., et al.High genome heterozygosity and endemic genetic recombination in the wheatstripe rust fungus.Nature communications2014,1-11.
    268. Zhou X.L., et al.Identification of Yr59conferring high-temperature adult-plant resistance to striperust in wheat germplasm PI178759. Theoretical and Applied Genetics2014,DOI10.1007/s00122-014-2269-z(on line).
    269. Zhu Q., et al.Transcriptional activation of plant defense genes.Transcriptional activation of plantdefense genes.Current Opinion in Genetics and Development1996,6:625-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700