用户名: 密码: 验证码:
快调谐TEA CO_2单纵模激光及注入锁频技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单纵模TEA CO_2激光器因其具有窄线宽、高功率、可调谐、对人眼安全等优点,广泛应用于光泵浦远红外激光器、分子光谱学、速度测量以及大气遥感监测等诸多领域中。当其用于CO_2差分吸收雷达(DIAL)时,由于具有极好的单色性和相干性,可以实现外差探测。与直接探测CO_2 DIAL相比,外差探测CO_2 DIAL探测距离更远,探测灵敏度更高,并且可以同时获得目标的速度信息,这些优点使得国外在二十世纪八十年代就开始对其进行研究。外差探测CO_2 DIAL的关键技术之一就是要求使用频率稳定的单纵模TEA CO_2激光器,作为发射机的振荡源,鉴于此,本文从理论上和实验上对TEA CO_2激光器获得单纵模激光技术及频率锁定技术进行了研究。
     首先导出了可以描述TEA CO_2激光器动力学过程的六温度振动转动模型,利用该模型对单纵模TEA CO_2激光器的输出特性进行了分析,讨论了混合气体压强、气体成分、气体温度、输出耦合镜反射率以及谐振腔长对输出激光的影响,为TEA CO_2激光器的优化设计提供了理论依据。
     研制了一台高重复频率可调谐TEA CO_2激光器。对激光器的电极面型、预电离方式以及放电电路进行了分析和计算,建立了CLR放电电路的理论模型,并且根据激光器实际工作参数利用该模型对放电过程进行了模拟,揭示了气体激光器脉冲放电的规律。当激光器单横模运转时,可获得四个谱区共77支谱线的调谐输出,最强支谱线基横模输出能量达到350mJ,M~2=1.21。
     为了获得较大范围内单纵模激光的高功率可调谐输出,提出一种多干涉仪谐振腔结构。从三镜腔实现单纵模激光的机理出发,基于场方程和自洽场理论,对采用多干涉仪谐振腔获得单纵模激光的特性进行了分析和计算,讨论了影响激光器选单纵模能力的因素。实验上采用这种谐振腔结构实现了TEA CO_2单纵模激光的输出,得到10.6μm单纵模激光最大输出能量为324mJ,激光器可以实现69支谱线单纵模激光的调谐输出。在相同的实验条件下,与其它的干涉型谐振腔相比,使用多干涉仪谐振腔得到的单纵模激光的能量和调谐范围均有较大提高。
     为了实现稳定的单纵模激光的快速调谐输出,进行了快调谐TEA CO_2激光器注入锁频技术的研究。理论上将六温度振动模型与注入场方程耦合,考虑转动动力学及谐振腔模式间的相互作用,得到了注入锁频TEA CO_2激光器的理论计算模型,并采用此模型计算了不同条件下注入锁频激光器的输出特性。实验上首先采用扭转模腔实现了弱支谱线单纵模激光的输出,9.77μm单纵模激光的输出能量达到47mJ,有效地解决了TEA CO_2激光器中增益较弱谱线单纵模难以稳定输出的问题,同时也为注入锁频奠定了基础。然后通过缩短激光脉冲建立时间的方法来控制连续种子激光器与脉冲激光器之间实现纵模匹配,实现了TEA CO_2激光器的注入锁频,并对频率锁定时和失锁时输出激光的特性进行了研究。最后设计了一种新型的快调谐机制,解决了激光器快调谐输出时的重复定位精度问题,并且利用这种方法实现了10.28μm锁频激光和9.77μm单纵模激光的快调谐输出。
On account of the advantanges including narrow linewidth, high power, tunable, eye-safe, etc., single longitudinal mode (SLM) TEA CO_2 laser is of special interest in areas such as optically pumped far-infrared lasers, molecular spectroscopy, velocimeters and remote sensing of the atmosphere. SLM TEA CO_2 laser can be used in heterodyne differential absorption lidar (DIAL) system because of its excellent monochromaticity and coherency. Compared with direct detection CO_2 DIAL, heterodyne detection DAIL has longer detection range and higher sensitivity. The velocity information can be acquired at the same time. Such kind of research has been conducted for a long period in many foreign institutes. In the heterodyne detection CO_2 DIAL system, both power and frequency of the laser have to be stabilized. In view of this condition, the technologies to obtain SLM TEA CO_2 laser and frequency locked laser have been investigated theoretically and experimentally in this dissertation.
     First of all, a six temperature vibrational-rotational model has been used to analyze the kinetic process of TEA CO_2 laser. Output characteristics of the laser were investigated according to the model. The influences of gas pressure, gas mixture ratio, gas temperature, reflectivity of output coupler and cavity lengths on the output laser have been researched, respectively. The six temperature vibrational-rotational model will be contributed to the optimized design of TEA CO_2 laser.
     A tunable TEA CO_2 laser has been designed. The electrode style, preionization and discharge circuit of TEA CO_2 laser were analyzed and calculated. A numerical model of the discharge circuit was established to simulate the discharge process of the laser. When the laser operated in single-transverse mode, 77 emission lines of the CO_2 molecule rotational transition is obtained. The maximum energy of 350mJ and M~2=1.21 are obtained when the laser operated in fundamental transverse mode.
     In order to obtain high power SLM laser and expand the tuning range, a multi-interferometeric resonator has been presented. Based on the principle of SLM oscillation obtained by using a three-mirror resonator, a numerical model of the interferometric resonator is investigated to optimize the laser for mode selection based on self-consistent wave method and a stochastic method. SLM operation has been theoretically predicted using the model. Experimentally, SLM TEA CO_2 laser oscillation is realized using multi-interferometeric resonator. When the laser operated in SLM, 69 emission lines of the CO_2 molecule rotational transition is obtained. Pulse output energy of 324mJ at 10.6μm has been obtained. In the same experiment conditions, it shows that this multi-interferometric resonator gives better performance in mode selection than other resonator based on multi-beam interference. Both the output energy of SLM laser and tuning range can be improved obviously using this configuration.
     To achieve rapid tuning in a stable SLM TEA laser, the injection locking technique of rapidly tunable TEA CO_2 laser has been researched. Theoretically, considering vibrational kinetics of TEA CO_2 laser and interaction between resonator modes, a numerical model has been developed to represent the kinetics of injection locked TEA CO_2 laser by combined six-temperature model of vibrational kinetics with injected photon field equation. Output characteristics of the laser have been calculated and analyzed in different condition. Experimentally, a twisted mode cavity has been used to obtain SLM TEA CO_2 laser with weak-gain. SLM output energy of 47mJ is obtained at 9.77μm. This method can solve the problem that stable SLM TEA CO_2 laser of weak-gain is difficult to obtaine and it lays the foundation of injection locking. Then frequency locking of the TEA CO_2 laser has been obtained. Mode matching between the seed laser and the pulse laser has been achieved by shortening built-up time of the pulse. The characteristics of output laser have been investigated both in the situation where laser frequency was locked and not. Finally, a novel rapid tuning mechanism has been presented to improve repetitive positioning accuracy when the laser achieved rapid tuning. Using this mechanism, the rapidly tunable output between frequency locked laser at 10.28μm and SLM laser at 9.77μm has been realized.
引文
1 G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh. Side-line Tunable Laser Transmitter for Differential Absorption Lidar Measurements of CO_2: Design and Application to Atmospheric Measurements. Applied Optics. 2008, 47(7): 944~956
    2 D. Bruneau, F. Gibert, P.H. Flamant, and J. Pelon. Complementary Study of Differential Absorption Lidar Optimization in Direct and Heterodyne Detections: Erratum. Applied Optics. 2007, 46(3): 428
    3 H. Xia and C. Zhang. Ultrafast Ranging Lidar Based on Real-Time Fourier Transformation. Optics Letters. 2009, 34(14): 2108~2110
    4 L. Fiorani, F. Colao, and A. Palucci. Measurement of Mount Etna plume by CO_2-Laser-Based Lidar. Optics Letters. 2009, 34(6): 800~802
    5 P. J. Rodrigo and C. Pedersen. Peduction of Phase-Induced Intensity Noise in a Fiber-Based Coherent Doppler Lidar Using Polarization Control. Optics Express, 2010, 18(5): 5320~5327
    6 V. M. Gordienko, A. V. Koryabin, N. V. Kravtsov, and V. V. Firsov. Wind Doppler Lidar with 1.5μm Fiber Laser. Laser Physics Letters. 2008, 5(5): 390~303
    7 S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai. Coherent 2μm Differential Absorption and Wind Lidar with Conductively Cooled Laser and Two-Axis Scanning Device. Applied Optics. 2010, 49(10): 1809~1817
    8 J. Yu, M. Petros, S. Chen, Y. Bai, P. J. Petzar, B. C. Trieu, G. J. Koch, J. J. Beyon, M. J. Kavaya, and U. N. Singh. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmosperic CO_2 Measurements. NASA Technical Reports. 2010, 20100025999: 1~4
    9 R. T. Menzies and R. M. Hardesty. Coherent Doppler Lidar for Measurements of Wind Fields. IEEE Journal of Quantum Electronics. 1989, 77(3): 449~462
    10 R. M. Huffaker and R. M. Hardesty. Remote Sensing of Atmospheric Wind Velocities Using Solid-State and CO_2 Coherent Laser Systems. IEEE Journal of Quantum Electronics. 1996, 84(2): 181~204
    11 V. M. Gordienko and Y. Y. Putivskii. Coherent Doppler TEA CO_2 Lidar for Wind Velocity Measurement. Quantum Electronics. 1994, 24(3): 266~272
    12 P. F. McManamon, G. Kamerman, and M. Huffaker. A History of Laser Radar in the United States. SPIE. 2010, 7684: 76840T-1~76840T-11
    13 A. J. Beaulieu. Transversely Excited Atmospheric Pressure CO_2 Lasers. Applied Physics Letters. 1970, 16: 504~505
    14 A. Nurmikko, T.A. Detemple, and S.E. Schwarz. Single-Mode Operation and Mode Locking of High Pressure CO_2 Lasers by Means of Saturable Absorbers. Applied Physics Letters. 1971, 18(4):130~131
    15 K. Simth and R.M. Thomson. Computer Modeling of Gas Laser. Plenum Press, New York. 1978: 1~78
    16 W. Klopper, K. Bagrova, J. du Pisanle, E. Ronander, J. A. Meyer, and H. M. von Bergmann. Short-Cavity High-repetition-rate CO_2 Laser. Optical Engineering. 1994, 33(9): 2866~2869
    17 J. P. Nilaya and D. J. Biswas. Pulse Stretching Due to Partial Temporal Overlap of Two Modes in a TEA CO_2 Laser. Review of Scientific Instruments. 2000, 71(2): 579~580
    18 D. J. Biswas, J. P. Nilaya, M. B. Prasad, and P. Raote. Switch-Less Operation of a TEA CO_2 Laser. Optics Express. 2005, 13(23):9636~9637
    19 J. P. Nilaya, P. Raote, G. Patil, and D. J. Biswas. Switching of a TEA CO_2 Laser with Its Own UV Emitting Parallel Spark Channel. Optics Express. 2007, 15(1): 129~136
    20 R. A. Dougal. A New Single Mode Tunable TEA Laser. Thesis for the Master Degree of Texas Tech University. 1980: 28~38
    21広瀬秀男,近璋三.吸収体を含んだTE CO_2レーザーの単一モード化.レーザー研究. 1985, 13(8): 643~648
    22 A. Kumar. Single Mode Lasing From a TEA CO_2 Laser by the Elimination of Spatial Hole Burning Effect. Optics Communications. 2005, 245(1): 289~293
    23 E. Palange and G. Salvetti. Control of Intrapulse Frequency Chirping in Long-Pulse CO_2 Lasers Employing Perturbation-Insensitive Optical Cavities. Applied Optics. 1991, 30(27): 3832~3841
    24柴田隆,石津美津雄,板部敏和.発振しきい値以下の低圧利得部を有するハイブリッドCO_2レーザーを用いたコヒーレントドップラーライダー.気象集誌. 1991, 69(3): 413~418
    25 A. Kumar, J. P. Naliya, and D. J. Biswas. Improve Effiency of a Hybrid CO_2 Laser as a result of Increased TEM00 Mode Filling Factor. Review of Scientificand Instruments. 2004, 75(12): 5203~5204
    26 G. A. Baranov, A. V. Vasilev, V. M. Gromovenko, S. M. Kotov, A. A. Kuchinsky, Y. A. Rezunkov, V. V. Sepanov, P. V. Tomashevich, and M. V. Khakhaev. Concept of Terawatt Picosecond CO_2 Laser for Investigation of the Laser Radiation Interaction with a Matter. SPIE. 2007, 6731: 67312K-1~67312K-6
    27 G. A. Baranov, A. A. Kuchinsky, P. V. Tomashevich, S. M. Kotov, and A. V. Vasil'ev. Laser Amplifier for Picosecond CO_2 Facilities of Terawatt Power Level. Plasma Devices and Operations. 2008, 16(1): 45-59
    28 A. K. Kar, D. M. Tratt, J. G. Mathew, N. R. Heckenberg, and R. G. Harrison, Status and Prospects of Hybrid and Injection-locked TEA CO_2 lasers for Lidar and Nonlinear Optics Applications. IEEE Journal of Quantum Electronics. 1985, 21(4): 359~364
    29王振国.注入锁频2μm固体激光器研究.哈尔滨工业大学博士学位论文. 2009: 93~94
    30 J. L. Lachambre, P. Lavigne, G. Otis, and M. Noel. Injection Locking and Mode Selection in TEA-CO_2 Laser Oscillators. IEEE Journal of Quantum Electronics. 1976, QE-12(12): 756~764
    31 A. Chandonnet and M. Piche. Single-mode Pulses from a High-Pressure CO_2 Laser Operated below Emission Threshold. IEEE Journal of Quantum Electronics. 1991, 27(9): 2226~2230
    32 V. M. Gordienko, A. A. Kormakov, L. A. Kosovsky, N. N. Kurochkin, G. A. Pogosov, A. V. Priezzhev, and Y. Y. Putivskii. Coherent CO_2 Lidars for Measuring Wind Velocity and Atmospheric Turbulence. Optical Engineers. 1994, 33(10): 3206~3212
    33 A. Suda, T. Shinozaki, K. Nagasaka, and H. Tashiro. Prompt and Precise Frequency Tuning of a Transversely Excited CO_2 Laser by Means of Intracavity Active Frequency Shift. Optics Communications. 1997, 133: 245~251
    34 K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr. A Compact Injection Locked Single Longitudinal Mode TEA CO_2 Laser. SPIE. 2005, 5777: 433~437
    35 A. R. Bahrampour and A. A. Askari. Fourier-Wavelet Regularized Deconvolution (ForWaRD) for Lidar Systems Based on TEA–CO_2 Laser. Optics Communications. 2006, 257: 97~111
    36 T. Kondoh, T. Hayashi, Y. Kawano, Y.Kusama, T. Sugie, Y. Miura, R. Koseki,and Y. Kawahara. High-Repetition CO_2 Laser for Collective Thomson Scattering Diagnostic ofαParticles in Burning Plasmas. Review of Scientific Instruments. 2006, 77: 10E505-1~10E505-3
    37 T. Kondoh, T. Hayashi, Y. Kawano, Y. Kusama, and T. Sugie. Development of Collective Thomson Scattering for Alpha-Particle Diagnostic in Burning Plasmas. Plasma and Fusion Research. 2007, 2: S1111-1~ S1111-4
    38 J. L. Lachambre, P. Lavigne, G. Otis, and M. Noel. Injection Locking and Mode Selection in TEA CO_2 Laser Oscillators. IEEE Journal of Quantum Electron, 1976, QE-12(12): 756~764
    39 G. McClelland, S. D. Smith, R. G. Harrison, and D. Tratt. Injection Locked Single Mode Operation of a TEA CO_2 Laser with High Energy Extraction. International Journal of Infrared and Millimeter Waves. 1981, 2(3): 571~579
    40 A. K. Kar, D. M. Tratt, and R. G. Harrison. Injection Locking of TEA CO_2 Lasers by an Orthogonally-Polarized Injection Source. Optics Communications. 1982, 43(4): 274~276
    41 A. K. Kar, D. M. Tratt, J. G. Mathew, N. R. Heckenberg, and R. G. Harrison. Status and Prospects of Hybrid and Injection-locked TEA CO_2 Lasers for LIDAR and Nonlinear Optics Applications. IEEE Journal of Quantum Electronics, 1985, QE-21(4): 359~364
    42 G. Schafer, H. Hofmann, and W. D. Petersen. Single Longitudinal Mode Operation of a CO_2 TEA Laser by Injection Locking with a Tunable CO_2 Waveguide Laser. IEEE Journal of Quantum Electron. 1982, QE-18(2): 296~301
    43 H. N. Rutt. Heterodyne Frequency Offset Locking of a Miniature TEA Laser. Applied Physics B: Lasers and Optics. 1982, 28(3): 286
    44蓝信钜.激光技术.科学出版社. 2009,第三版: 209~210
    45 J. P. Nicholson and K. S. Lipton. A Tunable Stabilized Single-Mode TEA CO_2 Laser. Applied Physics Letter. 1977, 31: 430~432
    46 B. K. Deka and Wensen Zhu. Improver Performance of a Near Grazing Incidence Grating Continuously Tunable CO_2 Laser. Applied Optics. 1986, 25(23): 4218~4221
    47 J. R. Izatt, M, A. Rob, and W. S. Zhu. Two and Three-Grating Resonators for High-power Pulsed CO_2 Lasers. Applied Optics. 1991, 30(30): 4319~4329
    48 M. A. Rob and J. R. Izatt. Intermodal Tuning Behavior of an Etalon-Tuned Three-mirror TEA CO_2 Laser. IEEE Journal of Quantum Electronics. 1992, 28(1): 56~59
    49 J. R. Izatt. Single Mode Twenty Atmosphere CO_2 Laser. DTIC. 1997, ADA328276: 1~30
    50 G. Giuliani, E. Palange, and G. Salvetti. Multipass-Prism Interferometer for Fine-Frequency-Tuning, Single-Mode Operation of TEA CO_2 Lasers. Optics Letters. 1984, 9(9):393~395
    51 G. Giuliani, E. Palange, S. Loreti, and G. Salvetti. Multipass Grating Interferometer as Output Couplers for Tunable, Single-mode Operation of Large-bandwidth Lasers. Optics Letters. 1985, 10(12): 600~602
    52 G. Giuliani, E. Palange, and G. Salvetti. Observation of Strong Frequency Pulling in Resonators Employing Mulipass Interferometric Output Couplers. Optics Letters. 1986, 11(4): 207~209
    53 G. Guiliani, E. Palange, and G. Salvetti. Spectral Characteristics of Laser Cavities Employing Multipass Grating Interferometers as Output Couplers. Journal of the Optical Society of America B. 1987, 4(11): 1781~1789
    54 E. Palange and G. Giuliani. Reflective High-Finesse Interferometers as Effective Intrapulse Laser Frequency Stabilizers. Optics Letters. 1990, 15(12): 676~678
    55綱脇惠章,氏家貴生,草場光博,山中正宣,和田一洋. TEA CO_2レーザー発振の単ーモード化-ファブリーペローエタロン内挿型フォックスミスモード選択器を用いた発振特性.レーザー研究. 1995, 23(8): 684~689
    56草場光博,上東直也,綱脇惠章,山中正宣,和田一洋. TEA CO_2レーザーの単一モード発振およびそのパルス幅制御.日本赤外線学会誌. 1998, 8(1): 45~52
    57 A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet. Absolute Frequency Measurement of a SF6 Two-Photon Line by Use of a Femtosecond Optical Comb and Sum-frequency Generation. Optics Letters. 2005, 30(24): 3320~3322
    58 F. Bielsa, K. Djerroud, A. Goncharov, A. Douillet, T. Valenzuela, C. Daussy, L. Hilico, and A. Amy-Klein. HCOOH High-Resolution Spectroscopy in the 9.18μm Region. Journal of Molecular Spectroscopy. 2008, 247(1): 41~46
    59 J. Choi, Y. Chung, M. Strzelec, and M. Kopica. Frequency Stabilization of a Radio Frequency Excited CO_2 Laser Using the Optogalvanic Effect. Review of Scientific Instruments. 1998, 69(12): 4038~4040
    60 J. Choi, Y. Chung, M. Strzelec, and M. Kopica. Frequency Stabilization of a Radio Frequency Excited CO_2 Laser Using the Optogalvanic Effect. Review ofScientific Instruments. 1998, 69(12): 4038~4040
    61马养武,黄霖,陈钰清,张朝阳.光电流稳频复合腔调谐CO_2波导激光器的研究.中国激光. 1992, 19(3): 161~166
    62 J. Choi. Frequency Stabilization of Radio Frequency Excited CO_2 Laser Using Optogalvanic Effect. CLEO/PR’99. 1999: 803~804
    63 J. L. Lachambre, M. Gagné, and P. Bernard. Stark-Cell Stabilization of a CH2F2 Laser Pumping Source. Applied Optics. 1986, 25(22): 4111~4114
    64 J. L. Lachambre and M. Gagné. Stark-Cell Stabilized Submillimeter Wave Laser at 393μm. Applied Optics. 1990, 30(9): 1013~1015
    65 T. Hori and M. Izutsu. Powerful Optically Pumped Far-Infrared Laser with Stable Output Power. Japanese Journal of Applied Physics. 2000, 39(6A): 3422~3428
    66 P. W. Pace and J. M. Cruickshank. A Frequency Stabilized Compact High Repetition Rate TEA-CO_2 Laser. IEEE Journal of Quantum Electronics. 1980, QE-16(9): 937~944
    67 H. N. Rutt. A Heterodyne Frequency Offset Locking Technique for Pulsed or CW Lasers. Journal of Physics E: Scientific Instruments. 1984, 17(8):704~709
    68 T. Stace, A. N. Luiten, and R. P. Kovacich. Laser Offset-frequency Locking Using a Frequency-to-voltage Converter. Measurement Science and Technology. 1998, 9: 1635~1637
    69陆威,高明,王春晖,尚铁粱,王骐. CO_2脉冲激光偏频锁定系统.中国激光. 2001, 28(9): 772~774
    70 W. Lu, Q. Wang, and T. Shang. A Frequency Offset Locking System for the Short-Pulsed Lasers Outdoors. SPIE. 2005, 5640: 537~543
    71 G. Ritt, G. Cennini, C. Geckeler, and M. Weitz. Laser Frequency Offset Locking Using a Side of Filter Technique. Applied Physics B: Lasers and Optics. 2004, 79(3): 363~365
    72 Z. Tian, S. Qu, and Z. Sun. Active and Passive Frequency Stabilization for a Q-switched Z-fold Radio-frequency-excited Waveguide CO_2 Laser with Two Channels. Applied Optics. 2005, 44(29): 6269~6273
    73 Z. Tian, S. Qu, Z. Sun, and L. Li. Offset Frequency Locking for Nanosecond Laser Pulses. Optics Communications. 2006, 265(2): 585~587
    74 J. Hughes and C. Fertig. A Widely Tunable Laser Frequency Offset Lock with Digital Counting. Review of Scientific Instruments. 2008, 79: 103~104
    75 J. L. Lachambre, G. Otis, and P. Lavigne. Simultaneous Frequency Stabilization and Injection in a TEA-CO_2 Oscillator. Applied Optics. 1978, 17(7): 1015~1017
    76 A. Suda, H. Tashiro, and S. Kawaguchi. Line Narrowing and Frequency Stabilization of High-pressure CO_2 Laser by Means of Injection Locking with Multi-isotope Master Oscillator. IEEE Journal of Quantum Electronics. 1994, 30(11): 2670~2675
    77 R. Henschke, J. Fontanella, and A. J. Demaria. Injection Locking Q-Switched and Q-Switched Cavity Dumped CO_2 Lasers for Extreme UV Generation. United States Patent. 2008, US7327769B2: 1~14
    78 A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger. Differential Absorption Lidar CO_2 Laser System for Remote Sensing of TATP Related Gases. Applied Optics. 2009, 48(4): B145~B150
    79 H. Kariminezhad, P. Parvin, F. Borna, and A. Bavali. SF6 Leak Detection of High-Voltage Installations Using TEA Laser-based DIAL. Optics and Lasers in Engineering. 2010, 48: 491~499
    80 J. Heiser, S. Smith, and A. Sedlacek. Using CO_2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air. DOE Scientific and Technical Information. 2008, BNL-90042-2008: 16~17
    81 V. H. Hasson and G. L. Dryden. Comparison of Performance Capabilities of Spread Spectrum Coherent and Direct Direction CO_2 DIAL Systems and Associated Hardware Fielding Implications. SPIE. 2002, 4723: 162~171
    82 T. Fukuda, Y. Matsuura, and T. Mori. Sensitivity of Coherent Range Resolved Differential Absorption Lidar. Applied Optics. 1984, 23(12): 2026~2032
    83 J. R. Roadcap, M. H. Laird, E. A. Murphy, D. L. Rall, R. Frelin and P. J. McNicholl. Heterodyne CO_2 DIAL and Its Measurements. SPIE. 1997, 3127: 201~211
    84 C. S. Washertt. Coherent Remote Optical Sensor System Overview. SPIE. 1999, 3707: 197~202
    85 D. F. Pierrottet and D. C. Senft. CO_2 Coherent Differential Absorption Lidar. SPIE. 2000, 4036: 17~23
    86 D.C.Senft and D.F.Pierrottet. Development of A High Speed Wavelength Agile CO_2 Local Oscillator for Heterodyne DIAL Measurements. SPIE. 2002, 4722: 72~77
    87 I. V. Sherstov, K. V. Bychkov, and V. A. Vasiliev. Two Channel CO_2 Laser System for Heterodyne Lidar. Atmospheric and Ocean Optics. 2005, 18(3): 270~276
    88 A. S. Boreysho, S. Y. Chakchir, M. A. Konyaev, K. A. Konovalov, and A. V. Savin. Optical Heterodyning in Differential Tunable CO_2 Laser Systems. SPIE,2006, 6160: 61602R-1~ 61602R-14
    89吴谨.高功率TE(A) CO_2激光器的调谐理论研究.中国科学院博士研究生学位论文. 2001: 14~32
    90 G.赫兹堡.分子光谱与分子结构(第二卷):多原子分子的红外光谱与拉曼光谱.王鼎昌译.科学出版社. 1986: 56~57
    91张莉莉.小型可调谐同位素TEA ~(13)C~(16)O_2激光器研究.哈尔滨工业大学博士学位论文. 2008: 12~13
    92陈宗柱.电离气体发光动力学.科学出版社. 1996: 33~43
    93田兆硕,王骐,李自勤,王雨三.电光调Q CO_2激光器的六温度模型理论与速率方程理论比较分析.物理学报. 2001, 50(12):2369~2376
    94 M. Soukieh, B.A. Ghani, and M. Hammadi. Mathematical Modeling of CO_2 TEA Laser. Optics & Laser Technology. 1998, 30(8):451~457
    95 J. Wu, C. Ke, D. Wang, R. Tan, and C. Wan. Mathematical Modeling of Tunable TEA CO_2 Lasers. Optics & Laser Technology. 2007, 39(5):1033~1039
    96 H. Khosravi, A. R. Bahrampour, A. Bahari, R. Farrahi, and N. Daneshfar. Theoretical Study of Hybrid TEA CO_2 Lasers. Optics & Laser Technology. 2008, 40(6): 779~784
    97 V. V. Nevdakh, M. Ganjali, and K. I. Arshinov. On the Temperature Model of CO_2 Lasers. Quantum Electronics. 2007, 37(3): 243~247
    98 K. R. Manes and H. J. Seguin. Analysis of the CO_2 TEA Laser. Journal of Applied Physics. 1972, 43(12): 5073~5078
    99 M. Kumar, J. Khare, and A. K. Nath. Numerical Solution of Boltzmann Transport Equation for TEA CO_2 Laser Having Nitrogen-Leans Gas Mixtures to Predict Laser Characteristics and Gas Lifetime. Optics & Laser Technology. 2007, 39(1): 86~93
    100楼祺洪,徐捷,傅淑芬,庄斗南,陈建文.脉冲放电气体激光器.科学出版社, 1993: 23~32
    101 G. B. Popari?, M. M. Risti?, and D. S. Beli?. Electron Energy Transfer Rate Coefficients of Carbon Dioxide. The Journal of Physical Chemistry A, 2010, 144(4): 1610~1615
    102 R. R. Jacobs, K. J. Pettipiece, and S. J. Thomas. Rotational Relaxation Rate Constants for CO_2. Applied Physics Letters. 1974, 24(8): 375~377
    103 F. A. Hopf and C. K. Rhodes. Influence of Vibrational, Rotational, and Reorientational Relaxation on Pulse Amplification in Molecular Amplifiers.Physical Review A. 1973, 8(2): 912~929
    104 P. K. Cheo and R. L. Abrams. Rotational Relaxation Rate of CO_2 Laser Levels. Applied Physics Letters. 1969, 14(2): 47~49
    105李适民.激光器件原理与设计.国防工业出版社. 1997: 71~73
    106 W. J. Witteman. The CO_2 Laser. London: Springer Verlag. 1987: 170~171
    107 T. Y. Chang. Improved Uniform-Field electrode Profile for TEA Laser and High-voltage Applications. Review of Scientific Instruments. 1973, 44(4): 405~407
    108 G. J. Ernst. Uniform-Field Electrode with Minimum Width. Optics Communications. 1984, 49(4): 275~277
    109赵翔,左都罗,卢宏,程祖海. TEA CO_2激光器几种放电电极的比较.强激光与粒子束. 2006, 18(4): 569~574
    110郭亚丁,谭荣清.新型Rogowski电极的设计及分析.激光与光电子学进展. 2008, 45(10): 45~50
    111 I. Leyva and J. M. Guerra. A Compacted Ernst-Electrodes Profile for Pulsed High-Pressure Lasers. Measurement Science and Technology. 1999, 10: N1~N2
    112吕岩.高平均功率高重复率TEA CO_2激光系统关键技术研究.中国科学院博士研究生学位论文. 2004: 38~52
    113 A. Bahrampour and A. A. Ganjovi. Theoretical Analysis of Electrical Transient Behaviour in TEA CO_2 Laser with Dielectric Corona Pre-Ionization. Journal of Physics D: Applied Physics. 2003, 36(20): 2487~2497
    114 A. Behjat, M. Aram, F. Soltanmoradi, and M. Shabanzadeh. Investigation on a TEA-CO_2 Laser with Surface Corona Pre-Ionization. SPIE. 2006, 6263: 626305-1~626305-6
    115 A. Kumar, J. P. Nilaya, M. B. Sai Prasad, P. Raote, and D. J. Biswas. Effect of Delay in the Operation of Helium-Free TEA CO_2 Lasers with Sequential and Parallel Spark Preionisers. Optics & Laser Technology. 2008, 40(8): 1068~1071
    116安然,谭荣清,郭亚丁,郑义军,陈静. TEA CO_2激光器预电离结构电极系统的电场研究.强激光与粒子束. 2009, 21(9): 1281~1285
    117 V. M. Borisov, Y. A. Satov, and V. V. Sudakov. Influence of Preionization on the Discharge Characteristics of a CO_2 Laser. Soviet Journal of Quantum Electronics, 1976, 6(11): 1343~1344
    118 Y. Ohwadano and T. Sekiguchi. Development and Performance Characteristics of a UV-preionized, High-power TEA Pulsed CO_2-laser. Japanese Journal of Applied Physics, 1980, 19(8): 1493~1504
    119 M. S. Trtica and G. N. Ostojic. Numerical Modeling of Self-Sustained TEA CO_2 Laser Operation. SPIE. 1999, 3612: 7~14
    120 Y. Sakai, S. Kaneko, H. Tagashira, and S. Sakamoto. A Boltzmann Equation Analysis of Electron Swarm Parameters in CO_2 Laser Mixtures. Journal of Physics D: Applied Physics. 1979, 12(1): 23~31
    121 G. J. Ernst and A. G. Boer. Experimental Determination of the Electron-Avalanche and the Electron-Ion Recombination Coefficient. Optics Communications. 1980, 34(2): 235~239
    122 E. Favilla, E. Sani, M. Ciofini, and A. Lapucci. Beam Characterization of a Scalable 220 W-Ceramic Nd:YAG Laser. SPIE. 2006, 6346: 64360W-1~64360W-8
    123 J. M. Khosrofian and B. A. Garetz. Measurement of a Gaussian Laser Beam Diameter through the Direct Inversion of Knife-Edge Data. Applied Optics. 1983, 22(21): 3406~3410
    124樊新民,郑义,孙启兵,王冠军,曾灏宪,邴丕彬,任怀远. 90/10刀口法测量激光高斯光束束腰的研究.激光与红外. 2008, 38(6): 541~543
    125 L. R. Botha, R. N. Campbell, E. Ronander, and M. M. Michaelis. Numerical Investigation of a Three-Mirror Resonator for a TE CO_2 Laser. Applied Optics. 1991, 30(18): 2447~2452
    126 W. W. Rigrod. Homogeneously Broadened CW Lasers with Uniform Distributed Loss. IEEE Journal of Quantum Electron. 1978, QE-14: 377~381
    127 J. R. Izatt, W. Schatz, and V. B. Fleurov. Continuously Tunable Single-Mode Twenty-Atmosphere CO_2 Laser. SPIE. 1996, 2842: 78~79
    128 K. Kinosita. Numerical Evaluation of the Intensity Curve of a Multiple-Beam Fizeau Fringe. Journal of the Physical Society of Japan. 1953, 8(2): 219~225
    129 R. Wang and Y. Li. Dual-Polarization Spatial-Hole-Burning-Free Microchip Laser. IEEE Photonics Technology Letters. 2009, 21(17): 1214~1216
    130 W. Koechner. Solid-State Laser Engineering. 2006, 6th edition: 268~270
    131 Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang. A Diode Pumped Tunable Single-Frequency Tm: YAG Laser Using Twisted-Mode Technique. Laser Physics Letters. 2010, 7(1): 17~20
    132 B. Song, W. Zhao, D. Ren, Y. Qu, H. Zhang, L. Qian, and X. Hu. Passively Q-Switched Laser with Single Longitudinal Mode Based on the Frequency Selection of Grating and F-P Etalon in Twisted-Mode Folded Cavity. ChineseOptics Letters. 2009, 7(9): 805~808
    133 E. Hao, H. Tan, T. Li, and L. Qian. Single-Frequency Laser at 473nm by Use of Twisted-Mode Technique. Optics Communications. 2007, 270(2): 327~331
    134 V. M. Gkortas, A. Gordon, C. Jirauschek, C. Wang, L. Kuznetsova, L. Diehl, M. A. Belkin, A. Belyanin, and F. X. Kartner. Spatial Hole Burning in Actively Mode-Locked Quamtum Cascade Laser. CLEO 2009, Vols 1-5: 1055~1056
    135 M. Nadeau, S. Petit, P. Balcou, R. Czarny, S. Montant, and C. Simon-boisson. Picosecond Pulses of Variable Duration from a High-Power Passively Mode-Locked Nd: YVO4 Laser Free of Spatial Hole Buring. Optics Letters. 2010, 35(10): 1644~1646
    136 Z. Jiang and J. R. Marciante. Impact of Transverse Spatial-Hole Buring on Beam Quality in Large-Mode-Area Yb-Doped Fibers. Journal of the Optical Society of America B-Optical Physics. 2008, 25(2): 247~254
    137 J. Kroll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro. Longitudinal Spatial Hole Burning in Terahertz Quantum Cascade Lasers. Applied Physics Letters. 2007, 91(16): 161108-1~161108-3
    138 H. Kogelnik. Coupling and Conversion Coefficients for Optical Modes. Symposium on Quasi-Optics. 1964: 333~345
    139肖金遐,丁金星,腔失调对模耦合的影响.激光杂志. 1996, 17(3): 128~131
    140 C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, and J. Chiaroni. CO_2 Laser-Based Differential Absorption Lidar System for Range-Resolved and Long-Range Detection of Chemical Vapor Plumes. Applied Optics. 1995, 34(27): 6187~6200
    141 T. Itable. Measurements of the Urban Ozone Vertical Profile with an Airborne CO_2 DIAL. Applied Optics. 1989, 28(5): 931~934
    142 Y. Qu, D. Ren, X. Hu, F. Liu, and J. Zhao. Rapidly Tuning Miniature Transversely Excited Atmospheric Pressure CO_2 Laser. Applied Optics. 2002, 41(24): 5025~5029
    143 F. R. Faxvog and H. W. Mocker. Rapidly Tunable CO_2 TEA laser. Applied Optics. 1982, 21(22): 3986~3987
    144 A. Crocker, R. M. Jenkins, and M. Johnson. A Frequency Agile, Sealed-off CO_2 TEA laser. Journal of Physics E: Scientific Instruments. 1985, 18(2): 133~135
    145 J. Fox and L. A. Jeffrey. High Speed Tuning Mechanism for CO_2 Lidar Systems. Applied Optics. 1986, 25(21): 3830~3834

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700