用户名: 密码: 验证码:
钢轨打磨形面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路系统是以轮轨接触为基础的运输系统,钢轨在其中扮演了重要的角色。由于其上要支撑相当大的重量,无可避免的会出现各种损耗和破坏。而钢轨打磨是一种对钢轨进行维护的重要手段。通过对钢轨进行打磨,不仅能恢复钢轨的断面形状,还能有目的的改变其形状,达到预防钢轨伤损的发生与发展、改善轮轨接触性能的目的。因此,研究钢轨打磨形面就有很强的实际应用价值。本文在以下几个方面对钢轨打磨形面进行了研究:
     1.以车辆-轨道耦合动力学理论为基础,使用现场实测的钢轨形面数据,分析了曲线外侧钢轨磨耗后对车辆通过曲线的动力学行为的影响。分析表明钢轨磨耗后形面不能与车轮形面良好配合,会影响车辆的曲线通过性能,甚至可能引发安全事故。
     2.以减小轮轨接触界面法向间隙为目标,寻找了轮轨接触应力水平较小的钢轨打磨目标形面,为钢轨打磨方案的设计提供理论依据。根据三维非赫兹滚动接触理论寻找了轨头的优化范围,在此范围内能保证轮对动态横移过程中,轮轨接触点附近最小法向间隙的钢轨轨头外形。针对目前铁路线路接触应力大,磨损严重的问题,利用目前的方法对现有的60 kg/m钢轨进行了优化设计。利用车辆-轨道耦合动力学理论及三维弹性体非赫兹滚动接触理论对优化前后钢轨踏面与原车轮接触时静态接触性能及动态接触性能进行了分析。结果表明,优化后轮轨界面之间具有较好的“共形”接触特性,在不降低车轮其他动力学性能的情况下,钢轨形面优化后的轮轨接触应力显著地降低,可以有效降低轮轨磨耗。
     3.对高速线路钢轨缺陷的类型进行了介绍和分析,认为在钢轨缺陷形成的初始阶段对钢轨进行预防性打磨能有效防治缺陷的发展,延长钢轨使用寿命。随后,根据缺陷形成的位置、大小等特点,采用经验设计法设计出了一种适用于高速铁路钢轨预防性打磨的形面,并阐述了其构造过程。然后用SIMPACK软件及三维非赫兹滚动接触理论对其进行了动力学性能及接触力学性能的分析。结果表明,设计的钢轨预防性打磨形面与钢轨原始形面的各项性能均相差不大,符合预期。
Railway system is a transport system based on wheel-rail contact. Rail played an important role in this system. Due to it must support considerable weight, it emergence of various destruction inevitably. Rail grinding is an important means of maintenance. Through rail grinding, not only to restore rail section shapes, but also with an aim to change its shape to the poupers of prevent the occurrence of rail failure and improvement the wheel-rail contact performance. Therefore, the study of rail grinding profile will have a strong practical value. This article do some study on rail grinding profile as followed:
     1. Based on the vehicle-track coupling dynamics theory, using field measurement data of rail profile, we analyse the vehicle's curving performance while the outside rail is wear. The result shows the wear rail is not suit for the original wheel, it will affect the vehicle's curving performance significantly, even it maybe evev lead to an anccident.
     2. With an aim to reduce the normal gap of wheel and rail, search a rail grinding profile of low contact stress level of wheels/rails, and support the theory foundation of rail grinding project. The optimization scope of the rail head is determined based on the theory of three-dimensional elastic bodies rolling contact with non-Hertzian. In the scope, the minimum gap forms between the original wheel and the improved rail when the wheelset shifts transversely. To mitigate the damage of the wheels and rails served in railways, this present method is utilized to optimize the profile of CHN60 rail. The theory of vehicle-track coupling dynamics and three-dimensional elastic bodies rolling contact with non-Hertzian are used to analyze the contact behavior of the wheel/rail before and after the rail profile optimization, in static and dynamic state. The results show that the optimized rail profile is in good conformal contact with LM wheel, which reduces wheel-rail contact stress significantly without sacrificing the dynamic performance, and the wear status of the left wheel-rail are decline. Therefore, the wear of the wheels and the rails can be decreased effectively by using the optimized rail.
     3. Analyse and introduce the type of rail defects in high-speed railway, consider that if grind the rail defects in the initial stages we can control the defects and extend the rail life. Then according to the location, size and other characteristics of defects, adopt empirical design method to design a rail profile of preventive rail grinding suit for high-speed railway, and describe the process of its construction. Subsequently use SIMPACK software package and CONTACT numerical procedure to analyse its dynamic performance and contact mechanical performance. The results show that the design of preventive rail grinding profile is little difference with the original profile, in line with expectation.
引文
[1]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [2]郭福安,张梅.客运专线钢轨打磨的思考[J].中国铁路,2008(3):53-54
    [3]刘启跃,王文健,周仲荣.高速与重载铁路钢轨损伤及预防技术差异研究[J].润滑与密封,2007,32(11):11-14,68.
    [4]Tuzik, Robert E, To grind or not to grind? [J]. Railway Age, Mar 1996:42-53
    [5]贺振中.国外钢轨打磨技术的应用与思考[J].中国铁路,2000(9):38-40.
    [6]Dr. Wolfgang Schoech. ROLLING CONTACT FATIGUE MITIGATION BY GRINDING出版刊物不详
    [7]Zarembski. A. M., On the benefits of rail maintenance grinding[R], AREA Bulletin,760.1988
    [8]E. Megel, M. Roney, P. Sroba, The blending of theory and practice in modern rail grinding. [J]. wear,2002(253):308-316.
    [9]John Stanford, Peter Sroba, Eric Megel. Burlington Northern Santa Fe preventive gradual grinding initiative.[R].AREMA,1999(9).
    [10]国际重载协会.国际重载铁路最佳应用指南.北京:中国铁道出版社,1990.
    [11]Jochen Brandau. Wear reduction in light rail systems through asymmetrical railhead profiles[J]. Boundary and Mixed Lubrication:Science and Application,2002:305-316
    [12]陈国庆.丰沙线曲线区段波磨钢轨打磨廓形优化的研究.[D].成都:西南交通大学,1990.
    [13]刘启跃.减缓曲线钢轨侧磨的方法探讨[J].铁道建筑,1997(5):28-30
    [14]雷晓燕.钢轨打磨原理及其应用[J].铁道工程学报,2000(1):28-33.
    [15]刘学毅.不对称打磨技术减缓钢轨侧磨效果初探[J].中国铁路,1993(10):12-14.
    [16]CHEN Peng,GAO Liang,and HAO Jianfang. Dynamics Simulation on Asymmetrical Rail Grinding in Railway Curve[J].ICTE 2007:406-411
    [17]牛道安,李志强.提速线路钢轨打磨作业方案的探讨[J].铁道建筑,2006(8):91-93
    [18]张铭达.高速重载线路钢轨打磨方法优化研究[D].成都:西南交通大学,2006
    [19]王文健,陈明韬,郭俊,等.高速铁路钢轨打磨技术及应用[J].西南交通大学学报,2007,42(5):574-577
    [20]郭俊,刘启跃,王文健.钢轨打磨对轮轨滚动接触斑行为影响研究[J].铁道建筑,2009(12):92-94
    [21]金学松,杜星,郭俊,崔大宾.钢轨打磨技术研究进展[J].西南交通大学学报.2010,2(45):1-10.
    [22]K. Knothe, S. L. Grassie. Modeling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics,1993,22:209-262.
    [23]K. Popp, H. Kruse, I. Kaiser, Vehicle-track dynamics in the mid-frequency range, Vehicle System Dynamics,1999,31:423-464.
    [24]翟婉明车辆轨道耦合动力学.第三版.北京:科学出版社,2007:12-114.
    [25]肖广文,肖新标,温泽峰,金学松.高速轮对动力学性能的比较.铁道学报2008,32(6):29-35.
    [26]Y. Sato, T. Odaka, H. Takai, Theoretical analysis on vibration of ballasted track. Quarterly Report of RTRI,1988,29:30-33
    [27]K. Knothe, S. L. Grassie. Modeling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics,1993,22:209-262.
    [28]Z. Y. Shen, J. K. Hedrick, J. A. Elkins. A comparison of alternative creep-force models for rail vehicle dynamic analysis. Proceedings of the Eighth IAVSD Symposium, Cambridge, MA,1983:591-605
    [29]肖广文,肖新标,温泽峰,金学松.高速轮对动力学性能的比较[J].铁道学报.2008,30(6):29-35.
    [30]孙翔,金昌鼎.磨耗形踏面与钢轨的两点接触[J].西南交通大学学报.1985,2:45-56.
    [31]Effects of rail gauge corner grinding and wheel tread hollow. [J]. Railway Age, Jun 1994:85-92.
    [32]Kevin Sawley, Curtis Urban, Russell Walker. The effect of hollow-worn wheels on vehicle stability in straight track. Wear 258 (2005):1100-1108
    [33]刘迎曦,张军.轮轨两点接触的有限元分析.机械工程学报[J].2005,41(11):121-126
    [34]侯传伦.重载铁路曲线段磨耗状态下轮轨相互作用分析.[D].成都:西南交通大学,2009
    [35]Tanel Telliskivi, Ulf Olofsson. Wheel-rail wear simulation. Wear 257 (2004):1145-1153
    [36]张良威.重载货车轮轨磨耗研究[D].成都:西南交通大学,2008
    [37]卜继玲,李芾,付茂海,黄运华.重载列车车辆轮轨作用研究[J].中国铁道科学,2005,26(5):52-56.
    [38]张宝庆,周国东.重载货车车轮踏面垂直磨耗原因分析及改进[J].铁道机车车辆,2008,28(3):70-72.
    [39]Wu H M. Investigations of Wheel/rail Interaction on Wheel Flange Climb Derailment and Wheel/rail profile Compatibility [D]. The Graduate College of the Illinois Institute of Technology,2000:.99-140.
    [40]张剑,温泽峰,孙丽萍,金学松.基于钢轨形面扩展法的车轮形面设计.机械工程学报,2008,44(3):44-49.
    [41]崔大宾,李立,金学松,肖广文.基于轮轨法向间隙的车轮踏面优化方法[J].机械工程学报,2009,45(12):205-210
    [42]崔大宾.铁路列车轮轨形面优化研究[D].成都:西南交通大学,2009
    [43]KALKER J J. Three-dimensional elastic bodies in rolling contact[M]. Netherlands:Kluwer Academic Publishers,1990.
    [44]钱令希,钟万勰,程耿东,隋允康.工程结构优化设计的一个途径_序列二次规划SQP[J].计算结构力学及应用,1984,(1):7-20.
    [45]刘陶文.BFGS方法及其在求解约束优化问题中的应用[D].湖南大学,2006.
    [46]赵雪芹,钟雯,王文健,刘启跃.高速重载线路钢轨损伤特性分析.润滑与密封[J].2007,32(10)
    [47]Stuart L. Grassiea, John A. Elkinsb. Tractive effort, curving and surface damage of rails Part 1. Forces exerted on the rails. Wear 258 (2005) 1235-1244
    [48]Sidney Coetzer.The history of rail grinding in southern Africa.CIVIL ENGINEERINGJan 2003:15-17.
    [49]王小文,章欣,冯文相.广深准高速铁路钢轨波状磨耗特点和发展规律[J].中国铁道科学.1998,19(2):28-34
    [50]沈志云.高速重载轮轨接触表面波浪形磨损及接触疲劳的研究.基础科学研究.2004,2:19-23
    [51]牛学勤.波磨钢轨合理打磨周期决策研究[J].铁道标准设计.1997,12:13-16
    [52]Rolf Dollevoet,Zili Li,Marija Molodova,Xin Zhao. The Validation of Some Numerical Prediction on Squats Growth[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009), Firenze, Italy, September 15-18,2009:369-377
    [53]Zili Li,Xin Zhao, Rolf Dollevoet. The Determination of A Critical Size for Rail Top Surface Defects to Grow Into Squats[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2009), Firenze, Italy, September 15-18,2009:379-388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700