用户名: 密码: 验证码:
猪GDF11多克隆抗体的制备、前体脂肪细胞的分离培养及诱导分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两个研究方向:猪GDF11蛋白表达产物的纯化及其多克隆抗体的制备与检测和猪前体脂肪细胞的分离培养及诱导分化。
     第一部分:原核表达蛋白的纯化及多克隆抗体制备及检测
     生长分化因子11(GDF11)是转化生长因子β(TGF-β)超家族、Myostatin/ GDF11亚家族的一种分泌蛋白。GDF11的表达水平可能与猪的胸腰椎数的多少有关。为了分析GDF11在不同胸腰椎数的猪品种中的表达差异,获得该蛋白的抗体十分必要。
     将重组原核表达质粒pGEX-6P-1-GDF11经限制性内切酶BamHⅠ和EcoRⅠ双酶切,将回收的GDF11酶切片段插入原核表达载体pGEX-4T-2中,获得重组原核表达质粒pGEX-4T-2-GDF11。重组质粒经测序鉴定后转化大肠杆菌BL21(DE3),并经异丙基β-D-硫代半乳糖苷(IPTG)诱导产生了65KDa的GST-GDF11融合蛋白。融合蛋白以包涵体的形式存在,经稀释复性和凝血酶酶切,分离纯化出42 KDa左右的GDF11蛋白,SDS-PAGE分离纯化出GDF11蛋白。
     纯化的GDF11蛋白注射小鼠,取其血清获得抗GDF11蛋白的多克隆抗体,经ELISA检测其滴度最高可达1∶2 5600。经Western印迹的结果表明,制备的多克隆抗体对LLC- PK1细胞内GDF11蛋白具有较高的特异性,是进一步研究GDF11表达调控机制和功能的基础。
     第二部分:猪前体脂肪细胞的分离培养及诱导分化
     脂肪沉积性状是猪的重要经济性状,与猪肉品质及其经济价值紧密联系。莱芜猪的肌间脂肪含量比其他品种都要高,研究其脂肪沉积有重要的意义。脂肪细胞在体外很难培养;而脂肪组织中的前脂肪细胞在体外可以培养,在一定条件下可诱导分化为脂肪细胞。
     本研究从三日龄莱芜猪的背部皮下获得皮下脂肪,经胶原酶消化,分离培养了莱芜猪的前体脂肪细胞。前体脂肪细胞融合后的第二天,用胰岛素和地塞米松诱导分化,经诱导分化获得成熟脂肪细胞。在显微镜下观察细胞分化前后的形态,前体脂肪细胞呈纤维样;成熟的脂肪细胞变大、变圆,呈椭圆形或多边形。成熟的脂肪细胞经油红O染色,细胞内的脂滴被油红O着色。以成熟脂肪细胞的cDNA为模板,通过PCR的方法扩增LPL、PPARγ和C/EBPα,检测了这三个基因在成熟脂肪细胞中表达。本研究在细胞形态学和组织学上鉴定了分化的脂肪细胞,为分析脂肪分化的相关机制提供了重要的材料。
This thesis includes two parts: One is the expression and purification of growth /differentiation factor 11 (GDF11) and its polyclonal antibody preparation and detection. Another is the separation, culturing and induction to differentiation of porcine preadipocyte cells.
     Growth/differentiation factor 11 is a secreted protein of myostatin/gdf11 subfamily of TGF-βsuperfamily. The expression level of GDF11 affects the number of thoracic and lumbar vertebra. Anti-GDF11 antibody is required for analyzing the relationship between the number of thoracic and lumbar vertebra and the expression level of GDF11.
     After being digested with BamHⅠand EcoRⅠfor pGEX-6P-1-GDF11 expression plasmid, the GDF11 fragment was inserted into the prokaryotic expression vector pGEX-4T-2 and sequenced, and the recombinant plasmid pGEX-4T-2-GDF11 was obtained. The competent E.coli cell strain BL21(DE3) were transformed by the recombinant plasmid pGEX-4T-2-GDF11 and induced by IPTG to produce fusion protein 65KDa GST-GDF11. The expressed fusion protein GST-GDF11 was inclusion body. After diluting and renaturation, it was digested with thrombin to release 42KDa GDF11 protein. By SDS-PAGE, GDF11 protein is separated and purified.
     The pure GDF11 proteins were injected into mouse to obtain anti-GDF11 polyclonal antibody. By ELISA detection, the antibody valency was 1:25600, and the antibody was shown to be specific by western blot analysis in porcine LLC- PK1 cell line, both of which meets the requirement for study on GDF11 function.
     Fatty deposition is an important economical trait in pig breeding,and it has been shown to be closely related with pork quality and economic value. Comparing with other variations, intramuscular fat content in Laiwu pigs is very high, therefore, uncovering the genes for fat deposition in Laiwu pig is very important. Adipocytes is difficult to culture, but preadipocytes from adipose tissue can be isolated and cultured in vitro. Under special condition preadipocytes can be induced to lead differentiation and become mature adipocytes.
     In this study, the subcutaneous fat from three 3-day-old Laiwu piglets was digested by Collagenase. Preadipocytes were isolated to culture from Laiwu pig adipose tissue. At the second day after preadipocytes cell fusion, we add trypsin and hexadecadrol in culture media to induce preadipocytes, then preadipocytes become to mature adipocytes. Preadipocytes show fibra shape under microscope, mature adipocytes become great and round , and adipocytes present ellipse and polygons. Mature adipocytes was stained by oil red O, and the lipid droplet present red. LPL, PPARγand C/EBPαwas amplified from mature adipocytes. In mature adipocytes cDNA, the genes were detected. We identify the mature adipocytes by morphology and histology. The mature adipocytes provide materials for analyzing the mechanism of preadipocyte differentiation.
引文
李明刚.高级分子遗传学.科学出版社,2004年.
    李影、杨公社、卢荣华、孙世铎.原代猪前体脂肪细胞培养方法的优化。Chinese Journal of Cell Biology,2005.27,697-700.
    屈长青、张国华、陈粉粉、赵丽丽、杨公社.猪前体脂肪细胞的原代培养。Journal of Agricultural Biotechnology,2005.13(5),649-653.
    张国华、杨公社、屈长青、孙世铎.猪前体脂肪细胞的分离培养。Chinese Journal of Cell Biology,2005.27,693-696.
    Andersson O, Reissmann E, Ibá?ez C.F. Growth differentiation factor 11 signals through the transforming growth factor-b receptor ALK5 to regionalize the anterior–posterior axis. EMBO reports. 2006. 7(8), 831-837.
    Astori G, Vignati F,Bardelli S,Tubio M,Gola M,Albertini V,Bambi F,Scali G,Castelli D,Rasini V,Soldati G,Moccetti T. "In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med. 2007. 5: 55.
    Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002 May 31;296(5573):1646-7.
    Biga P.R, Roberts S.B, Iliev D.B, McCauley L.R, Moon J.S, Collodi P, Goetz F.W. The isolation, characterization, and expression of a second myostatin form in zebrafish, Danio rerio. Comparative Biochemistry and Physiology. Part B. 2005. 141,218-230.
    Bortell R, van Wijnen A.J, Ramsey-Ewing A.L, Stein G.S, Stein J.L. Differential regulation of H4 histone gene expression in 3T3-L1 pre-adipocytes during arrest of proliferation following contact inhibition or differentiation and its modulation by TGF beta 1. J Cell Biochem. 1992. 50(1),62-72.
    Bunnell B.A, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008.45(2),115-120.
    Carraro R, Lu Z.D, Li Z.H, Johnson J.E, Gregerman R.I. Adipose tissue islets: tissue culture of a potential source of fat cells in the adult rat. The FASEB Journal. 1990 4,201-207.
    Cheng Y.S, Lee T.S, Hsu H.C, Kou Y.R, Wu Y.L. Characterization of the transcriptional regulation of the regulator of G protein signaling 2 (RGS2) gene during 3T3-L1 preadipocyte differentiation. J Cell Biochem. 2008. 105(3),922-930.
    Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C, Amri EZ. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation.BMC Mol Biol. 2008.
    Choi Y.S, Cha S.M, Lee Y.Y, Kwon S.W, Park C.J, Kim M.Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun. 2006. 345(2),631-637.
    Ducy P, Karsenty G. The family of bone morphogenetic proteins. Kidney Int. 2000 .57(6),2207-2214.
    Ebner R,Chen RH,Shum L,et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the typeⅡreceptor. Science, 1993, 260(5112): 1344.
    Entingh A.J, Taniguchi C.M, Kahn C.R. Bi-directional regulation of brown fat adipogenesis by the insulin receptor. J Biol Chem. 2003. 278(35),33377-33383.
    Erickson G. R, Gimble J.M, Franklin D.M, Rice H.E, Awad H, Guilak F. Chondrogenic Potential of Adipose Tissue-Derived Stromal Cells in Vitro and in Vivo. Biochemical and Biophysical Research Communications. 2002. 290(2),763-769.
    Esau C, Kang X, Peralta E, Hanson E, Marcusson E.G, Ravichandran L.V, Sun Y, Koo S, Perera R.J, Jain R, Dean N.M, Freier S.M, Bennett C.F, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004. 279(50),52361-52365.
    Esquela A.F and Lee S.J. Regulation of metanephric kidney development by growth /differentiation factor 11. Dev.Biol. 2003. 257,356-370.
    Essalmani R, Zaid A, Marcinkiewicz J, Chamberland A, Pasquato A, Seidah NG, Prat A. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5750-5. Epub 2008 Mar 31.
    Gad J.M, Tam P.P. Axis development: the mouse becomes a dachshund. Curr Biol. 1999.21,783-786
    Gamer L.W, Cox K.A, Small C,Rosen V. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb. Dev. Biol. 2001. 229,407-420.
    Gamer L.W, Wolfman N.M, Celeste A.J, Hattersley G., Hewick R, Rosen V. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev. Biol. 1999. 208,222-232.
    Gealekman O, Burkart A, Chouinard M, Nicoloro S.M, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab. 2008.295(5),E1056-1064.
    Geng L.Y, Jiang Y.L, Li K , Zhang C.S, Fan X.Z,Yue Y.S.,Radiation hybrid mapping of porcine bone morphogenetic protein 11 (BMP11) gene to pig chromosomes 5. Animal Genetics. 2005. 36,185-186.
    Gimble J.M, Morgan C, Kelly K, Wu X, Dandapani V, Wang C.S, Rosen V. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem. 1995. 58(3),393-402.
    Greene J.J, Ts'o P.O. Preferential modulation of embryonic cell proliferation and differentiation by embryonic interferon. Exp Cell Res. 1986. 167(2),400-406.
    Gronthos S, Mankani M, Brahim J, Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 2000. 97,13625-13630.
    Harmon E.B, Apelqvist ?.A,Smart N.G,Gu X.Y,Osborne D.H, Kim S.K. GDF11 modulates NGN3+ islet progenitor cell number and promotes β-cell differentiation in pancreas development. Development. 2004. 131,6163-6174.
    Harrison J.J, Anisowicz A, Gadi I.K, Raffeld M, Sager R. Azacytidine-induced tumorigenesis of CHEF/18 cells: correlated DNA methylation and chromosome changes. Proc Natl Acad Sci U S A. 1983 .80(21),6606-6610.
    Hausman G.J, Hausman D.B. Search for the preadipocyte progenitor cell. J Clin Invest. 2006. 116(12),3220-3228.
    Hausman G.J, Wright J.T, Richardson R.L. The influence of extracellular matrix substrata on preadipocyte development in serum-free cultures of stromal-vascular cells. Journal of Animal Science. 1996. 74(9), 2117-2128.
    Iimura T, PourquiéO. Hox genes in time and space during vertebrate body formation. Dev Growth Differ. 2007. 49(4), 265-275.
    Jakowlew S B, Dillard P J, Sporn M et al. Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor beta 4 from chicken embryo chondrocytes. Mol. Endocrinol. 1988. 2:1186-1195.
    Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA. 2006. 12(9),1626-1632.
    Kawakami M, Watanabe N, Ogawa H, Kato A, Sando H, Yamada N, Murase T, Takaku F, Shibata S, Oda T. Cachectin/TNF kills or inhibits thedifferentiation of 3T3-L1 cells according to developmental stage. J Cell Physiol. 1989.138(1),1-7.
    Kim J, Wu H.H, Lander A.D, Lyons K.L, Matzuk M.M, Calof A.L. GDF11 controls the Timing of progenitor cell competemce in developing retina. Science. 2005. 308,1927-1930.
    Kingsley D. M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994 Jan;8(2):133-46.
    Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J Biol Chem. 2008 Aug 29;283(35):23677-84. Epub 2008 Jul 1
    Kubo M, Ijichi N, Ikeda K, Horie-Inoue K, Takeda S, Inoue S. Modulation of adipogenesis-related gene expression by estrogen-related receptor gamma during adipocytic differentiation. Biochim Biophys Acta. 2009. 1789(2),71-77.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst A.O, Landthaler M, Lin C, Socci N.D, Hermida L, Fulci V, Chiaretti S, FoàR, Schliwka J, Fuchs U, Novosel A, Müller R.U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir D.B, Choksi R, De Vita G, Frezzetti D, Trompeter H.I, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler C.E, Nagle J.W, Ju J, Papavasiliou F.N, Benzing T, Lichter P, Tam W, Brownstein M.J, Bosio A, Borkhardt A, Russo J.J, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007. 129(7),1401-1414.
    Lefterova M.I, Lazar M.A. New developments in adipogenesis. Trends Endocrinol Metab. 2009.20(3),107-114.
    Liu J.P. The function of growth/differentiation factor 11(Gdf11) in rostrocaudal patterning of the developing spinal cord. Development. 2006.133,2865-2874.
    McPherron A.C, Lawler A.M, Lee S.J. ,Regulation of skeletal muscle mass in mice by a new TGF-βsuperfamily member. Nature. 1997. 387,83-90.
    McPherron A.C, Lawler A.M, Lee S.J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat.Genet.1999. 22,260-264.
    Minoshima Y, Taniguchi Y, Tanaka K, Yamada T, Sasaki Y. Molecular cloning, expression analysis, promoter characterization, and chromosomal localization of the bovine PREF1 gene. Anim Genet. 2001. 32(6),333-339.
    Motrescu E.R, Rio M.C. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem. 2008.389(8),1037-1041.
    Myoken Y,Kan M,Sato GH,et al. Bifunctional effects of transforming growth factor-beta (TGF-beta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites. Exp Cell Res,1990,191(2):299.
    Nakashima M, Toyono T, Akamine A, Joyner A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev. 1999. 80(2),185-189.
    Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth /differentiation factor 11. Hum Gene Ther. 2003. 14,591-597.
    Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11).Hum Gene Ther. 2004 Nov. 15(11),1045-1053.
    Oh S.P, Yeo C.Y, Lee Y, Schrewe H, Whitman M, Li E. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev. 2002. 16(21), 2749-54.
    Rahimi N, Tremblay E, McAdam L, Roberts A, Elliott B. Autocrine secretion of TGF-beta 1 and TGF-beta 2 by pre-adipocytes and adipocytes: a potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells. In Vitro Cell Dev Biol Anim. 1998。34(5),412-20.
    Raposio E, Guida C, Coradeghini R, Scanarotti C, Parodi A, Baldelli I, Fiocca R, Santi P.L. In vitro polydeoxyribonucleotide effects on human pre-adipocytes. Cell Prolif. 2008. 41(5),739-754.
    Rojas C, Enerb?ck S, Bengtsson-Olivecrona G. Synthesis and secretion of active lipoprotein lipase in Chinese-hamster ovary (CHO) cells. Biochem J. 1990. 271(1),11-15.
    Sager R, Kovac P.Pre-adipocyte determination either by insulin or by 5-azacytidine. PNAS.1982 .79(2), 480-484.
    Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, Krasney PA. Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology. 2008 Sep;149(9):4589-95. Epub 2008 Jun 5.
    Smart N.G, Apelqvist A.A, Gu X.Y, Harmon E.B, Topper J.N, MacDonald R.J, Kim S.K. Conditional expression of Smad7 in Pancreaticβcells disrups TGF-βSingnaling and induces reversible diabetes mellitus. PLOS Biology. 2006.4,200-209.
    Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El Omari K, Jefferis J, Bentham J, Taylor J.M, Schneider J.E, Arnold S.J, Johnson P, Tymowska-Lalanne Z, Stammers D, Clarke K, Neubauer S, Morris A, Brown S.D, Shaw-Smith C, Cama A, Capra V, Ragoussis J, Constam D, Seidah N.G, Prat A, Bhattacharya S. VACTERL/caudal regression/Currarino syndrome-like malformations in mice withmutation in the proprotein convertase Pcsk5. Genes Dev. 2008. 22(11), 1465-1477.
    Tahara K, Aso H, Yamasaki T, Rose M.T, Takasuga A, Sugimoto Y, Yamaguchi T, Tahara K, Takano S. Cloning and expression of type XII collagen isoforms during bovine adipogenesis. Differentiation. 2004 . 72(4),113-122.
    Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T, DePonte M, Koo A, Forse A, Chinnappan D, Martin-Ruiz C, Von Zglinicki T, Kirkland J.L. Fat Depot–Specific Characteristics Are Retained in Strains Derived From Single Human Preadipocytes.Diabetes.2006.55(9),2571-2578.
    Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008. 55(1),11-21.
    Vallée M, C?téJ.F, Fradette J. Adipose-tissue engineering: Taking advantage of the properties of human adipose-derived stem/stromal cells. Pathol Biol (Paris). 2008 .
    Vaziri C, Faller D.V. Down-regulation of platelet-derived growth factor receptor expression during terminal differentiation of 3T3-L1 pre-adipocyte fibroblasts. J Biol Chem. 1996. 271(23),13642-13648.
    Wu H.H, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof ALAutoregulation of neurogenesis by GDF11. Neuron. 2003 Jan 23. 37(2), 197-207.
    Wu Y, Smas C.M. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage. BMC Res Notes. 2008. 1:85.
    Xing F, Tan X, Zhang P.J, Ma J, Zhang Y, Xu P, Xu Y. Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol. 2007 . 217(7), 549-554.
    Xu P, Vernooy S.Y, Guo M, Hay B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003. 13(9),790-795.
    Yu J, McnMahon A.D and Valerius M.T, Recet genetic studies of mouse kindney development. Current Opinion in Genetics & Developmwnt. 2004.14,550-557.
    Zhang X, Wharton W, Yuan Z, Tsai S.C, Olashaw N, Seto E. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol. 2004. 24(12), 5106-5118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700