用户名: 密码: 验证码:
新型铝箔轧制油的开发及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以上海高桥石化润滑油为原料,开发研制了高档的铝箔轧制油。论文选取国际顶级的ESSO商品铝箔基础油(2#)为参照样品,对多组不同馏程Chevron加氢润滑油(3#~14#)进行了考察研究,采用气质联用技术、紫外分光光度法和紫外荧光法分析了它们的化学组成,然后测定了这些油品的馏程、粘度、密度、表面张力、热稳定性、酸值等物化性能和油膜强度、退火性能、闪点等使用性能。研究表明,该Chevron加氢润滑油具有低硫、低芳烃特点,通过调配,可作为优质的铝箔轧制基础油,性能优于ESSO商品铝箔轧制基础油。
     论文考察探索了油品化学组成与性能之间关系,研究表明:油品轻质组份(碳链长度≤C11的组份)越多,油品的初馏点越低,且从初馏点到10%馏出温度的宽度越大;油品重质组份(碳链长度≥C15的组份)越多则油品的终馏点越高。粘度与油品的成分组成也有关,主要是由馏程决定,当初馏点相同时,终馏点愈高,粘度就愈高;当终馏点相同,初馏点愈低粘度愈低。基础油的闭口闪点与初馏点具有良好的线性关系:t_s=0.615t_i-45.9。基础油的油膜强度与其组成有关,如果基础油中碳链长度≥C13的组份含量太低则会影响其油膜强度。基础油的退火性能除与碳链长度、终馏点、粘度大小、芳烃和硫含量有关外,还与基础油成分的类型有关,且异构烷烃的退火性能较正构烷烃和环烷烃的好。
     添加剂可以改善和提高轧制油的使用性能,论文对CSA-P(醇酯型)、WYLOR-10(酯型)和WYLOR-12(醇型)等三种添加剂、用量及作用机理进行了研究,结果表明这些添加剂与基础油具有很好的相容性。增加添加剂用量可提高油样的粘度和油膜强度,但退火性能变差,最佳添加剂的用量为5~6%(W/W)。
     在实验研究基础上,以性能最佳的8#油为主体,调配成为工业试验用基础油(15#),论文对15#油进行了性能综合测试,然后加入5~6%(W/W)CSA-P2添加剂制备成铝箔轧制润滑油。论文对该润滑油进行工业应用试验,研究表明,用该润滑油可以轧制出厚度为0.1mm左右、表观质量和退火性能优良的高精度铝箔,在一个月使用过程中,轧制性能稳定,综合指标达到了世界知名品牌ESSO第三代铝箔轧制油的水平。
Slap-up rolling oil for aluminum foil has been developed by using the lubricating oil from Shanghai Gaoqiao Petrochemical Corporation. Several Chevron hydrogenation oils (3#~14#) have been researched by referring to the rolling basic oil for aluminum foil from ESSO(2#). Their chemical components were mensurated by GC-MS, Ultraviolet Spectrometry and Ultraviolet Fluorescence. The physical and chemical performances, including the distillation range, the viscosity, the density, the surface tension, the thermal stability and the acid number were mensurated. And the load-carrying capacity, annealing capacity and flash point were also mensurated separately. The results show that the Chevron hydrogenation oils have the traits of low aromatic and low sulfur. They can be used to the rolling basic oil for aluminum foil by preparing. And their perfomances are better than the rolling basic oil for aluminum foil from ESSO.
     The relation between the performance of the oil and its components has been reviewed. The results show that the more the light components, the lower the dropping point, the wider the width between the dropping point and the 10% recovered distilled temperature. The more the heavy components, the higher the end point of distillation. The viscosity is also connection with the components of the oil. It is mainly decided by the distillation range. When the dropping point is the same, the higher the end point of distillation gets higher viscosity. When the end point of distillation is the same, the lower the dropping point gets lower viscosity. And the flash point is linear realation to the dropping point: t_s=0.615t_i-45.9. The load-carrying capacity of the basic oil is connection with its components. If the content of the component, the length of carbon chain is more than thirteen is very slow, its load-carrying capacity will be affected. Beside the annealing capacity is connection with the length of carbon chain, the end point of distillation, the viscosity, the content of aromatic hydrocarbon and the content of sulfur, it is also connection with the type of component, the annealing capacity of isomeric alkyls is better than normal alkyls and cyclanes. Additives can improve the using performance of the rolling oil. The type (CSA-P, WYLOR-10 and WYLOR-12) and the quantity of the additives and the acting mechanism were studied. The results show that the consistency between the additives and the basic oil is very good. And the load-carrying capacity and the viscosity is increased, the annealing capacity becomes badder by adding the additives, so the appropriate quantity of additives is 5~6%.
     A basic oil (15#) is prepared by distilling and incising the eighth oil, then the additive of 5~6% CSA-P2 is added. It is evaluated by the laboratory tests and industry tests. The results show that it can roll the aluminum foil, whose thickness is about 0.1mm with good apparent and good annealing capacity. And the rolling performance is steady by using it for one month. Its synthetical performance reaches the level of the third era rolling oil for aluminum foil in ESSO.
引文
[1] 王祝堂,田荣璋.铝合金及其加工手册.长沙:中南工业大学出版社,2000
    [2] 潘复生,张静.铝箔材料.北京:化学工业出版社,2005
    [3] 陈建,秦泗吉,袁国明.轧制塑性加工中的摩擦机理.润滑与密封.1998,(6):31~32
    [4] 李小玉.轧制润滑工艺.北京:冶金工业出版社,1979
    [5] 孙建林.轧制工艺润滑原理技术与应用.北京:冶金工业出版社,2004
    [6] Cheng G k. Functions of in Aluminum Foil Rolling. Lubr. Eng., 1983, 39(2): 87~92
    [7] 王廷博.金属磨损.北京:冶金工业出版社,1992
    [8] 侯玉青.铝箔轧制油的优化选配.轻金属,1997,(9):61~62
    [9] Sargent L R B. Pressure Viscosity Coefficients of Liquid Lubricant. ASLE Trans. 1983, 26(1): 1~10
    [10] Theo Mang, Wilfried Dresel. Lubricants And Lubrication. Vogel Publishing company, 1983
    [11] 孙建林.铝合金冷轧工艺润滑剂的新进展.轻合金加工技术.1990,18(4):25~28
    [12] 李彦祥.试述铝箔轧制油常规分析项目的意义.铝加工技术,1992,(4):63
    [13] 周亚军,毛大恒.铝材轧制添加剂的相容性研究.铝加工,2000,23(2):26~30
    [14] 李先胜.轧制油国产化的试验和应用.轻合金加工技术,1996,24(10):21~23
    [15] Sun Jianlin, Zhang Xinming. The Evaluation of Lubrication Performances of Lubricants for Cold Rolling Aluminum Strip. J. of Central South University of Tech., 1997, (1): 65~67
    [16] 孙建林.铝板带箔工艺润滑中基础油的选择.轻合金加工技术,1995,23(7):12~14
    [17] 孙建林,张新明.铝材冷轧中基础油的润滑作用及影响因素.中南工业大学学报,1996,27(3):312~315
    [18] 孙建林,罗春辉,陈先波.铝材冷轧润滑剂(基础油)润滑性能评价.润滑与密封,1993,(5):1~4
    [19] 姚保儒.铝冷轧基础油性能组成和使用特性的关系.润滑与密封,1993,31(12):44~48
    [20] 陈淮东.铝轧制基础油的性能与特性.轻合金加工技术,2000,28(3):14~16
    [21] 陈淮东.轧制油气味与毒性.轻合金加工技术,1999,14(1):25~26
    [22] 毛大恒,邓伯禄,刘光连.铝箔轧制工艺润滑油的研制.中南矿冶学院学报,1994,25(3):364~369
    [23] 樊玉庆.高速铝箔轧制的润滑.轻合金加工技术,1994,22(2):21~26
    [24] 项志量,孙萍,阮翠萍.铝箔轧制工艺润滑油的调配.轻合金加工技术,2001,29(5):23~25
    [25] 莫学坤,吴金根.低芳烃铝箔轧制油的研制.轻合金加工技术,1992,20(4):18~21
    [26] 张军亮.低芳低硫高速铝轧制油的研制和应用.轻合金加工技术,1995,23(1):19~21
    [27] 伏专红.高级箔材冷轧油(MHBR4)的研制.石油商技,1996,5(3):25~27
    [28] 骆傲阳,赵野,刘长福.低硫低芳烃铝箔轧制油基础油的研制.黑龙江石油化工,1997,(1):24~27
    [29] 姚保儒,张广义,陈淮东.用加氢工艺生产高档铝箔轧制油.轻合金加工技术,1997,25(9):14~16
    [30] 黄钦炎.应用轻质白油研制铝冷轧油.润滑油,1998,13(5):20~23
    [31] 张青蔚,韩志群.加氢油在金属轧制油中的应用研究.石化技术与应用,2000,18(2):70~73
    [32] Riddle B L, Kirk T E. Reactive additive improves aqueous aluminum foil rolling. Lubrication, 1991, 47(1): 41~45
    [33] 张志平.一种新型润滑剂在铝箔轧制中的摩擦学应用与研究:[硕士学位论文].长沙:中南大学,2005
    [34] 管连仲,关世彤.铝箔轧制油新型复合添加剂DL-1的试用.轻合金加工技术,1997,25(1):15~17
    [35] 孙建林,傅祖铸.添加剂在冷轧工艺润滑剂中作用的研究.中南矿冶学院学报,1992,23(1):55~59
    [36] 孙建林.铝材冷轧润滑剂(添加剂)润滑性能评价.润滑与密封,1995,(3):6~8
    [37] 孙建林.铝板轧制油中添加剂的综合评价与实验研究.润滑与密封,2004,162(2):5~8
    [38] 谭建平,钟掘,王淀佐.润滑剂油膜强度与添加剂性能.中南矿冶学院学报,1994,25(1):85~89
    [39] 谭建平,钟掘,王淀佐.轧制润滑添加剂分子结构与性能关系.中南矿冶学院学报,1994,25(2):90~95
    [40] 谭建平,王淀佐,钟掘.铝材轧制过程中润滑添加剂吸附特性研究.摩擦学学报,1997,17(2):160~164
    [41] 谭建平,钟掘,肖刚.铝材轧制润滑添加剂功能分析.润滑与密封,1995,(4)
    [42] 廖克俭,戴跃玲,丛玉凤.石油化工分析.北京:化学工业出版社,2005
    [43] 宁建林.用气相色谱法分析轧制油烷烃分布及添加剂含量.轻合金加工技术,2001,29(11):23~25
    [44] 吕振波,庄丽宏.吸附色谱/质谱法定性分析柴油烃类组成.石油化工,1999,28(12):835~838
    [45] 石油和石油产品试验方法行业标准汇编.SH/T0409-92.液体石蜡中芳烃含量测定法(紫外分光光度法).北京:中国的石化出版社,2005
    [46] 王晓东,王智.紫外分光光度法测定石油产品中芳烃含量.石油化工,1998,27(3):209~211
    [47] 石油和石油产品试验方法行业标准汇编.SH/T0689-2000.轻质烃与发动机燃料和其他油品的总硫含量测定法(紫外荧光法).北京:中国的石化出版社,2005
    [48] 颜志光.润滑剂性能测试技术手册.北京:中国石化出版社,1999
    [49] 卢焕章.石油化工基础数据手册.北京:化学工业出版社,1984
    [50] 中国国家标准汇编.GB/T6563-1997.石油产品蒸馏测定法.北京:中国标准出版社,1998
    [51] 中国国家标准汇编.GB/T265-1988.石油产品运动粘度测定法.北京:中国标准出版社,1998
    [52] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [53] 余先明,檀革江,王轶炯.用PDSC热分析法研究润滑油、基础油的氧化安定性.润滑油,1999,14(1):48~51
    [54] 周亚军,毛大恒,曹远锋,等.铝材轧制润滑剂的热分析研究.湘潭大学自然科学学报,2001,23(3):69~72
    [55] 中国国家标准汇编.GB/T264.石油产品酸值测定法.北京:中国标准出版社,1998
    [56] Taso Y H, Sargent L B Jr. Friction and slipin cold rolling of metals. ASLE Irans. 1978, 21(1): 20~24
    [57] 温诗铸.摩擦学原理.北京:清华大学出版社,1996
    [58] 黄平.润滑理论新进展-薄膜润滑.润滑与密封,1994,50(6):2~10
    [59] 黄柏玲.用四球机测试润滑油性能的探讨.润滑与密封,1993,21(2):29~31
    [60] 中国国家标准汇编.GB/T3142.润滑剂承载能力测定法(四球机法).北京:中国标准出版社,1998
    [61] 黄建芳.李志宏.铝板带材表面油污的控制.轻合金加工技术,1999,27(5):10~11
    [62] 王红梅.轧制油对退火制品表面质量的影响.铝加工.1996,19(4):11~12
    [63] 邓至谦,周善出.金属材料及热处理.长沙:中南工业大学出版社,1989
    [64] 曹树德.石油产品闪点的测量.化工自动化及仪表,1999,26(2):57~59
    [65] 中国国家标准汇编.GB/T261—83.石油产品闪点测定法(闭口杯法).北京:中国标准出版社,1998
    [66] 周亚军,毛大恒.铝材轧制添加剂的相容性研究.铝加工,2000,23(2):26~28
    [67] 董浚修.润滑原理及润滑油.北京:中国石化出版社,1998
    [68] 王汝霖.润滑剂摩擦化学.北京:中国石化出版社,1994
    [69] 姚若浩.金属压力加工中的摩擦与润滑.北京:冶金工业出版社,1990
    [70] Hofling E, Baur R. Some Chemical Reaction Involved in Annealing Aluminum Foil. Lubr. Eng., 1996, 42(10): 620~621
    [71] Chung Y S, Wilson R D. Full film lubrication of strip rolling. ASME Journal of Tribology, 1994, 116(7): 569~575
    [72] Wilson W R D. Friction and lubrication in bulk metal forming processes. Journal of Application Metal Working, 1979, (1): 1~19
    [73] Shen S, Wilson R D. Mixed lubrication of strip rolling. STLE Tribology Transactions, 1994, 37(3): 433~449
    [74] Aderson A N, Bruce R W. Development of a Metallic Contact Parameter in Foil Rolling Lubrication Theory. Lubr. Eng., 1986, 42: 614~619
    [75] Rowe C N. Some Aspects of the Heat of Adsorption in the Function of a Boundary Lubricant. ASLE Trans., 1996, (9): 101~102
    [76] Rowe C N. Role of Additive Adsorption in the Mitigation of Wear. ASLE Trans., 1970, 13(3): 179~188
    [77] Jahanmir S, Beltzer M. An Adsorption Model for Friction in Boundary Lubrication. ASLE Trans., 1985, 29(3):472~478
    [78] Matveevsky R K, Buyanovsky I A. Principal Characteristics of Boundary Lubrication. ASLE Trans., 1987, 30(4): 526~530
    [79] Stolarski T A. Fractional Film Defect as a Measure of Lubricant Effectiveness. Tribology Trans., 1990, 33(1): 21~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700