用户名: 密码: 验证码:
内源茉莉酸(JA)在水稻颖花开放中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻颖花开放是一高度协调的发育过程,包括内外稃的张开、花丝伸长和花药开裂,受到遗传因素和环境因素(天气和人工处理等)的影响。颖花开放调控机制的研究有助于解决水稻开花期高温引起的颖花不育以及杂交水稻制种中经常出现的父母本花时不遇的问题。已知外源施用茉莉酸甲酯(MeJA)或茉莉酸(JA)强烈诱导水稻、小麦、高粱和黑麦草等多种禾本科植物颖花的开放,但是内源JA是否参与水稻颖花开放的调控目前还不清楚。为揭示内源JA在水稻颖花开放中的作用,本研究应用液相色谱-串联质谱系统(HPLC-MS/MS)和实时定量RT-PCR技术(Real-time RT-PCR),检测了粳稻武运粳7号和籼稻明恢63颖花开放前后JA水平及其相关基因表达的变化,并通过水稻转基因方法,探讨了JA生物合成基因OsAOs1和OsOPR7的超量表达或RNAi抑制表达对水稻颖花开放的影响。主要研究结果如下:
     (1)水稻成熟颖花JA水平在上午开颖前较平稳,开颖时急剧上升至峰值,闭颖后随即下降。颖花开放时的JA水平比开放前1h提高了4~5倍。
     (2)颖花开放过程中JA水平的变化进一步得到了分子基础的支持,JA生物合成途径关键催化酶的编码基因OsDAD1-3、OsLOX-RCI1、OsAOS1、OssAOC和OsOPR7的表达在开颖时会有不同程度的上调,闭颖后又下调。
     (3)在阴雨天不开花的条件下,成熟颖花当天JA水平及其合成基因的表达较平稳,不会有峰的出现。
     (4)同一稻穗上正在开放的颖花JA水平及其合成基因的表达也比已开花和未开花的颖花高。
     (5)通过检测开花前后颖花内各器官JA生物合成基因的表达变化,发现颖花开放过程中大幅增加的JA主要来源于雄蕊和浆片的合成。
     (6)JA信号转导途径相关基因OsJAR1、OsCOI1的表达水平在颖花开放过程不随JA生物合成的增加而上升,推测颖花开放过程中JA信号的调控位点不发生在JA信号转导途径上。
     (7)使用农杆菌介导的转化方法,获得了JA生物合成基因OsAOS1超量表达(AOS1OE)和RNAi抑制表达(AOS1Ri)转基因植株、以及OsOPR7超量表达(OPR70E)和RNAi抑制表达(OPR7Ri)转基因植株。经表达量检测证实,AOS1OE、OPR70E植株叶片和颖花器官中oSAOS1、OsOPR7的表达水平显著提高,AOS1Ri、OPR7Ri植株叶片和颖花器官中OsAOS1、OSOPR7的表达水平大幅下降。
     (8)田间条件下AOS1OE、AOS1Ri、OPR7OE、OPR7Ri植株的颖花器官发育正常,颖花开放时间与野生型对照没有差异,它们的开花高峰时间都在上午11:50左右。
     (9)AOS1OE和OPR7OE两个超表达株系的颖花JA水平在开颖前和开颖时都与野生型相比无差异。AOS1Ri和OPR7Ri两个抑制表达株系的颖花JA水平在开颖前与野生型相比也无差异,虽然开颖时不及野生型的50%,但比自身开颖前已有显著增加。结果表明,超量表达OsAOS1和OsOPR7没有增加植株体内基础JA水平,RNAi抑制OsAOS1和OsOPR7的表达也只是部分阻碍了植株体内JA的生物合成,没有达到有效调控植株体内JA水平的目的,这也就合理解释了转基因植株颖花开放时间为什么与野生型无差异。
     本研究首次揭示水稻成熟颖花JA水平及其生物合成相关基因表达的变化与颖花开放过程相关,从而为内源JA参与水稻颖花开放的调控提供了有力的证据。
Floret opening of rice which includes opening of palea and lemma, filament elongation and anther dehiscence is a highly organized developmental process, and is controlled by genetic factors and environmental factors (weather conditions and artificial treatments). The regulation of floret opening can contribute to avoid high temperature-induced floret sterility at anthesis, and obtain the synchronization of anthesis between some cytoplasmic male sterile lines and restorer lines in hybrid seed production. It was well documented that exogenously applied jasmonic acid (JA) and methyl jasmonate (MeJA) significantly induce floret opening of rice and other gramineous plants such as wheat, sorghum and ryegrass. However, whether the endogenous JA is involved in the regulation of rice floret opening has remained unclear. To elucidate the role of endogenous JA in rice floret opening, we measured JA levels with HPLC-electrospray ionization tandem mass spectrometry system (HPLC-MS/MS), and analyzed the expression of JA pathway related genes with real-time reverse transcription-PCR (Real-time RT-PCR) in florets of Wuyunjing7(japonica cultivar) and Minghui63(indica cultivar) during natural anthesis. Four transgenic rice lines with overexpression or RNAi-suppression of JA biosynthetic genes OsAOSl or OsOPR7were also generated and analyzed. The main results are as follows:
     (1) JA levels in mature florets kept relatively constant before floret opening in the morning, and rapidly reached a peak during floret opening, and then followed a sharp decrease after the floret closing. The peak level of JA in opening florets was4-5times higher than that in florets1h before anthesis.
     (2) The changes of JA levels in rice florets during anthesis were supported by our molecular findings. The expression of OsDADl-3, OsLOX-RCIl, OsAOSl, OsAOC and OsOPR7that encode key enzymes in JA biosynthetic pathway was up-regulated to some extent during floret opening, and was down-regulated after floret closing.
     (3) The levels of JA and expression of JA biosynthetic genes in unopened mature florets under the condition of overcast did not show obvious changes in the daytime and didn't appear a peak.
     (4) The levels of JA and transcripts of JA biosynthetic genes were higher in opening florets than in closed or unopened florets at the same panicle.
     (5) The expression of JA related biosynthesis genes was also detected in floret organs before and after anthesis. The results showed that the significantly accumulated JA in opening florets was mainly originated from JA made in stamens and lodicules.
     (6) The expression levels of OsJARland OsCOI1involved in JA signal transduction pathway kept rather constant during floret opening, suggesting that JA signal transduction pathway may not be a controlling site for JA pathway during floret opening.
     (7) Using the Agrobacterium-mediated rice transformation, we generated four transgenic rice lines, including OsAOS1over-expressed line (AOS1OE), OsAOS1RNAi-suppressed line (AOS1Ri), OsOPR7over-expressed line (OPR7OE) and OsOPR7RNAi-suppressed line (OPR7Ri). mRNA expression level analysis confirmed that OsAOSl transcripts in leaves and florets of AOS1OE lines and OsOPR7transcripts in OPR7OE lines significantly increased, and that OsAOS1transcripts in leaves and florets of AOS1Ri lines and OsOPR7transcripts in OPR7Ri lines significantly reduced.
     (8) No obvious difference of spikelet development and floret opening time between the four transgenic lines (AOS1OE, AOS1Ri, OPR7OE and OPR7Ri) and wild-type line was observed in the field condition. The peak time of floret opening in these transgenic and wild-type lines was about at11:50in the morning.
     (9) The JA levels in florets of two over-expressed transgenic lines (AOS1OE and OPR7OE) had no significant difference with those of wild-type lines before floret opening and at the time of floret opening. The JA levels in florets of two RNAi-suppressed transgenic lines (AOSIRi and OPR7Ri) were in the same ranges as those of wild-type line before floret opening, and were below half of wild-type line at the time of floret opening. However, the JA levels in RNAi florets at the time of floret opening were significantly increased than that before floret opening. These results indicated that overexpression of OsAOS1and OsOPR7did not change the basal JA level of transgenic plants, and RNAi suppression of OsAOS1and OsOPR7just partially inhibited JA biosynthesis in transgenic plants. This provided a reasonable explanation for that no obvious alteration of floret opening time was observed in the four different transgenic lines in the field condition.
     Our study first reported that the changes of JA levels and expression of JA biosynthetic genes in mature florets were associated with process of floret opening, and this strongly indicated that endogenous JA is involved in the regulation of floret opening in rice.
引文
[1]宾金华,黄胜琴,何树春,贺立红,潘瑞炽.茉莉酸甲酯对水稻种子萌发和贮藏物质降解的影响.植物学报,2001,43(6):578-585
    [2]邓平,朱国旗,张玉烛,邓启云.闭花受精水稻的生物学特性观察.作物研究,2000(1):1-3
    [3]丁颖.中国水稻栽培学.北京:农业出版社,1961.44-48,88-89
    [4]甘立军,夏凯,周燮.小麦颖花开放过程中花器不同部位茉莉酸类的动态变化.南京农业大学学报,2005,28(2):26-29
    [5]甘立军,曾晓春,夏凯,周燮.茉莉酸甲酯与水杨酸在诱导黑麦草颖花开放中的拮抗效应.植物生理学通讯,2001,37(1):9-11
    [6]高夕全,曾晓春,王树才,林平,周燮.茉莉酸甲酯与水杨酸在诱导高粱和苏丹草颖花开放中的效应.中国农学通报,2000,16(3):7-9
    [7]黄友明,曾晓春.茉莉酸相关化合物对水稻颖花开放的诱导效应.湖北农业科学,2008,47(10):34-36
    [8]侯杰夫.杂交水稻制种抽穗扬花期天气对异交结实率的影响.杂交水稻,2001,16(4):21-22
    [9]李会霞,王玉文,田岗,史琴香.茉莉酸甲酯对谷子颖花开放的诱导效应.中国农学通报,2006,22(7):298-301
    [10]林俊城,田小海,殷桂香,汤吉洪,杨志刚.人工调节籼型杂交水稻不育系花时的研究.中国农业科学,2008,41(8):2474-2479
    [11]林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28(3):294-300
    [12]刘世家,夏凯,曾晓春,周燮.茉莉酸甲酯对小麦颖花开放的诱导效应及其水杨酸的抑制.作物学报,2001,27(1):123-126
    [13]罗大刚,张淑萍.阔叶野生稻黎明开花特性的转育和栽培稻早晨开花系的研究.云南农业大学学报,2006,21(2):154-159
    [14]马科锋,周通,何永明,曾晓春,方加海,吴晓玉.茉莉酸甲酯对玉米颖花开放的影响.江西农业大学学报,2008,30(6):1028-1030
    [15]宋平,夏凯,吴传万,包冬萍,陈丽莉,周燮,曹显祖.雄性不育和可育水稻开颖对茉莉酸甲酯响应的差异.植物学报,2001,43(5):480-485
    [16]孙义伟,刘宜柏,曹俊德.水稻花时遗传改造的初步探讨.杂交水稻,1990(5):43-44
    [17]田小海,松井勤,李守华,林俊城.水稻花期高温胁迫研究进展与展望.应用生态学报,2007,18(11):2632-2636.
    [18]王建军,申宗坦,石守鋆.籼粳稻开花习性与遗传.杂交水稻,1991(5):39-42
    [19]王荣栋,尹经章.作物栽培学(农学类专业用),北京:高等教育出版社,2005.110
    [20]王文明,周开达,文宏灿,袁国良.水稻花时的质核效应分析.四川农业大学学报,1995,13(4):461-464
    [21]王忠,顾蕴洁,高煜珠.水稻开颖机理的探讨V.水稻不育系与可育系浆片和花丝结构的比 较.作物学报,1994,20(1):13-17
    [22]王忠,顾蕴洁,高煜珠.CO2诱导水稻开花技术的应用.植物生理学通讯,1993,29(4):282-287
    [23]干忠,顾蕴洁,高煜珠.水稻开颖机理的探讨Ⅳ.水稻小穗轴的结构及其与开闭颖的关系.作物学报,1992,18(5):331-335
    [24]王忠,顾蕴洁,高煜珠.水稻开颖机理的探讨Ⅲ.浆片的结构及其在开颖过程中内含物的变化.作物学报,1991,17(2):96-101
    [25]王忠,顾蕴洁,高煜珠.水稻开颖机理的探讨Ⅱ.CO2对水稻开颖的效应.作物学报,1989,15(1):59-66
    [26]王忠,卢从明,顾蕴洁,高煜珠.水稻开颖机理的探讨Ⅰ.温度对水稻开颖及花粉生活力的影响.作物学报,1988,14(1):14-21
    [27]闫芝芬,周燮,马春红,崔四平,魏建昆.冠毒素和茉莉酸甲酯对诱导小麦、黑麦和高羊茅草颖花开放的效应.中国农业科学,2001,34(3):334-337
    [28]严文贵,李实蕡.几个水稻同核异质不育系的异交习性研究.杂交水稻,1987(4):8-11
    [29]杨文钰,屠乃美.作物栽培学各论(南方本),北京:中国农业出版社,2003.17
    [30]袁隆平.杂交水稻学.北京:中国农业出版社,2002.246-279.
    [31]曾晓春,周燮,吴晓玉.水稻颖花开放机理研究进展.中国农业科学,2004,37(2):188-195
    [32]曾晓春,周燮.茉莉酸类对稻高粱和果园草颖花开放的诱导效应//张玉台主编:技术跨越与高新技术产业发展.北京,中国科学技术出版社,2001.79-80
    [33]曾晓春,周燮.茉莉酸甲酯诱导水稻颖花开放.植物学报,1999,41(5):560-562
    [34]张旺,曾晓春,周燮,沈惠源,吴天锡.茉莉酸甲酯在杂交粳稻制种中的应用研究,杂交水稻,2000,15(3):15-16
    [35]张玉烛,张桂和,朱国奇,邓启云,詹庆才.阴雨对早稻开花及受精结实的影响.中国水稻科学,1995,9(3):173-178
    [36]周善滋.雄性能育和雄性不育水稻花药组织结构及其开裂内在因素的细胞形态学观察.遗传学报,1978,5(2):125-131
    [37]Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. tasselseedl is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science,2009,323:262-265
    [38]Agrawal G. K, Tamogami S, Han O, Iwahashi H, Rakwal R. Rice octadecanoid pathway. Biochemical and Biophysical Research Communications,2004,317:1-15
    [39]Albechtova J T P, Ullmann J. Methyl jasmonate inhibits growth and flowering in Chenopodium rubrum. Biologia Plantarum,1994,36:317-319
    [40]Avanci N C, Luche D D, Goldman G H, Goldman, M H S. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research, 2010,9:484-505
    [41]Barendse G W M, Croes A F, van den Ende G, Bosveld M, Creemers T. Role of hormones on flower bud formation in thinlayer explants of tobacco. Biologia Plantarum (Praha),1985,27: 408-412
    [42]Biswas K K, Neumann R., Haga K, Yatoh O, lino M. Photomorphogenesis of rice seedlings:a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant and Cell Physiology,2003,44:242-254
    [43]Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone. Annual Review of Plant Biology,2009,60:183-205
    [44]Caldelari D, Wang G, Farmer E E, Dong X. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Molecular Biology,2011,75:25-33
    [45]Castillo M C, Leon J. Expression o f the beta-oxidati on gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany,2008,59:2171-2179
    [46]Chehab E W, Perea J V, Gopalan B, Theg S, Dehesh K. Oxylipin pathway in rice and Arabidopsis. Journal of Integrative Plant Biology,2007,49:43-51
    [47]Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development,2006,20:1250-1255
    [48]Creelman R A, Mullet J E. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:355-381
    [49]Creelman R A, Mullet J E. Jasmonic acid distribution and action in plants:Regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences of the USA,1995,92:4114-4119
    [50]Dathe W, Ronsch H, Preiss A, Schade W, Sembdner G, Schreiber K. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta,1981, 153:530-535
    [51]Davies P J. Plant hormones:biosynthesis, signal transduction, action! 3rd ed. The Netherlands: Kluwer Academic Publishers,2004.610-634
    [52]Ding X H, Cao Y H, Huang L L, Zhao J, Xu C G, Li X H Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. The Plant Cell,2008,20:228-240
    [53]Ellis C, Karafyllidis I, Wasternack C, Turner J G. The Arabidopsis mutant cevl links cell wall signaling to jasmonate and ethylene responses. The Plant Cell,2002,14:1557-1566
    [54]Falkenstein E, Groth B, Mithofer A, Weiler E W. Methyljasmonate and a-linolenic acid are potent inducers of tendril coiling. Planta,1991,185:316-322
    [55]Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology,2009,5:344-350
    [56]Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini G, et al. The lack of a systematic validation of reference genes:A serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal,2008,6:609-618
    [57]Haga K, lino M. Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant and Cell Physiology,2004,45:119-128
    [58]Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L, Pena-Cortes H. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. The Plant Cell,1995,7:1645-1654
    [59]He Y, Fukushige H, Hildebrand D F, Gan S. Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology,2002,128:876-884
    [60]Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology,8:R19
    [61]Heslop-Harrison J S, Heslop-Harrison Y, Reger B J. Anther filament extension in Lilium:potassium ion movement and some anatomical features. Annals of Botany,1987,59:505-515
    [62]Heslop-Harrison Y, Heslop-Harrison J S. Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Annals of Botany,1996,77:573-582
    [63]Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim R A, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant and Cell Physiology,2008,49:1429-1450
    .[64] Imaki T, Tokunaga S, Obara N. High temperature sterility of rice spikelets at flowering in relation to fl owering time. Japanese Journal of Crop Science,1987,56(Extra issue 2):209-210
    [65]Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. The DEFECTIVE IN ANTHER DEHISCENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. The Plant Cell,2001,13,2191-2209
    [66]Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh Y A, Yoshinaga S, Ando I, Ogawa T, Motohiko K. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany,2010,106: 515-520
    [67]Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany,2007,58:1627-1635
    [68]Jain M, Nijhawan A, Tyagi A K, Khurana J P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications,2006,345:646-651
    [69]Kienow L, Schneider K, Bartsch M, Stuible H P, Weng H, Miersch O, Wasternack C, Kombrink E. Jasmonates meet fatty acids:functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. Journal of Experimental Botany,2008,59:403-419
    [70]Kobayasi K, Matsui T, Yoshimoto M, Hasegawa T. Effects of temperature, solar radiation, and vapor-pressure deficit on flower opening time in rice. Plant Production Science,2010a,13(1): 21-28
    [71]Kobayasi K, Atsuta Y. Sterility and poor pollination due to early flower opening induced by methyl jasmonate. Plant Production Science,2010b,13(1):29-36
    [72]Kobayasi K, Masui H, Atsuta Y, Matsui T, Yoshimoto M and Hasegawa T. Flower Opening Time in rice-Cultivar Difference and Effect of Weather Factors-. Proceedings of MARCO symposium 2009-Challenges for agro-environmental research in monsoon Asia. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.2009, W2-12:1-7
    [73]Krajncic B, Kristl J, Janzekovic I. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiology and Biochemistry,2006,44752-758
    [74]Krajni B, Nemec J. The effect of jasmonic acid on flowering in Spirodela polyrrhiza (L.) Schleiden. Journal of Plant Physiology,1995,146:754-756
    [75]Laudert D, Schaller F, Weiler E W. Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta,2000,211:163-165
    [76]Laudert D, Weiler E W. Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signaling. The Plant Journal,1998,15:675-684
    [77]Li L, Zhao Y, McCaig B C,Wingerd B A,Wang J, et al. The tomato homolog of CORONATINEINSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell,2004, 16:126-143
    [78]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001,25:402-408
    [79]Ma Q, Hedden P, Zhang Q. Heterosis in rice seedlings:Its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiology,2011,156:1905-1920
    [80]Maciejewska B, Kopcewicz J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Journal of Plant Growth Regulation,2002,21:216-223
    [81]Mandaokar A, Thines B, Shin B, Lange B M, Choi G, Koo Y J, Choi Y D, Choi G, Browse J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal,2006,46:984-1008
    [82]Matsui T, Omasa K, Horie T. Mechanism of anther dehiscence in rice (Oryza sativaL.). Annals of Botany,1999a,84,501-506
    [83]Matsui T, Omasa K, Horie T. Rapid swelling of pollen grains in response to floret opening unfolds anther locules in rice(Oryza sativa L.). Plant Production Science,1999b,2:196-199
    [84]McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. The Plant Cell,1996,8:403-416
    [85]Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions,2006,19:1127-1137
    [86]Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell,2005,17:2993-3006
    [87]Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005,132:4107-4118
    [88]Nakamura Y, Manabe Y, Inomata S, Ueda M. Recent advances on bioorganic chemistry of plant metabolites controlling nyctinasty. The Chemical Record,2010,10,70-79
    [89]Nishiyama I, Blanco L. Artificial control of flower opening time during the day in rice plants. I. Preliminary experiments. Japanese Journal of Crop Science,1981,50:59-66
    [90]Nishiyama I, Blanco L. Avoidance of high temperature sterility by flower opening in the early morning. Japan Agricultural Research Quarterly,1980,14:116-117
    [91]Park J H, Halitschke R, Kim H B, Baldwin I T, Feldmann K A, Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. The Plant Journal,2002,31:1-12
    [92]Park J H, Oh S A, Kim Y H, Woo H R, Nam H G. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Molecular Biology,1998,37:445-454
    [93]Pissarek H P. Untersuchungen iiber Bau und Funktion der Gramineen-Lodiculae. Beitrage zur Biologie der Pflanzen,1971,47:313-370
    [94]Peng Y L, Shirano Y, Ohta H, Hibino T, Tanaka K, Shibata D. A novel lipoxygenase from rice: primary structure and specific expression upon incompatible infection with rice blast fungus. The Journal of Biological Chemistry,1994,269:3755-3761
    [95]Qin Y, Yang J, Zhao J. Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis. Protoplasma,2005,225:103-112
    [96]Riemann M, Bouyer D, Hisada A, Muller A, Yatou O, Weiler E W, Takano M, Furuya M, Nick P. Phytochrome A requires jasmonate for photodestruction. Planta,2009,229:1035-1045
    [97]Riemann M, Muller A, Korte A, Furuya M, Weiler E W, Nick P. Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiology,2003,133:1820-1830
    [98]Riemann M, Riemann M, Takano M. Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signaling. Plant, Cell and Environment,2008,31:783-792
    [99]Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K. Ethylene regulates the timing of anther dehiscence in tobacco. Planta,2003,217:131-137
    [100]Satake T, Yoshida S. High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science,1978,47:6-17
    [101]Schaffrath U, Zabbai F, Dudler R. Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. European Journal of Biochemistry,2000,267:5935-5942
    [102]Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis-structure, function, regulation. Phytochemistry,2009,70:1532-1538
    [103]Schilmiller A L, Koo A J K, Howe G A. Functional diversification of acyl-coenzyme a oxidases in jasmonic acid biosynthesis and action. Plant Physiology,2007,143:812-824
    [104]Seltmann M A, Stingl N E, Lautenschlaeger J K, Krischke M, Mueller M J, Berger S. Differential Impact of Lipoxygenase 2 and Jasmonates on Natural and Stress-Induced Senescence in Arabidopsis. Plant Physiology,2010,152:1940-1950
    [105]Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Molecular Biology,1993,44:569-589
    [106]Seo H S, Song J T, Cheong J J, Lee Y H, Lee Y W, Hwang I, Lee J S, Choi Y D. Jasmonic acid carboxyl methyl transferase:a key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences of the USA,2001,98:4788-4793
    [107]Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J, Howe G A, Zheng N. Jasmonate perception by inositol-phosphate--potentiated COI1-JAZ co-receptor. Nature,2010,468:400-405
    [108]Singh S, Latha K M, Ahmed M I. Genotypic differences for flowering behaviour in different varietal types in rice (Oryza sativa L.). Indian Journal of Crop Science,2006,1:203-204
    [109]Staswick P E, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell,2004,16:2117-2127
    [110]Stelmach B A, Muller A, Hennig P, Laudert D, Andert L, Weiler E W. Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry,1998,47:539-546
    [111]Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences of the USA,2000,97:10625-10630
    [112]Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta,2008,227:517-526
    [113]Theodoulou F L, Job K, Slocombe S P, Footitt S, Holdsworth M, Baker A, Larson T R, Graham I A. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiology,2005,137: 835-840
    [114]Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature,2007,448:661-665
    [115]Togari Y, Tsuboki Y, Fujii H. Effects of photoperiod and temperature on flowering time on the day in rice plant. Proceedings of Crop Science Society of Japan,40(Extra 1):165-166
    [116]Tsuboi, Y.1961. Ecological studies on rice plants with regard to damages caused by wind. Bulletin of the National Institute of Agricultural Sciences, A 8:1-156
    [117]Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative RT-PCR. The Plant Cell,2008,20:1736-1737
    [118]Ueda J, Kato J. Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiology,1980,66:246-249
    [119]van Doom W G, van Meeteren U. Flower opening and closure:a review. Journal of Experimental Botany,2003,54:1801-1812
    [120]Vick B A, Zimmerman D C. Biosynthesis of jasmonic acid by several plant species. Plant Physiology,1984,75:458-461
    [121]Wasternack C. Jasmonates:an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany,2007,100:681-697
    [122]Weidhase R A, Lehmann J, Kramell H M, Sembdner G, Parthier B. Degradation of ribulose-1,5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methyl ester and counteraction by cytokinin. Physiologia Plantarum,1987,69: 161-166
    [123]Weiler E W, Albrecht T, Groth B, Xia Z Q, Luxem M, Lib H, Andert L, Spengler P. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry,1993,32:591-600
    [124]Wilson Z A, Song J, Taylor B, Yang C. The final split:the regulation of anther dehiscence. Journal of Experimental Botany,2011,62:1633-1649
    [125]Wilson Z A, Zhang D. From Arabidopsis to rice:pathways in pollen development. Journal of Experimental Botany,2009,60:1479-1492
    [126]Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science,1998,280:1091-1094
    [127]Yamane H, Takagi H, Abe H, Yokota T, Takahashi N. Identification of jasmonic acid in three species of higher plants and its biological activities. Plant and Cell Physiology,1981,22:689-697
    [128]Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery R J "N, Kolomiets M V. Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. The Plant Cell,2012,24:1420-1436
    [129]Yang W Y, Devaiah S P, Pan X Q, Isaac G, Welti R,Wang X M. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. The Journal of Biological Chemistry,2007,282:18116-18128
    [130]Zheng N, Schulman B A, Song L, Miller J J, Jeffrey P D, et al. Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex. Nature,2002,416:703-709
    [131]Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology,2004,135:1514-1525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700