用户名: 密码: 验证码:
车辆速度估计非线性观测器方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的增加,汽车的操纵稳定性和主动安全性问题受到广泛关注。汽车主动安全性控制系统可有效提高汽车的操纵稳定性,避免交通事故的发生。但这些汽车主动安全性系统可有效实施各种控制逻辑的前提是准确的获得车辆的行驶状态,包括汽车的纵向速度、侧向速度、质心侧偏角及横摆角速度等状态信息。目前上述车辆状态信息在批量生产的汽车上无法通过车载传感器直接测量得到。车辆状态信息的缺失,限制了汽车主动安全控制技术的发展,并已成为制约汽车主动安全控制系统发展的瓶颈问题。随着估计理论的发展,利用车辆上已装备的传感器获得的车辆状态信息,进行车辆行驶状态估计成为研究热点,但同时由于汽车行驶过程中环境变化迅速,道路情况极其复杂,车载传感器存在着标定误差和温度漂移误差,这些因素也使得车辆行驶状态估计成为一项极具挑战性的工作。在众多待估计的车辆行驶状态中,车辆的纵向速度和侧向速度是车辆主动安全性控制系统发挥作用的必备信息,这使得纵向车速和侧向车速的估计问题具有重要的理论意义和工程应用价值。
     本文主要研究内容是针对车辆主动安全控制问题中纵向车速和侧向车速不可通过传感器测量问题,研究可靠、实时的车辆速度估计非线性观测器设计方法,在搭建的车辆速度估计硬件在环仿真平台上,对车速估计效果进行实验验证,并讨论了车速观测器的硬件实现方案。
     首先针对车辆运行过程中表现出的非线性动态特性,基于车辆动力学模型和Uni-Tire轮胎模型讨论了采用较少测量信息的非线性全维观测器方法对车辆速度进行估计的问题。在得到纵滑-侧偏联合工况下Uni-Tire轮胎模型的参数后,利用Uni-Tire轮胎模型计算得到的加速度替代传感器的测量信息,构造车辆动力学模型。然后根据车载传感器测量得到的轮速、侧向加速度及横摆角速度信息构造非线性全维观测器,并在输入-状态稳定性理论框架下对观测器的稳定性进行了分析,并由此进一步得到了非线性全维车速观测器增益满足的条件。所得到的非线性全维车速观测器结构简单,实时性好,易于实现。
     针对车辆系统结构复杂、状态变量耦合严重且非线性较强的问题,同时考虑质心变化对车辆动力学模型的影响,提出计算量较小的车辆速度非线性降阶观测器估计方法。通过分析横摆角速度与车辆纵向速度、侧向速度之间的动力学关系,以横摆角速度偏差作为车辆速度估计的校正项,构造非线性降阶车速观测器;在保证降阶观测器ISS稳定的同时,得到了非线性降阶观测器增益满足的条件,并利用多胞型模型描述及其相应的变换将其转化为LMIs描述;进一步通过分析观测器中的参数与误差衰减速度、稳态误差之间的关系,得到了降阶观测器的求解步骤。将降阶观测器应用于车辆运行的常规和极限工况仿真,并通过实时实验验证了降阶观测器的实时性。
     为避免复杂轮胎模型所带来的运算负担,进一步提高车速观测器的计算速度,建立MAP/机理混合描述的轮胎模型。结合车辆动力学分析,在纵向车速观测器设计时,将科氏加速度作为干扰,从而提出车辆速度估计非线性级联观测器方法。首先采用轮速信息构造纵向车速观测器,其次以纵向速度估计值作为侧向车速观测器的输入,设计侧向车速观测器,二者构成了级联结构;再次借助于ISS理论对级联车速观测器的稳定性进行分析,得到级联观测器增益满足的条件;最后,为确定车速观测器增益及参数选取范围,提出非线性级联车速观测器评价的性能指标,采用随机算法通过蒙特卡罗实验对非线性级联车速观测器参数选取范围进行讨论。
     为验证非线性车速估计方法的有效性,需要进行实验研究,本文在利用xPC-Target实时仿真结构和车辆动力学软件veDYNA构建的车辆速度估计HiL仿真台架上,通过对方向盘、油门踏板和制动踏板外部实物的操作,对非线性车辆速度观测器方法进行硬件在环实验研究。在得到较好实验效果的基础上,为满足小型化,实时性要求,采用FPGA/SOPC方法讨论了观测器硬件实现方案,并通过dSPACE实时仿真系统和FPGA开发板对车速观测器硬件实现方案进行了实验验证并取得了较好的实验效果。
     论文对所提出的各种方法都进行了明确的论证,并针对相应的观测器设计过程给出了较为详尽的推导过程。为了验证本文所提出的方法的有效性,每种车速估计算法都进行了仿真研究及实时性实验。本文从车辆系统建模,车辆速度观测器设计,观测器参数选取和仿真实验等方面都给出了详细的分析和讨论。结果表明,文中所提的车速估计方法整体效果是令人满意的。
     本论文的研究工作也遗留了一些问题,例如车辆模型建模过程中由于忽略了侧倾、风阻等因素的影响,使得模型存在一定的建模误差,这就需要在以后的工作中不断提高车辆动力学模型的精度;在降阶观测器设计时仅采用横摆角速度的变化率作为校正项,由于轮速可直接通过传感器测量并且可通过驱动力矩和制动力矩建模,因此,可以采用7自由度车辆模型设计车辆速度降阶观测器;在车辆速度观测器FPGA/SOPC硬件实现研究中,可以设计相应的硬件加速器进一步提高硬件实现的速度;在车辆系统HiL仿真平台搭建问题上,目前只嵌入了驾驶员操纵部分,如何嵌入其他有助于车辆速度估计的外部传感器信号,还有待进一步研究。
With the increment of urban vehicle ownership, vehicle handling stability and activesafety issues received extensive attention. Active safety control systems can improvethe handling stability of vehicle e?ectively and then avoid tra?c accidents. However,on the premise that we can access the vehicle running states accurately, which includethe longitudinal vehicle velocity, the lateral vehicle velocity, the sideslip angle, the yawrate and other states information, then the control logic of these vehicle active safetysystems can be work e?ectively. At present, the vehicle states that mentioned abovecan not be measured directly by the onboard sensors on the mass production vehicles.It has become bottleneck issues and limited the development of vehicle active safetycontrol systems because the lack of vehicle states information. With the developmentof the estimation theory, the vehicle states estimation become focus problems using themeasured information by the onboard sensors which has been equipped on the massproduction vehicle. Meanwhile, the vehicle states estimation is a challenging work becausethe environment change rapidly in the vehicle running and the road situation is extremelycomplex, in addition, there are calibration errors and temperature drift errors in theonboard sensors. The longitudinal vehicle velocity and lateral vehicle velocity are theessential information to be estimated among the numerous vehicle states for the activesafety systems. Therefore, the longitudinal vehicle velocity and lateral vehicle velocityhave important theoretical and practical significance.
     The objective of this paper is to present reliable and real-time nonlinear observermethod for vehicle velocity estimation for the longitudinal vehicle velocity and lateralvehicle velocity, which can not be measured directly in the active safety control problem.The experiments are carried out to validate the estimation results on the hardware-in-the-loop simulation platform, and then the hardware implementation scheme of nonlinearobserver is discussed.
     For the nonlinear dynamic characteristics shown in the vehicle running, A nonlinearfull-order observer with less measurement information is proposed for vehicle velocity es- timation based on the vehicle dynamic model and Uni-Tire model for longitudinal slipand lateral slip. The computed acceleration information using Uni-Tire model replace theonboard sensor information after identification the Uni-Tire model for longitudinal slipand lateral slip. The longitudinal velocity, lateral velocity and yaw rate of the vehicleare estimated by the observer using the information of vehicle states such as wheel ro-tational speed, the steering wheel angle and lateral acceleration which are measured byon-board sensors. The stability of the observer is analyzed using the theory of input-to-state stability(ISS), furthermore, the condition which the observer gain stratified is got.The nonlinear full-order observer has simple structure, good real time performance andcan be realized easily.
     For the complex structure, the state coupled with each other and the strong nonlinear-ity of vehicle systems, a nonlinear reduced-order observer method with less computationis presented for the longitudinal vehicle velocity and lateral vehicle velocity estimation,where the impact on vehicle dynamics is considered, which is caused by the changes ofCoG in the vehicle running. The yaw acceleration is chosen as the correction informationfor longitudinal vehicle velocity and lateral vehicle velocity estimation by analyzing thedynamic relationship between yaw rate and vehicle velocity. The condition of nonlinearobserver gain satisfied is obtained under the situation that the reduce-order observer isISS, and the condition is transform into LMIs using the Polytopic model description. Thesolving steps of reduce order observer is received by analyzing the relationship betweenobserver parameters, error decay rate and steady state error. The simulation study for es-timation results of reduced-order observer is carried out in the conventional condition andcritical condition, and the real-time experiments are carried out to validate the real-timeperformance.
     In order to avoid computational burden caused by complex tire model and improvethe calculation speed of the vehicle velocities observer, the tire model is received whichis built using MAP and the mechanism model description. The nonlinear cascaded ob-server method is presented for vehicle longitudinal velocity and lateral velocity estimationconsidering coriolis acceleration as disturbance of longitudinal vehicle velocity observer.we first used wheel rotational speed build longitudinal vehicle velocity observer, and thenthe estimated longitudinal vehicle velocity is used as input to estimated lateral vehiclevelocity. The longitudinal vehicle velocity observer and lateral vehicle velocity observercomposed of cascade structure. The ISS theory is used to analyse the stability of the ob-server and the condition which observer gain satisfied is got. Finally, in order to determinethe range of the observer gain and parameters, the performance function for nonlinearcascade observer is proposed, and the randomized algorithms is employed to discuss the range of the observer gain and parameters using Monte Carlo experiments.
     In order to validate the effectiveness of the nonlinear vehicle velocity observer method,the experiment must be carried out. The nonlinear vehicle velocity observer is validatedon the HiL platform which is builded based on xPC-Target real-time structure and vehi-cle dynamics software by operating the external steering wheel angle, acceleration pedaland brake pedal. Based on this, the FPGA/SOPC scheme is proposed for the hard-ware implementation of nonlinear vehicle velocity observer to satisfy the requirement ofminiaturization, real-time performance. The experimental validation is carried out for theeffectiveness and real-time performance base on dSPACE real time platform and FPGAexploited board and better experiment result is obtained.
     The formulation processes and the proof of mentioned approaches are presented indetail in this thesis. Moreover, in order to validate the efficiency of the proposed ap-proaches, we give simulation results for each approach, which is discussed from systemmodeling, vehicle velocity observer design, observer parameter choosing, simulation andexperiments. The simulation and experiments results indicate that estimation methodeffects with the proposed approaches are satisfactory.
     Deeper research work needs to be done since some problems are still remain to besolved, for example, the roll motion and aerodynamic are omitted during the vehiclemodeling, so there exist some modeling errors, It requires improving the accuracy ofvehicle dynamics model constantly in future work. As the wheel speed can be measureddirectly by onboard sensors and it can be modeled by the drive torque and brake torque, wecan try to use the 7 degrees of freedom vehicle dynamics model to design the reduce-orderobserver. We can design some hardware accelerators to increase the computation speedin the research of FPGA/SOPC hardware implementation of nonlinear vehicle velocityobserver. In the hardware platform, only the hardware of driver manoeuvre is embeddedat present, how to embed more external sensor information which is useful for vehiclestates estimation, it is need to be further research.
引文
[1] Wit C C. Dynamic tire friction models for vehicle traction control[C]//Proc. ofthe 38th IEEE Conference on Decision & Control. Phoenix, Arizona: IEEE Press,1999:3746–3751.
    [2] Pauwelussen J P, Gootjes L, Schro¨der C. Full vehicle ABS braking usingthe SWIFT rigid ring tyre model[J]. Control Engineering Practice, 2003, 11(2):199–207.
    [3] Cheli F, Concas A, Giangiulio E. A simplified ABS numerical model: Com-parison with HIL and full scale experimental tests[J]. Computers & Structures,2008, 86(13-14):1494–1502.
    [4] Pistoia G. Vehicle applications: traction and control systems[J]. Battery OperatedDevices and Systems, 2009:321–378.
    [5] Zhang J L, Yin C, Zhang J W. Use of fuzzy controller for hybrid traction controlsystem in hybrid electric vehicles[C]//Proc. of the IEEE International Conferenceon Mechatronics and Automation. Luoyang, Henan, China: IEEE Press, 2006:1351– 1356.
    [6] Tseng H E, Ashrafi B, Madau D. The development of vehicle stability controlat Ford[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(3):223–234.
    [7] Zheng S B, Tang H J, Han Z Z. Controller design for vehicle stability enhance-ment[J]. Control Engineering Practice, 2006, 14(12):1413–1421.
    [8] Liu Q J, Zhou C C, Angquist L. A novel active damping control of TCSC forSSR suppression in a radial corridor[C]//Proc. of the Third International Confer-ence on Electric Utility Deregulation and Restructuring and Power Technologies.Nanjuing: IEEE Press, 2008:136–142.
    [9] Chen H, Sun P Y, Guo K H. A multi-objective control design for active sus-pensions with hard constraints[C]//American Control Conference. Colorado, USA:IEEE Press, 2003:4371–4376.
    [10] Chen H, Guo K H. Constrained H∞control of active suspensions: an LMIapproach[J]. IEEE on Control Systems Technology, 2005, 13(3):412–421.
    [11] Borner M, Zele M, Isermann R. Comparison of di?erent fault detec-tion algorithms for active body control components: automotive suspension sys-tem[C]//American Control Conference. Arlington, USA: IEEE Press, 2001:476–481.
    [12] Gaudiller L, Matichard F. A nonlinear method for improving the active controle?ciency of smart structures subjected to rigid body motions[J]. IEEE/ASMETransactions on Mechatronics, 2007, 12(5):542–548.
    [13] Mitschke B. Improvement possibility of vehicle driving performance throughintegrated control system[J]. Automobile Technical Magazine, 2001, 1(103):38–43.
    [14] Rafaralahy H, Richard E, Boutayeb M. Simultaneous observer based sensordiagnosis and speed estimation of Unmanned Aerial Vehicle[J]. Mathematics andComputers in Simulation, 2010, 80(12):2297–2308.
    [15] Bennett S M, Patton R J, Daley S. Rapid prototyping of a sensor faulttolerant traction control system[J]. IEE Colloquium on Fault Diagnosis in ProcessSystems, 1997, 2(7):1–6.
    [16] Breuer B, Eichhorn U, Roth J. Measurement of Tyre/Road Friction Aheadof the Car and Inside the Tyre[C]//Proc. of Int Symposium on Advanced VehicleControl. Yokohama, Japan: Arnhem, the Netherlands, 1992:347–353.
    [17]边明远.汽车防滑控制系统(ABS/ASR)道路识别技术及车身速度算法研究[M].北京:北京理工大学:博士学位论文, 2003.
    [18] Zanten A V. Bosch ESP system: 5 years of experience[C]//Proc. of SAE Automo-tive Dynamics, Stability and Controls Conference and Exhibition. Troy, Michigan,USA: SAE International, Warrendale, Pennsylvania, 2000:2000–01–1633.
    [19]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报, 2009,45(5):20–33.
    [20] Melinda S, Aleksander D H. Estimation of vehicle side slip angle and yawrate[C]//SAE 2000 World Congress. Detroit, Michigan, USA: SAE International,Warrendale, Pennsylvania, 2000:2000–01–0696.
    [21] Brach R M. Modeling combined braking and steering tire forces[C]//SAE 2000World Congress. Detroit, Michigan, USA: SAE International, Warrendale, Penn-sylvania, 2000.
    [22] Watnabe K. Absolute speed measurement of automobile form noisy accelerationand erroneous wheel speed information[C]//SAE International Congress and Ex-position. Detroit, Michigan, USA: SAE International, Warrendale, Pennsylvania,1992:920644.
    [23] Liu C, Peng H. A state and parameter identification scheme for linearly parame-terized systems[J]. ASME Journal of Dynamic Systems, Measurement and Control,1998, 120(40):524–528.
    [24]高越,高振海,李向瑜.基于自适应Kalman滤波的汽车横摆角速度软测量算法[J].江苏大学学报, 2005, 25(1):24–27.
    [25]王仁广,刘昭度,齐志权.基于自适应卡尔曼滤波算法确定汽车参考车速[J].农业机械学报, 2006, 37(4):8–11.
    [26] Zuurbier J, Bremmer P. State estimation for integrated vehicle dynamicscontrol[C]//Proc. of the 6th International Symposium on Advanced Vehicle Control.Ann Arbor, Michigan: IEEE Press, 2002:0220024537.
    [27] Venhovens P J T, Naad K. Vehicle dynamics estimation using Kalman filters[J].Vehicle System Dynamics, 2003:171–184.
    [28] Ungoren AY, H. P, Tseng HE. A study on lateral speed estimation methods[J].International Journal on Vehicle Autonomous Systems, 2004, 2:126–144.
    [29] Sebsadji Y, Glaser S, Mammar S. Road slope and vehicle dynamics esti-mation[C]//Proc. American Control Conference. Seattle, Washington, USA: IEEEPress, 2008:4603–4608.
    [30] Dakhlallah, J. Glaser S, Mammar S. Tire-road forces estimation usingextended kalman filter and sideslip angle evaluation[C]//American Control Confer-ence. Westin Seattle Hotel, Seattle, Washington: IEEE Press, 2008:4597–4602.
    [31]郑智忠,李亮,杨财.基于扩展卡尔曼滤波的汽车质心侧向速度观测器[J].农业机械学报, 2008, 39(5):1–5.
    [32] Wilkin M A, Manning W J, Crolla D A. Estimation of nonlinear friction forcebetween tyre and road applied to a performance vehicle[C]//AVEC’04. Arnhem,Netherlands: IEEE Press, 2004:387–392.
    [33] Wilkin M A, Crolla D C, Levesley M C. Estimation of non-linear tyre forcesfor a performance vehicle using an extended kalman filter[C]//Motorsports Engi-neering Conference and Exhibition. Dearborn, Michigan, USA: SAE International,Warrendale, Pennsylvania, 2004:2004–01–3529.
    [34] Wilkin M A, Manning W J, Crolla D A. Use of an extended kalman filter as arobust tyre force estimator[J]. Vehicle system dynamics, 2006, 44,supplement:50–59.
    [35] Baffet G, Charara A, Lechner D. Experimental evaluation of observersfor tire-road force,sideslip angle and wheel cornering sti?ness[J]. Vehicle systemdynamics, 2008, 46(6):501–520.
    [36] Tsunashima H, Murakami M, Miata J. Vehicle and road state estimationusing interacting multiple model approach[J]. Vehicle system dynamics, 2006,44,supplement:750–758.
    [37] Wenzel T A, Burnham K J, V. B M. Dual extended kalman filter for vehiclestate and parameter estimation[J]. Vehicle system dynamics, 2006, 44(2):153–171.
    [38] Gordon T J, Best M C. An extended adaptive Kalman filter for real-time stateestimation of vehicle handling dynamics[J]. Vehicle System Dynamics, 2000, 34:57–75.
    [39] Nishimaki T, Sasaki H. A side-slip angle estimation using neural network fora wheeled vehicle[C]//SAE 2000 World Congress. Detroit, Michigan, USA: SAEInternational, Warrendale, Pennsylvania, 2000:2000–01–0695.
    [40] Matusko J, Petroic′I, Peric′N. Neural network based tire/road firction forceestimation[J]. Engineering Applications of Artificial Intelligence, 2008, 21:442–456.
    [41]施树明, Lupker H, Bremmer P.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程, 2005, 27(4):426–43.
    [42] A. D, Kiencke U. Estimation of vehicle speed fuzzy-estimation in comparisonwith kalman-filtering[C]//American Control Conference. New York, Amercia: IEEEPress, 1995:281 284.
    [43] Hajjaji A E, Chadli M, Oudghiri M. Observer-based robust fuzzy controlfor vehicle lateral dynamics[C]//American Control Conference. Minneapolis, Min-nesota, USA: IEEE Press, 2006:4664–4669.
    [44] Ste′phant J, Charara A, Meizel D. Linear observers for vehicle sideslip an-gle:experimental validation[J]. IEEE International Symposium on Industrial Elec-tronics, 2004, 1:341–346.
    [45] Imsland L, Johansen T A, Fossen T I. Vehicle velocity estimation usingnonlinear observers[J]. Automatica, 2006, 42:2091–2103.
    [46] Grip H F, Imsland L, Johansen T A. Nonlinear observer for vehicle velocitywith friction and road bank angle adaptation - validation and comparison with anextended Kalman filter[C]//SAE 2007 World Congress. Detroit, Michigan, USA:SAE International, Warrendale, Pennsylvania, 2007:2007–01–0808.
    [47] Acarman T. Observation of vehicle states by using steering wheel angle andwheel angular speeds[C]//IEEE International Conference on Vehicular Electronicsand Safety. Columbus, OH, USA: IEEE Press, 2008:189–194.
    [48] Grip H F, Imsland L, Johansen T A. Nonlinear vehicle side slip estimationwith friction adaptation[J]. Automatica, 2008, 44:611–622.
    [49] Wada M, Yoon K S, Hashimoto H. Nonlinear filter road vehicle model devel-opment[M]//IEEE Intelligent Transportation Systems. Oakland, USA: IEEE Press,2001:734–739.
    [50] Vietingho′V, Hiemer A, (2005). K U. Non-linear observer design for lateralvehicle dynamics[C]//16th IFAC World Congress. Prague, Czech Republic: IEEEPress, 2005:315–320.
    [51]郭洪艳,陈虹,丁海涛.基于车辆动力学和非线性观测器的车辆质心侧偏角估计[C]//第27届中国控制会议.昆明,中国: IEEE Press, 2008,第2卷:449–453.
    [52] Oudghiri M, Chadli M, Hajjaji A E. Lateral vehicle velocity estimation usingfuzzy sliding mode observer[C]//Proc. Mediterranean Conference on Control andAutomation. Athens, Greece: IEEE Press, 2007:T18–009.
    [53] Oualdsine M, Shraim H, Fridman L. Vehicle parameter estimation and sta-bility enhacement using the principles of sliding mode[C]//Proc. Amercian ControlConference. New York, USA: IEEE Press, 2007:5224–5229.
    [54] Shraim H, Ouladsine M, Fridman L. Vehicle parameters and states estimationvia sliding mode observers[J]. SpringerLink, 2008, 375:345–362.
    [55] Ste′phant J, Charara A, Meizel D. Evaluation of a sliding mode observer forvehicle sideslip angle[J]. Control Engineering Practice, 2007, 25:803–812.
    [56] Tseng H E. A sliding mode lateral velocity observer[C]//Proc. Int Symposium onadvanced vehicle control. Yokohama, Japan: IEEE Press, 2002:3235–3240.
    [57] Baffet G, Charara A, Lechner D. Experimental evaluation of a sliding modeobserver for tire-road forces and an extended kalman filter for vehicle sideslip forvehicle sideslip angle[C]//Proc.46th IEEE conference on decision and control. NewOrleans, USA: IEEE Press, 2007:3877–3882.
    [58] Falcone P, Borrelli F, Asgari J. Predictive active steering control for au-tonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology,2007, 1(15):566–579.
    [59] Borrelli F, Falcone P, Keviczky T. MPC-based Approach to Active Steeringfor Autonomous Vehicle Systems[J]. International Journal on Vehicle AutonomousSystems, 2005, 3(2/3/4):265–291.
    [60] Wang Z, Liu Z Y, Run P. Estimation of vehicle speed and friction force us-ing moving horizon strategy[C]//Proc. of the 5th World Congress on Control andAutomation. Hangzhou, China: IEEE Press, 2004:1547–1550.
    [61] Zhao H Y, Chen H. Estimation of vehicle yaw rate and side slip angle us-ing moving horizon strategy[C]//Proc. of the 6th World Congress on Control andAutomation. Hangzhou, China: IEEE Press, 2006,第4卷:1828–1832.
    [62]赵林辉,刘志远,陈虹.基于滚动时域估计策略的地面摩擦系数和车辆横向速度估计[J].仪器仪表学报(增刊), 2008, 29(4):184–187.
    [63] Darby M L, Nikolaou M. A parametric programming approach to movinghorizon state estimation[J]. Automatica, 2007, 43(5):885–891.
    [64] Sontag E D. Smooth stabilization implies coprime factorization[J]. IEEE Trans.Automat. Contr., 1989, 34:435–443.
    [65] Lazar M, Heemels W P M H, Teel A R. Lyapunov Functions, Stabilityand Input-to-State Stability Subtleties for Discrete-Time Discontinuous Systems[J].IEEE Transactions on Automatic Control, 2009:2421–2425.
    [66] Lazar M, de la Penn?a D, Heemels W P M H. On input to state stability ofmin-max nonlinear MPC[J]. Systems & Control Letters, 2006, 57(1):39–48.
    [67] Hong Y G, Jiang Z P, Feng G. Finite-Time Input-to-State Stability andRelated Lyapunov Analysis[C]//Chinese Control Conference. Hunan, China: IEEEPress, 2007:652– 656.
    [68] Yeganefar N, Dambrine M. Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems[C]//American Control Conference. NewYork, USA: IEEE Press, 2007:4919–4920.
    [69] Sontag E D, Wang Y. New characterizations of input-to-state stability[J]. IEEETrans. Automat. Contr., 1996, 41:1283–1294.
    [70] Sontag E D. Stability and stabilization: discontinuities and the e?ect of distur-bances[M]//. The Netherlands: Kluwer, 1999:551–598.
    [71] Sontag E D. The ISS philosophy as a unifying framework for stability-like behav-ior[M]//. Berlin: Springer-Verlag, 2000:443–468.
    [72] Khalil H. Nonlinear Systems[M]. NJ: Prentice-Hall, 2002.
    [73] Krstic′M, Kanellakopoulos I, Kokotovic′P. Nonlinear and Adaptive Con-trol Design[M]. New York: Wiley-Interscience, 1995.
    [74] Tempo R, Calafiore G, Dabbene F. Randomized algorithms for analysis andcontrol of uncertain systems[M]. London: Springer-Verlag, 2003.
    [75] Tzeng J, Chen I T, Tsai J M. Random number generator designed by thedivergence of scaling functions[C]//Proc. of the Fifth International Conference onIntelligent Information Hiding and Multimedia Signal. Kyoto, Japan: IEEE Press,2009:1038–1041.
    [76] Wang B J, Cao H J, Wang Y H. Random Number Generator of BP Neu-ral Network Based on SHA-2 (512)[C]//2007 International Conference on MachineLearning and Cybernetics. Hong Kong: IEEE Press, 2007:2708–2712.
    [77] Katti R S, Kavasseri R G. Secure pseudo-random bit sequence generationusing coupled linear congruential generators[C]//IEEE International Symposiumon Circuits and Systems. Seattle, WA: IEEE Press, 2008:2929–2932.
    [78] Katti R, Kavasseri R, Sai V. Pseudorandom bit generation using coupledcongruential generators[J]. IEEE Transactions on Circuits and Systems II: ExpressBriefs, 2010, 57(3):203–207.
    [79] Yin C. Simulation of the queue system in ticket business based on Monte Carlomethod[C]//International Conference on Environmental Science and InformationApplication Technology. Wuhan, China: IEEE Press, 2010:141–144.
    [80]张广强.均匀随机数发生器的研究和统计实验[M].大连:大连理工大学:硕士论文,2005.
    [81] Liu Z H, Huang M H, Zhu S J. The design and implementation of a pseudo ran-dom number generation algorithm[C]//International Conference on ComputationalIntelligence and Natural Computing. Wuhan, China: IEEE Press, 2009:126–129.
    [82] Calafiore G C, Dabbene F, Tempo R. Randomized algorithms for probabilis-tic robustness with real and complex structured uncertainty[J]. IEEE Transactionson Automatic Control, 2000, 45:2218–2235.
    [83] Calafiore G C. Randomized algorithms for robustness analysis: a distributed ap-proach[C]//Proc. of the 48th IEEE Conference on Decision and Control. Shanghai,China: IEEE Press, 2009:7030–7035.
    [84] Alpcan T, Basar T, Tempo R. Randomized algorithms for stability androbustness analysis of high speed communication networks[C]//IEEE Conferenceon Control Applications. USA: IEEE Press, 2003:397–403.
    [85] Piccoli B, Zadarnowskab K, Gaet M. Stochastic algorithms for robustnessof control performances[J]. Automatica, 2009, 45:1407–1414.
    [86]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[M].长春:吉林大学:博士学位论文, 2008.
    [87]余志生.汽车理论[M].北京:机械工业出版社, 1999.
    [88] Georg R. Vehicle dynamics[M]. University of Appled Sciences: Lecture Notes,2009.
    [89] Gillespie T D.车辆动力学基础[M].北京:清华大学出版社, 2006.
    [90] Guo K H, Lei R. A unified semi-empirical tire model with higher accuracy andless parameters[C]//Proc. of SAE International Congress and Exposition. Detroit,Michigan, USA: SAE International, Warrendale, Pennsylvania, 1999:1999–01–0785.
    [91]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[M].长春:吉林大学:博士学位论文, 2003.
    [92]赵林辉.车辆状态和路面附着系数的非线性估计方法研究[M].哈尔滨:哈尔滨工业大学:博士论文, 2009.
    [93] Rajamani R, Piyabongkarn D, Lew J Y. Algorithms for real-time estimationof individual wheel tire-road friction coe?cients[C]//American Control Conference.Minneapolis, Minnesota, USA: IEEE Press, 2006:4664–4669.
    [94] Wang J, Agrawal P, Alexander L. An experimental study with alternatemeasurement systems for estimation of tire-road friction coe?cient[C]//AmericanControl Conference. USA: IEEE Press, 2003:4957– 4962.
    [95] Zhu T J, Zong C F. The road friction coe?cient estimation based on extendedkalman filter[C]//International Workshop on Intelligent Systems and Applications.Wuhan, China: IEEE Press, 2009:1–4.
    [96] Schweppe H, Zimmermann A, Grill D. Flexible on-board stream processingfor automotive sensor data[J]. IEEE Transactions on Industrial Informatics, 2010,6(1):81– 92.
    [97] Zhao L H, Liu Z Y, H. C. Vehicle state and friction force estimation usingnonlinear observer strategies[C]//Chinese Control Conference. Kunning, China:IEEE Press, 2008:667–671.
    [98] Guo H Y, Chen H, Song T H. Tire-road forces estimation based on slid-ing mode observer[C]//Proceedings of the 2009 IEEE International Conference onMechatronics and Automation. Changchun, China: IEEE Press, 2009:4577–4582.
    [99] Gao B Z, Chen H, Zhao H Y. Estimation of vehicle drive shaft torque using areduced-order nonlinear observer[J]. Control Engineering Practice, 2009. submitted.
    [100] Gao B Z, Chen H, Zhao H Y. A reduced-order nonlinear clutch pressure observerfor automatic transmission[J]. IEEE Transactions On Control Systems Technology,2008. submitted.
    [101] Rafaralahy H, Richard E, Boutayeb M. Simultaneous observer based sensordiagnosis and speed estimation of Unmanned Aerial Vehicle[C]//Proc. of the 47thIEEE Conference on Decision and Control. Cancun: IEEE Press, 2008:2938–2943.
    [102] Sontag E D. Input to state stability: Basic concepts and results[M]//LectureNotes in Mathematics. Berlin: Springer-Verlag, 2005.
    [103]俞立.鲁棒控制:线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002.
    [104] Han X B, S. W Z. Convex polyhedron construction based parameter estimation foraero-engine polynomial linear parameter varying system[C]//Second InternationalSymposium on Computational Intelligence and Design. Changsha, China: IEEEPress, 2009:279– 282.
    [105]高兴泉.时域约束T-S模糊系统的控制方法研究[M].长春:吉林大学:博士学位论文, 2006.
    [106] Sobhan P, Nagesh Kumar G, Ramya Priya M. Look Up Table Based FuzzyLogic Controller for Unmanned Autonomous Underwater Vehicle[C]//InternationalConference on Advances in Computing, Control, & Telecommunication Technolo-gies. Trivandrum, Kerala: IEEE Press, 2009:497– 501.
    [107]黄海燕.汽车发动机试验学教程[M].北京:哈清华学出版社, 2009.
    [108] Gao B Z, Chen H, Zhao H Y. A reduced-order nonlinear clutch pressure observerfor automatic transmission using ISS[C]//Proceedings of the 47th IEEE Conferenceon Decision and Control. Cancun, Mexico: IEEE Press, 2008:5712–5717.
    [109] Tj?nnas J, Johansen T A. Stabilization of automotive vehicles using activesteering and adaptive brake control allocation[J]. IEEE Transactions control systemstechnology., 2009, 18:545–558.
    [110] Tanelli M, Astolfi A, Savaresi S M. Robust nonlinear output feedback controlfor brake by wire control systems[J]. Automatica, 2008, 44:1078–1087.
    [111] Kim J. Identification of lateral tyre force dynamics using an extended Kalmanfilter from experimental road test data[J]. Control Engineering Practice, 2009,17:357–367.
    [112] Ko¨hl S, Jegminat D. How to do hardware-in-the-loop simulation right[C]//SAEWorld Congress. Detroit, Michigan, USA: SAE International, Warrendale, Penn-sylvania, 2005:2005–01–1657.
    [113]朱辉,王丽清,程昌圻.硬件在环仿真系统的软硬件基础[J].小型内燃机, 1998,6(27):22–26.
    [114] Gu¨venc B A, Gu¨venc L, Karaman S. Robust yaw stability controller designand hardware-in-the-loop testing for a road vehicle[J]. IEEE Transactions on Ve-hiclar Technology, 2009, 2:555–571.
    [115] Boyd M, J. M, Wolff M. Hardware-in-the-Loop Power Extraction using Dif-ferent Real-Time Platforms[C]//SAE 2008 Power Systems Conference. Bellevue,Washington, USA: SAE International, Warrendale, Pennsylvania, 2008:2008–01–2909.
    [116] Wu Y Y, Chen B C, Hsieh F C. Development of Hardware-In-the-Loop Simula-tion for Scooter Engine Control[C]//SAE 2006 World Congress. Detroit, Michigan,USA: SAE International, Warrendale, Pennsylvania, 2006:2006–01–0614.
    [117]李幼德,刘巍,李静.汽车稳定性控制硬件在环仿真[J].吉林大学学报(工学版),2007, 37(4):37–740.
    [118]孔磊,宋健.多功能液压ABS混合仿真实验台设计研究[J].公路交通科技, 2006,4(28):16–18.
    [119]李升波,王建强,李克强.基于xPC的驾驶员辅助系统硬件在环仿真试验台[J].中国机械工程, 2005, 16(18):2012–2015.
    [120]黄飞,杨玉兵,邵利民.基于Matlab/xPC Target的BPH调速器实时仿真实验台研究[J].柴油机, 2006, 4(28):16–18.
    [121]马克斯菲尔德,杜生海,邢闻译注. FPGA设计指南:器件、工具、流程[M].北京:人民邮电出版社, 2007.
    [122]李兰英. Nios II嵌入式软核SOPC设计原理及应用[M].北京航空航天大学出版社:北京, 2006.
    [123] Ling K V, Yue S P, Maciejowski J M. A FPGA Implementation of ModelPredictive Control[C]//Proceedings of the 2006 American Control Conference. Min-neapolis: IEEE Press, 2006:1930–1935.
    [124] Idkhajine L, Monmasson E. Optimized FPGA-based extended Kalman filterapplication to an AC drive sensorless speed controller[C]//Proc. of the InternationalSymposium on Power Electronics, Electrical Drives, Automation and Motion. Pisa:IEEE Press, 2010:1012–1017.
    [125] Idkhajine L, Monmasson E, Maalouf A. Fully FPGA-based sensorless con-trol for AC drive using an extended Kalman filter[C]//Proc. of the 35th AnnualConference of IEEE on Industrial Electronics. Porto: IEEE Press, 2009:2925–2930.
    [126] Liu J, Liao M, Chen W. Research on inverter based on Nios II and sys-tem[C]//Proc. of the 4th IEEE Conference on Industrial Electronics and Appli-cations. Xi’an: IEEE Press, 2009:1441– 1446.
    [127] Wang J Z, Y. P. Chen J M X. System structure for FPGA-based SOPC de-sign using hard tasks[C]//Proc. of the IEEE International Conference on IndustrialInformatics. Korea: IEEE Press, 2008:1154–1159.
    [128]田洪胜.基于FPGA/SOPC技术的汽车电子机械制动控制系统研究[M].镇江:江苏大学:硕士学位论文, 2010.
    [129] Hamblen J O, Hall T S, Furman M D. Rapid prototyping of digital systemsSOPC edition.[M].[出版地不详]:Springer Science, 2008.
    [130]刘明星.基于FPGA/SOPC的预测控制器研究[M].长春:吉林大学:硕士学位论文,2009.123
    [131]毕春光.极限工况下汽车质心侧偏角的估计方法研究[M].长春:吉林大学:硕士学位论文, 2007.
    [132]王爽心,王钉婷,杨辉.基于xPC目标的液压疲劳控制系统半实物实时仿真[J].仪器仪表学报, 2006(5):567–569.
    [133]赵峰. EPC-755A微型光电编码器及其应用[J].国外电子元器件, 2000(1):11–12.
    [134]杨财,周艳霞.方向盘转角传感器研究进展[J].传感器与微系统, 2007, 26(11):1–4.
    [135]陈家瑞,张建文.汽车构造[M].北京:机械工业出版社, 2005.
    [136]孟淑娟,杨艳芬.一汽马自达6轿车维修手册[M].北京:人民交通出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700