用户名: 密码: 验证码:
美国南部水稻稻瘟病菌的分子分析以及相应抗性QTL的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在美国南部含有稻瘟病抗性基因Pi-ta的水稻品种被用于控制稻瘟病已经超过了20年。根据基因对基因假说,Pi-ta基因能够有效阻止含有无毒基因AVR-Pita的稻瘟病菌侵染。从含有或不含Pi-ta基因的水稻品种上分离稻瘟病菌株,通过检测他们的遗传组成,以判断Pi-ta基因在美国南部的功能性。1996年及2009年共收集了169个稻瘟病菌株,通过国际稻瘟病鉴别体系,致病性检测,重复性PCR,稻瘟病菌无毒基因AVR-Pital的DNA序列测定等方法对这些菌株进行了分析。结果表明,所有菌株可分为5类生理小种:IA1, IB1, IB17, IC1以及IC17;15种重复性PCR带型,且每一类生理小种都含有一种主要带型。IB17, IC17,以及大多数的IA1, IB1都不能侵染含有Pi-ta基因的水稻品种Katy,这表明了Pi-ta基因仍然能有效的防止稻瘟病发生。利用AVR-Pital基因的特异性引物,在78个无毒菌株中扩增到了一个预期的AVR-Pital等位基因,然而,在另外12个无毒菌株中扩增出2-3个AVR-Pital等位基因,这再次验证了Pi-ta基因的有效性。通过对扩增到的AVR-Pital等位基因进行测序、序列比对后,共发现了10种不同的基因型。其中6种基因型与已发现的基因型一致,4种基因型为新发现的基因型。
     将所有菌株按照宿主是否含有Pi-ta基因分为两类,并对这两类菌株中有毒菌株出现的频率进行了独立性检测统计分析,结果表明从含有Pi-ta基因水稻品种中分离出来的菌株中毒性菌株出现的概率远大于从不含有Pi-ta基因的水稻品种中分离出来的菌株,这也说明了稻瘟病宿主中是否含有Pi-ta基因与有毒菌株出现频率有密切关系。尽管如此,毒性IC1生理小种能够侵染含有Pi-ta基因的抗性品种Katy,说明一些克服了Pi-ta抗性基因的有毒菌株已经发生了变异,并适应了美国南部的田间环境。
     利用稻瘟病部分抗性亲本Lemont与抗性亲本Jasmine85构建的重组自交系群体227个单株,结合199个多态性的SSR分子标记,针对10个新分离到的分别属于生理小种IA1, IB1, IB17以及IC1等的稻瘟病菌株,在染色体8、10、12上共定位到6个稻瘟病抗性QTL:qBLR8, qBLR10-1, qBLR10-2, qBLR10-3, qBLR12-1以及qBLR12-2,其中位于10号染色体的qBLR10-3为新定位的QTL。qBLR8,qBLR12-1以及qBLR12-2来自于父本Jasmine85,而qBLR10-1,qBLR10-2以及qBLR10-3来自于母本Lemont.所有QTL的表型差异贡献率在5.37%~39.18%之间。qBLR12-2是在本研究中鉴定到的对稻瘟病菌抗谱最广的QTL,并且表现出很高的效应值,尤其对于新鉴定到生理小种IA1,以及地区优势生理小种都具有明显的抗性效应,但对于毒性生理小种IC1菌株没有表现出抗性效应,而qBLR8,qBLR10-1,qBLR10-2等却对IC1菌株表现出一定的抗性效应。本研究中,定位到的稻瘟病抗性QTL,来自于商业化推广的水稻品种Lemont以及Jasmine85,所以这些抗性QTL,可直接通过杂交转育而应用于今后的稻瘟病抗性育种。
The rice blast resistance gene Pi-ta has been effectively deployed in the Southern US rice germplasm for over two decades. Pi-ta is effective in preventing infection of blast fungus strains carry the corresponding avirulence gene AVR-Pital in a gene-for-gene fashion. In the present study, we examined genetic makeup of the field isolates of rice blast fungus from rice cultivars with or without Pi-ta to predict the functionality of the Pi-ta gene in the southern US. A total of169field isolates from1996and2009collections were analyzed using an international differential system, pathogenicity assay, rep-PCR and DNA sequencing of the avirulence gene AVR-Pital. These isolates were determined to belong to the races IA1, IB1, IB17, IC1, and IC17of M. oryzae, and were classified as15distinct groups within a major rep-PCR pattern in each group. Most of the fungal isolates of the races IA1, IB1, IB17, and IC17were unable to infect the Pi-ta-containing rice cultivar Katy suggesting that Pi-ta was effective. One AVR-Pital allele was consistently amplified by AVR-Pital-specific primers from78avirulent fungal isolates as expected; however, two to three AVR-Pital alleles were amplified in each of other12avirulent fungal isolates verifying again the effectiveness of the Pi-ta gene. Through sequencing and comparing the AVR-Pital gene that amplified, we found10different AVR-Pital alleles, in which6of them were same with those found before, and4of them were new.
     We separated all the blast isolates into two types according if there was Pi-ta gene and did the Chi square independent statistics test to the relation between the advent of virulent isolate and rice with or without Pi-ta gene. The test demonstrated that there was a significant difference of the occurrence of the virulent isolates between isolates from Pi-ta and non-Pi-ta cultivars, and Pi-ta gene was related to the occurrence of the virulent isolates. However, most isolates from the race IC1were virulent to Katy suggesting that some virulent isolates overcoming Pi-ta resistance have been adapted to the Southern US environment.
     10blast isolates that belong to IA1, IB1, IB17and IC1respectively were used to examine the blast resistance QTL. Finally,6blast resistant Quantitative trait loci (QTLs):qBLR8, qBLR10-1, qBLR10-2, qBLR10-3, qBLR12-1and qBLR12-2were identified on the chromosome8,10and12respectively with the recombinant inbred lines population that inherited from the hybridization between Lemont (partial resistant) and Jasmine85(resistant), which included total227lines. qBLR10-3was the new QTL that identified in this study, and the other5QTLs have been reported in the previous research. qBLR8、qBLR12-1and qBLR12-2were from Jasmine85, but qBLR10-1, qBLR10-2and qBLR10-3were from Lemont。The phenotype variance contribution of QTL was from5.37%~39.18%. qBLR12-2was the most widely resistance to the blast isolates in this study, especially to the new isolates belong to IA1and the dominant races IB land IB17that was just identified recently, but for another one, IC1, there was no resistance. However, qBLR10-1, qBLR10-2and qBLR10-3show part resistance to IC1. The blast resistance QTLs that identified from commercial rice Lemont and Jasmine85in this study can provide reference to rice breeding for blast resistance.
引文
Ashikawa I, Hayashi N, Yamane H, et al. Two adjacent NBS-LRR class genes are required to confer Pikm-specific rice blast resistance. Genetics,2008,180: 2267-2276
    Atkins J G, Robert A L, Adair C R, et al. An international set of rice varieties for differentiating races of Piricularia oryzae. Phytopathology,1967,57:297-301.
    Ballini E, Morel J, Droc G, et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact,2008,21:859-868
    Berruyer R, Adreit H, Milazzo J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor. Appl. Genet.,2003,107:1139-1147.
    Bohnert H U, Fudal I, Dioh W, et al.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell,2004,16:2499-2513.
    Bryan G T, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell,2000, 12:2033-2045
    Chen H, Wang S, Xing Y, et al.Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2544-2549
    Chen J, Shi Y, Liu W, et al. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics,2011,38:209-216
    Chen Q H, Wang Y C and Zheng X B. Genetic diversity of Magnaporthe grisea in China as revealed by DNA fingerprint haplotypes and pathotypes. J. of Phytopathology,2006,154:361-369.
    Chen X, Shang J, Chen D, et al.A B-lectin receptor kinase gene conferring rice blast resistance. Plant J,2006,46:794-804
    Cho Y C, Kwon S W, Suh J P, et al. QTLs identification and confirmation of field resistance to leaf blast in temperate japonica rice (Oryza sativa L.)J. Crop Sci. Biotech.2008,11 (4):269-276
    Chuma I, Isobe C, Hotta Y, et al. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and relate d species. PLoS Pathog.,2011,7:1-20.
    Clement M, Posada D and Crandall K A. TCS:a computer program to estimate gene genealogies. Mol. Ecol.,2000,9:1657-1659.
    Correll J C, Harp T L, Guerber J C, et al. Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology,2000,90:1396-1404.
    Couch B C and Kohn L M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia,2002,94:683-693.
    Dai Y, Jia Y, Correll J, et al. Diversification and evolution of the avirulence gene AVR-Pital in field isolates of Magnaporthe oryzae. Fungal Genet, and Biol.,2010, 47:973-980.
    Dangl J L, Jones J D. Plant pathogens and integrated defense responses to infection. Nature,2001,411:826-833.
    De Wit PJGM.Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of virulence genes in control of plant pathogens. Annu Rev Plytopathol,1992,30:391-399.
    Dean R A,Talbot N J,Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature,2005,434:980-986.
    Ebbole D J. Magnaporthe as a model for understanding hostpathogen interactions. Annu. Rev. Phytopathol.,2007,45:437-456.
    Farman M L and Leong S A. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea:discrepancy between the physical and genetic maps. Genetics,1998,150:1049-1058.
    Flor H H. Current status of the gene-for-gene concept. Annu Rev Phytopathol, 1971,9:275-296.
    Flor H H.The complementary genie systems in flax and flax rust.Advanced Genetics,1956,8:29-54.
    Fujii K, Hayano-Saito Y, Shumiya A, et al. Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. Breed. Sci.1995,45:209. (In Japanese).
    Fukuoka S and Okuno K. QTL analysis for field resistance to rice blast using RFLP markers. Rice Genet. Newsl.,1997,14:99.
    Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet,2001, 103:185-190
    Fukuoka S, Saka N, Koga H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science,2009,325(5943):998-1001
    Fukuta Y. Development of differential varieties for blast resistance in IRRI-Japan collaborative research project.In:Kawasaki S ed. Rice Blast: Interaction with Rice and Control. Netherlands:Kluwer Academic Publishers, 2004:229-233.
    Gabriel D W and Rolfe B G Working models of specific recognition in plant microbe interactions. Annu Rev Phytopathol,1990,28:365-391.
    George M L C, Nelson R J, Zeigler R S, et al. Rapid population analysis of Magnaporthe grisea by using Rep-PCR and endogenous repetitive DNA sequences. Phytopathology,1998,88:223-229.
    Gibbons J W, Moldenhauer K A K, Gravois K, et al.Registration of'Cybonnet' rice. Crop Sci.,2006,46:2317-2318.
    Hamer J E, Farrall L, Orbach M J, et al. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proceed, of the Nat. Acad. of Sci. of U.S.A.,1989,86:9981-9985.
    Hayashi N, Inoue H, Kato T, et al. Durable panicle blast-resistance gene Pbl encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J,2010,64:498-510.
    Hebert T T. The perfect stage of Pyricularia grisea. Phytopathology,1971, 61:83-87.
    Heidrich K, Wirthmueller L, Tasset C, et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.Science,2011,334:1401-1404.
    Hossein S, Atefeh S, Mohmmad R J, et al. Detection of QTLs controlling field blast resistance in rice (Oryza sative L.).PLant Omics Journal.2011,4(1):1-5.
    Hu K M, Qiu D Y, Shen X L, et al. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant,2008,1:786-793.
    Inukai T, Zeigler R S, Sarkarung S, et al. Development of pre-isogenic lines for rice blast-resistance by marker-aided selection from a recombinant inbred population. Theor Appl Genet,1996,93:560-567.
    Jantasuriyarat C, Gowda M, Haller K, et al. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol.2005,138:105-115.
    Javan-Nikkhah M, McDonald B A, Banke S, et al. Genetic structure of Iranian Pyricularia grisea populations based on Rep-PCR fingerprinting. Eur. J. Plant Pathol., 2004,110:909-919.
    Jia Y and Martin R. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Mol. Plant Microbe Interact,2008, 21:396-403.
    Jia Y L, Liu G J. Mapping quantitative trait Loci for resistance to rice blast. Phytopathology.2011,101(2):176-81.
    Jia Y L, Wang Z H, Sing H P. Development of dominant rice blast resistance Pi-ta gene markers.Crop Science,2002,42:2145-2149.
    Jia Y L, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. Embo Journal,2000,19: 4004-4014.
    Jia Y L, Wang Z H, Fjellstrom R G, et al. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the united states. Phytopathology., 2004,94(3):296-301.
    Johnson R. Durable resistance:Definition of genetic control and attainment in plant breeding. Phytopathology,1981,71:567-568.
    Kachroo P, Leong S A and Chattoo B B. Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea. Mol. Gen.Genet.,1994,245:339-348.
    Kang S C, Sweigard J A, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions,1995, 8:939-948.
    Kang S, Lebrun M H, Farrall L, et al. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol. Plant-Microbe Interact.2001,14:671-674.
    Kato H, Yamaguchi T, Tanaka Y, et al. Hybridization of Pyricularia oryzae and Pyricularia strain from ragi. In:3rd International Congress of Plant Pathology, Munchen,1978:100.
    Khallaf A,唐正合,王建新,等.江苏省水稻品种抗稻瘟病基因型的鉴定与分析. 南京农业大学学报,2011,34(6):65-70.
    Khang C H, Park S Y, Lee Y H, et al. Genome organization and evolution of the A VR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant Microbe Interact,2008,21:658-670.
    Kiyosawa S, Yabuki S. Simulation of race frequency change in a host-pathogen system with true resistance and avirulence genes. Jpn J Breed (Ikushugaku Zasshi), 1976,26(3):247-255.
    Kiyosawa S. Inheritance of blast resistance of a U. S. rice variety, Dawn.Japanese Journal of Breeding Ikushugaku Zasshi,1974,24(3):117-124.
    Kiyosawa S.Genetics of blast resistance.In:IRRI (ed) Rice breeding. IRRI, Los Banos, The Philippines,1972:203-225.
    Koizumi S, Iwano M, Zenbayashi K, et al. Distribution of pathogenic races of rice blast fungus in Japan in 2001. Misc. Publ. Natl. Agric. Res. Cent.2007,7:1-63. (In Japanese)
    Kumar P, Gupta V K, Misra A K, et al. Potential of molecular markers in plant biotechnology. Plant Omics Journal,2009,2:141-162
    Kwon S H, Oh J H. Selection for blast-resistant mutants in irradiated rice populations. Induced mutations against plant diseases. Proceedings of a symposium on the use of induced mutations for improving disease resistance in crop plants:Session 3. Resistance to fungal and bacterialdiseases in rice,1977:131-145.
    Lee S K, Song M Y, Seo Y S, et al. Rice P/5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics,2009,181:1627-1638
    Leung H, Borromeo E S, Bernardo M A, et al. Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea [J]. Phytopathology,1988,78:1227-1233.
    Li P, Bai B, Zhang H Y, et al. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae J Zhejiang Univ Sci B.2012,13(6): 452-464.
    Li W,Wang B,Wu J, et al. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact,2009,22:411-420.
    Li Y, Wu C, Xing Y, et al. Dynamic QTL analysis for rice blast resistance under natural infection conditions. Australian Journal of Crop Science.2008,2(2):73-82
    Lin F, Chen S, Que Z, et al. The blast re-sistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics,2007,177:1871-1880
    Ling K C and Ou S H. Standardization of the international race numbers of Pyricularia oryzae. Phytopathology,1969,9:339-342.
    Ling Z Z, Mew T V, Wang J L, et al. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chinese Agricultural Sciences,2001:50-56.
    Ling Z Z, Mew T V, Wang J L, et al. Development of near-isogenic lines as international differentials of the blast pathogen. International Rice Research Newsletter,1995,20 (1):13-14.
    Liu J L, Wang X J, Mitchell T, et al. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol, 2010,11(3):419-427.
    Liu X, Lin F, Wang L, et al.The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics,2007,176:2541-2549.
    Lopez-Gerena J. Mapping QTL controlling durable resistance to rice blast in the cultivar Oryzica Llanos 5. Ph.D. thesis, Universidad del Valle, Plant Pathology College of Agriculture, Cali, Colombia and Kansas State University, Manhatten, KS, U.S.A.2006.
    Luo, C X, Fujita, Y, Yasuda, N, et al. Identification of Magnaporthe oryzae avirulence genes to three rice blast resistance genes. Plant Dis.,2004,88:265-270.
    Luo, C X, Yin, L F, Koyanagi, S, et al. Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz and AvrPiz-t controlling cultivar specificity on rice. Phytopathology,2005,95:640-647.
    Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology,1992,82:746-749.
    Marchetti M A, Bollich C N, Webb B D, et al. Registration of'Jasmine 85'Rice. Crop Sci.1998,38(3):896-896
    McCouch S R, Nelson R J, Tohme J, et al. Mapping of blast resistance genes in rice. In:Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International/IRRI, Wallingford, UK,1994:167-186
    Mohammad J N, Bruce A M, et al. Genetic structure of Iranian Pyricularia grisea populations based on rep-PCR fingerprinting. European Journal of Plant Pathology,2004,110,909-919.
    Moldenhauer K A K, Gibbons J W, Lee F N, et al. Registration of'Banks'rice. Crop Sci.,2007,47:445-446.
    Moldenhauer K A K, Gravois K A, Lee F N, et al. Registration of'Drew'rice. Crop Sci.,1998,38:896-897.
    Moldenhauer K A K, Lee F N, Norman R J, et al. Registration of'Katy'rice. Crop Sci.,1990,30:747-748.
    Mosquera G, Giraldo M C, Khang C H, et al.Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell,2009,21(4):1273-1290.
    Naqvi N I, Chattoo B B. Molecular genetic analysis and sequence-characterized amplified region-assisted selection of blast resistance in rice. In:IRRI (ed) Rice genetics III. IRRI, Manila, The Philippines,1996,570-576.
    Narayanan N N, Baisakh N, Oliva N P, et al. Molecular breeding: marker-assisted selection combined with biolistictransformation for blast and bacterial blight resistance in Indica rice (cv.CO39). Mol. Breeding,2004,14(1):61-71.
    Naweed I N and Bharat B C. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome,1996,39(1):26-30.
    Orbach, M J, Farrall, L, Sweigard, J A, et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell,2000, 12:2019-2032.
    Phinyarat K, Alfonso C M, Patrick M H, et al. Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. Journal of Phytopathology,2010,158:125-131
    Qu S, Liu G, Zhou B, et al.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics,2006,172:1901-1914
    Sallaud C, Lorieux M, Roumen E, et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor. Appl. Genet.,2003,106:794-803.
    Sambrook J and Russell D W. Molecular Cloning:A laboratory manual. Cold Spring Harbor Laboratory Press,2001,3:8.46-8.53.
    Sato H, Takeuchi Y, Hirabayashi H, et al. Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin 12. Breed. Sci.2006,56:415-418.
    Silue D, Notteghem J L, Tharreau D. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology,1992,82(5): 577-580.
    Silue'D, Nottenghem J L and Tharreau D.Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem.Phytopathology, 1992,82:577-580.
    Sirithunya P, Tragoonrung S, Vanavichit A, et al. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res.,2002,9:79-88.
    Smith J R, and Leong S A. Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity. Theor. Appl.Genet.,1994,88:901-908.
    Soderlund C, Haller K, Pampanwar V,et al. MGOS:A resource for studying Magnaporthe grisea and Oryza sativa interactions. Mol. Plant Microbe Interact., 2006,19:1055-1061.
    Stahl E A, Bishop J G. Plant-pathogen arms races at the molecular level. Curr. Opin. Plant Biol.,2000,3,299-304.
    Sweigard J A, Carroll A M, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell,1995,7:1221-1233.
    Tabien R E, Li Z, Paterson A H, et al. Mapping of four rice blast resistance genes from'Lemont'and'Teqing'and evaluation of their combinatorial effect for field resistance. Theor Appl Genet,2000,101:1215-1225.
    Tabien R E, Li Z, Paterson A H, et al. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor. Appl. Genet.,2002,105:313-324.
    Takahashi M, Ashizawa T, Hirayae K, et al. One of two major paralogs of AVR-Pital is functional in Japanese rice blast isolates. Phytopathology,2010,100: 612-618.
    Talukder Z I, McDonald A J S and Price A H. Loci controlling partial resistance to rice blast do not show marked QTL x environment interaction when plant nitrogen status alters disease severity. New Phytol.,2005,168:455-464.
    Tamura K, Dudley J, Nei M, et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. and EvoL,2007,24:1596-1599.
    Tanaka M, Hyon G S, Murata T, et al. Evolution of the eleusine subgroup of Pyricularia oryzae inferred from rearrangement at the Pwll locus. Mol Plant-Microbe Interact,2010,23(6):771-783.
    Tang X, Frederick R D, Zhou J, et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase.Science,1996,274:2060-2063.
    Tosa Y, Osue J, Eto Y, Oh H S, et al.Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae.Mol. Plant-Microbe Interact.2005,18:1148-1160.
    Valent B and Chumley F G Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol.1991,29:443-476.
    Valent B, Farrall L and Chumley F G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics,1991, 127:87-101.
    Valent B, Khang C H. Recent advances in rice blast effector research. Curr Opin Plant Biol,2010,13(4):434-441.
    Valent B, Leonard F and Forrest G C. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics, 1991,127:87-101.
    Wang G L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994,136(4):1421-1434
    Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J,1999,19:55-64
    Wells B R, Dilday R H, Rohman P C, et al.Registration of'Kaybonnet'rice. Crop Sci.,1995,35:587-588.
    Wu J L, Fan Y Y, Li D B, et al.Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates.Theor. Appl. Genet.,2005, 111:50-56.
    Xia J Q, Correll J C, Lee F N, et al. Regional population diversity of Pyricularia grisea in Arkansas and the influence of host selection. Plant Dis.,2000,84:877-884.
    Xu J, Wang J, Ling Z, et al. Analysis of rice blast resistance genes by QTL mapping. Chinese Science Bulletin,2004,49:337-342
    Yamada M, Kiyosawa S, Yamaguchi T, et al. Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Annals of the Phytopathological Society of Japan,1976,42:216-219.
    Yoshida K,Saitoh H,Fujisawa S, et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009,21:1573-1591.
    Yunoki T, Ezuka A, Sakurai Y, et al. Studies on the varietal resistance to rice blast.3. Testing methods forfield resistance on young seedling grown in greenhouse. Bull. Chugoku Natl. Agric. Exp. Stn.1970, E6:1-19.
    Zenbayashi K, Ashizawa T, Tani T, et al. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor. Appl. Genet.,2002,104:547-552.
    Zenbayashi-Sawata K, Ashizawa T and Koizumi S. Pi34-AVRPi34:a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. J. Gen. Plant Pathol.,2005,71:395-401.
    Zhang Y X, Yang J Y, Shan Z L, et al. Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.).Euphytica,2012,184:141-150.
    Zheng Y, Zheng W H, Lin F C, et al. AVR1-CO39 is a predominant locus governing the broad avirulence of magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.). The American Phytopathological Society,2011,24:13-17.
    Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact,2006,19:1216-1228.
    Zhou E X, Jia Y L, et al. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology,2007,44(10):1024-1034.
    Zhu L H, Chen Y, Xu Y B, et al. Construction of a molecular map of rice and gene mapping using a double-haploid population of a cross between Indica and Japonica varieties. Rice Genet Newslett,1993,10:132-135
    陈福如,阮宏椿,杨秀娟,等.稻瘟病苗瘟叶瘟和穗颈瘟的相关性分析.中国农学通报,2006,22(7):440-443.
    陈红旗,陈宗祥,倪深,等。利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性。中国水稻科学,2008,22(1):23-27.
    陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi2(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004,2(3):321-325.
    高焕东,梁见冰.优质高产、高抗稻瘟病水稻新品种莉丰占的选育及栽培技术. 农业科技通讯,2012.2:91-92.
    高利军,邓国富,高汉亮,等.水稻抗稻瘟病基因Pi-d2基因标签的建立与应用.西南农业学报,2010,23(1):77-82.
    湖南省种子管理局.湖南省水稻主推品种介绍(下).湖南农业,2012,4:5-6.
    黄富,谢戎,刘成元.亲本抗瘟性对杂交水稻组合抗瘟性的影响[J].杂交水稻,2007,22(2):64-68.
    靳春鹏,孙庚,刘金亮,等.吉林省水稻品种对稻瘟病的抗性分析.华北农学报,2011,26(3):214-218.
    雷财林,张国民,程治军,等.黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略.作物学报,2011,37(1):18-27.
    李季能,刘建萍,张跃飞.高抗稻瘟病杂交中籼新组合博优141.杂交水稻,2003,18(6):59-60.
    李进斌,李成云,张庆,等.两套鉴别品种对云南稻瘟病菌株鉴别能力的比较.中国农业科学,2009,42(2):486-491.
    李进斌,李鼎,孙一丁,等.利用与抗稻瘟病基因Pil连锁的MRG4766标记鉴定173份云南地方稻种.分子植物育种,2012,10(1):73-79.
    李仕贵,王玉平,黎汉云,等.利用微卫星鉴定水稻的稻瘟病抗性[J].生物工程学报,2000,16(3):324-327.
    李湘民,吴淑秀,兰波,等.江西省水稻主要品种抗瘟基因型的推导.江西农业大学学报2011,33(1):0032-0037.
    李小娟,郭新华,肖友伦,等.长江中下游稻区水稻区试品种稻瘟病的抗性评价.杂交水稻,2009,24(6):59-61.
    刘彬,叶慧丽,姚琳.不同类型水稻鉴别品种对四川稻瘟病菌生理小种的鉴定与评价研究.西南农业学报,2007,20(3):400-407.
    刘洋,徐培洲,张红宇,等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用.中国农业科学,2008,41(1):9-14.
    马炳田,杨为,王玲霞,等.稻瘟病圃中水稻品系的抗瘟性评价与育种利用,中国农学通报,2005,12(1):263-267.
    全国稻瘟病菌生理小种联合试验组.我国稻瘟病菌生理小种研究[J].植物病理学报,1980,10(2):71-81.
    全国农业技术推广服务中心.2012年全国水稻重大病虫害发生趋势预报.种业导刊,2012,3:8.
    沈瑛,朱培良,袁筱萍,等.我国稻瘟病菌的遗传多样性及其地理分布.中国农业科学,1996,29(4):39-46.
    时克,雷财林,程治军,等.稻瘟病抗性基因Pi-ta和Pib在我国水稻主栽品种中的分布.植物遗传资源学报,2009,10(1):21-26.
    田大刚,苏军,陈建民,等.1092份水稻材料稻瘟病抗性鉴定及抗性标记分析.分子植物育种,2012,10(2):214-221.
    涂敏,王云月,卢宝荣,等.云南省水稻品种稻瘟病抗性差异与遗传多样性相关研究.湖北农业科学,2011,50(6):1149-1152.
    王宝华,翁琴云,汤重淼,等.Rep-PCR法对稻瘟病菌有性后代随机群体的评价.中国农学通报.2007,23(12):311-315.
    王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择[J].作物学报,2004,30(12):1259-1265.
    项祖芬,王志,侍守佩,赵兴龙.抗稻瘟病恢复系材料662所配杂交水稻组合的表现.中国种业,2010,1:44-45.
    肖放华,彭绍裘,陈勇,等.云南地方稻种持久抗瘟性的研究.植物遗传资源科学,2001,2(3):1-7.
    徐灵超,刘二明,黄金杯,等.湖南省103个水稻品种的抗瘟基因型鉴定.湖南农业大学学报,2009,35(1):17-20.
    曾正明,况浩池,罗俊涛,等.用分子标记对部分高代育种材料抗稻瘟基因Pi9(t)的检测.江西农业学报,2011,23(9):69-71.
    张学堂,廖新华,朱振华,等.Pi-z, Pi-ta2等基因在云南粳稻稻瘟病抗性育种中的应用.中国农业科技导报,2010,12(1):100-105
    赵明富,张锦花,黄珊,等.杂交水稻主要亲本和抗源及其相互双列杂交组合的抗性评价.福建稻麦科技,2008,26(4):4-7.
    郑轶,涂诗航,周鹏,等.杂交水稻稻瘟病抗性鉴定及其与父母本抗性的相关性.杂交水稻,2010,25(4):75-77.
    周海鹏,占小登,柴荣耀,等.具抗稻瘟病基因Pi25杂交稻恢复系的分子标记辅助选育.中国水稻科学,2008,22(6):590-596.
    周少川,朱小源,江雁芳,等.稻瘟病持久抗性在三系杂交稻上的导入续报.中国水稻科学,2000,14(2):79-82.
    周益军,程兆榜,范永坚,等.江苏五大稻区稻瘟病菌的群体遗传结构研究.安徽农业大学学报.2007,34(4):469-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700