用户名: 密码: 验证码:
基于自动驾驶系统的车辆纵横向运动综合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能车辆能够利用环境感知、信息融合、智能控制等关键技术实现自动驾驶功能,是智能交通系统(ITS)中的重要组成部分。智能车辆自动驾驶系统在提高道路通行能力、改善车辆主动安全性等方面具有巨大的应用潜力。
     针对智能车辆自动驾驶系统的运动控制及环境感知问题,论文建立了相对完整的整车动力学模型,设计了纵横向运动综合控制系统,并采用离线仿真试验和硬件在环技术对多种行驶工况下的自动驾驶控制效果进行了验证,另外,引入交互多模型算法对引导车辆进行了机动目标跟踪。论文主要包含以下工作内容:
     ①对实际行驶过程中的车辆运动状态及受力情况进行分析,基于三维刚体动力学和运动学理论建立十自由度的车辆动力学模型;建立由发动机、液力变矩器、自动变速器及主减速器组成的车辆动力传动系统模型,综合考虑动力传动系统的非线性特性对车辆纵向运动控制的影响;考虑到智能车辆自动驾驶系统对轮胎模型力学特性的要求,建立可反映轮胎非线性力学特性的TMeasy轮胎模型,分析纵横向轮胎力之间的耦合关系。
     ②为实现智能车辆的自动驾驶功能并提高其运动性能,论文基于模糊逻辑和滑模控制理论设计了具有上、下两层结构的纵横向运动综合控制系统,该控制系统能够对智能车辆的节气门开度、制动液压及前轮转向角进行协调控制,使智能车辆实现车道保持、车辆跟踪及车道变换等主要自动驾驶功能;与此同时,通过控制主动差速器的驱动力矩分配比例,产生所需的主动横摆力矩,提高智能车辆在自动驾驶过程中的操纵稳定性。
     ③在车速变化、道路曲率变化及车道变换等多种行驶工况下,对纵横向运动综合控制系统的控制效果进行离线仿真试验,研究智能车辆的纵、横向运动跟踪性能及操纵稳定性。同时,对车道变换仿真试验中的虚拟理想轨迹进行设计,考虑各关键变量参数对其产生的影响;并对协调控制模块中的主动横摆力矩控制执行条件进行验证。
     ④针对智能车辆自动驾驶过程中的车辆跟踪控制问题,论文采用交互多模型算法对具有多运动状态的引导车辆进行目标跟踪,从而为智能车辆提供准确、可靠的引导车辆运动状态信息。在仿真试验中,采用近似匀速和近似匀加速两种运动模型描述引导车辆的运动状态,同时,建立适用于道路车辆跟踪试验的传感器模型,并对机动目标模型的初始化问题进行研究。
     ⑤为了验证智能车辆自动驾驶系统的有效性和鲁棒性,基于硬件在环技术和虚拟现实技术搭建同步视景自动驾驶试验平台。在该试验平台上,对多种行驶工况下的自动驾驶功能进行硬件在环仿真试验,并考虑人为驾驶操作对自动驾驶控制效果的影响。另外,通过实时调节车辆模型及控制系统的参数,分析智能车辆自动驾驶系统的鲁棒性。
As a major component of Intelligent Transportation Systems (ITS), Intelligent Vehicle (IV) utilizes environmental perception, information fusion and intelligent control technologies to realize the automation of driving tasks. The intelligent vehicle autonomous driving system offers the great potential for significant enhancements in active safety and traffic capability.
     Aiming at the motion control and environmental perception problems of the IV’s autonomous driving system, a relatively complete vehicle dynamic model is developed and a combined longitudinal and lateral motion control system is designed in this dissertation. The performances of vehicular autonomous driving system are verified in different driving conditions by offline simulation and hardware-in-the-loop technology. In addition, the Interacting Multiple Model algorithm is introduced to track the leading vehicle on the road. The dissertation is organized as follows:
     ①After analyzing vehicle’s translational and rotational behaviors in real driving conditions, a vehicle dynamic model with ten degree-of-freedom is developed based on three-dimensional rigid body dynamics and kinematics. A vehicular powertrain model that includes engine, torque converter, automatic transmission and final drive is developed, and the nonlinear characteristics of major components are analyzed simultaneously in this model. Considering the demand of tire forces for the intelligent vehicle autonomous driving system, this dissertation sets up a TMeasy tire model which can reflect the nonlinear force characteristics in saturation condition, and analyzes the coupling effects between longitudinal and lateral tire forces.
     ②In order to realize the autonomous driving functions and improve stability of intelligent vehicle, fuzzy logic and sliding model control methods are used to design a combined longitudinal and lateral motion control system which has a hierarchical structure consisting of two layers. The system can control throttle angle, brake pressure and front wheel angle coordinately so as to make the intelligent vehicle achieve such autonomous driving functions as lane keeping, vehicle following, and lane changing. At the same time, it can improve vehicle’s stability during autonomous driving process by adjusting active differential’s distribution ratio of the driving torque so as to yield active yaw moment.
     ③The performances of the combined longitudinal and lateral motion control system are examined in various driving conditions like velocity changing, road curvature changing and lane changing by off-line simulation, the stability of intelligent vehicle and motion errors in longitudinal and lateral directions are analyzed. At the same time, considering key factors such as lateral acceleration and lateral jerk in lane changing simulation experiment, a virtual desired trajectory is designed; this dissertation also validates the judgment basis of the active yaw moment control in coordinated control module.
     ④As to the vehicle following control problem during autonomous driving process, this dissertation utilizes Interacting Multiple Model algorithm to track the leading vehicle with multiple states of motion. In this way, it can provide the Intelligent Vehicle with accurate and reliable information of leading vehicle. In simulation experiment, it uses uniform motion model with constant velocity and maneuvering motion model with acceleration to describe the motion states of the leading vehicle. In the meantime, a sensor model for such experiment is built and the initialization problem of maneuvering target model is studied in this dissertation.
     ⑤In order to verify the effectiveness and robustness of intelligent vehicle autonomous driving system, a real-time visual autonomous driving experimental platform is developed, which is on the basis of hardware-in-the-loop and virtual reality technologies. On this platform, a series of hardware-in-the-loop simulation experiments are undertaken to test the autonomous driving functions in different driving conditions and the influence of human factors on vehicular autonomous driving system are considered. Besides, it analyzes the control system’s robustness by adjusting the parameters of the vehicle model and the control system.
引文
[1]公安部交通管理局. 2008年全国道路交通事故情况[EB/OL]. http://www.mps.gov.cn/n16/ n1282/ n3553/1770249.html, 2009-01-04/2009-05-10.
    [2] Richard Bishop. Intelligent Vehicle Technology and Trends [M]. Massachusetts: Artech House Inc, 2005.
    [3] William F Powers, Paul R Nicastri. Automotive Vehicle Control Challenges in the 21st Century [J]. Control Engineering Practice, 2000, 8(6): 605-618.
    [4] Jerry Lane, Ka C Cheok, Bill Agnew. Introduction: Intelligent round Vehicle Competition (IGVC) [J]. Journal of Robotic Systems, 2004, 21(8): 401–403.
    [5] Varaiya P. Smart Cars on Smart Roads: Problems of Control [J]. IEEE Transactions on Automatic Control, 1993, 38(2): 195-207.
    [6] Shladover S E, Desoer C A, Hedrick J K, etc. Automatic Vehicle Control Developments in the PATH Program [J]. IEEE Transactions of Vehicular Technology, 1991, 40(1): 114-130.
    [7] Raza H, Ioannou P. Vehicle Following Control Design for Automated Fighway Systems [C]. IEEE 47th Vehicular Technology Conference, 1997, Los Angeles: 904-908.
    [8]王武宏,沈中杰,侯福国等译.智能车辆——智能交通系统的关键技术[M].北京:人民交通出版社, 2002.
    [9] Bishop R. Intelligent Vehicle Applications Worldwide [J]. IEEE Intelligent Systems and their Applications, 2000, 15(1): 78-81.
    [10] Ernst D.Dickmanns. Dynamic Vision-Based Intelligence [J]. Artificial Intelligence Magazine, 2004, 6: 10-30.
    [11] Broggi A, Bertozzi M, Fascioli A, etc. ARGO and the MilleMiglia in Automatico Tour [J]. IEEE Intelligent Systems and their Applications, 1999, 14(1): 56-64.
    [12] S Tsugawa, M Aoki, A Hosaka, etc. A Survey of Present IVHS Activities in Japan [J]. Control Engineering Practice, 1997, 5(11): 1591-1597.
    [13] Yoshimi Furukawa, Masato Abe. Advanced Chassis Control Systems for Vehicle Handling and Active Safety [J]. International Journal of Vehicle Mechanics and Mobility, 1997, 28(2): 59-86.
    [14] Kurata R, Watanabe H, Tohno M. Evaluation of the Detection Characteristics of Road Sensors under Poor-visibility Conditions [C]. IEEE Intelligent Vehicles Symposium, 2004, Tokyo: 538-543.
    [15] Takahashi A, Asanuma N. Introduction of Honda Advanced Safety Vehicle [C]. Proceedingsof the IEEE Intelligent Vehicles Symposium, 2000, Dearborn: 694-701.
    [16]孙振平,安向京,贺汉根. CITAVT IV——视觉导航的自主车[J].机器人, 2003, 24(2): 115-121.
    [17]张朋飞,何克忠,欧阳正柱等.多功能室外智能移动机器人实验平台——THMR-V[J].机器人, 2002, 24(2): 97-101.
    [18] Hong Cheng, Nan-ning Zheng, Xue-tao Zhang, etc. Interactive Road Situation Analysis for Driver Assistance and Safety Warning Systems: Framework and Algorithms [J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(1): 157-167.
    [19]储江伟,谷玉川,崔鹏飞.基于离合器转向的AGV及路径跟踪控制器设计[J].起重运输机械, 2006, 12: 19-22.
    [20] Greg Marsden, Mike McDonald, Mark Brackstone. Towards an Understanding of Adaptive Cruise Control [J]. Transportation Research Part C: Emerging Technologies, 2001, (9): 33–51.
    [21] Hedrick J K, Mcmabon D, Narendran V, Swaroop D. Longitudinal Vehicle Controller Design for IVHS System[C]. Proceedings of 1991’American Control Conference: 3107-3110.
    [22] R S Sharp. Some contemporary problems in road vehicle dynamics [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214(1): 137-148.
    [23] McMahon D H, Hedrick J K. Longitudinal model development for automated roadway vehicles [R]. California PATH Research Report, University of California at Berkeley, 1989, UCB-ITS- PRR-89-5.
    [24] A Guanguli, R Rajamali. Tractable Model Development and System Identification for Longitudinal Vehicle Dynamics [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(10): 1077-1084.
    [25]高锋,李克强,连小珉.用于汽车纵向运动控制的传动系统模型简化与分析[J].汽车工程, 2005, 27(3): 326-329.
    [26] Dennis Assanis, Zoran Filipi, Steve Gravante, Dan Grohnke. Validation and Use of SIMULINK Integrated, High Fidelity, Engine-In-Vehicle Simulation of the International Class VI Truck [J]. SAE Technical Paper: 2000-01-0288.
    [27] Kysongsu Yi, Young Do Kwon. Vehicle-to-vehicle Distance and Speed Control using an Electronic Vacuum Booster[J]. JSAE Review, 2001, 22, 403-412.
    [28] Chi Ying Liang, Huei Peng. Optimal Adaptive Cruise Control with Guaranteed String Stability [J]. Vehicle System Dynamics, 1999, 31: 313-330.
    [29] Xiao-Yun Lu, J Karl Hedrick. Heavy-Duty Vehicle Modelling and Longitudinal Control [J]. Vehicle System Dynamics, 2005, 43(9): 653-669.
    [30]李以农,郑玲,谯艳娟.汽车纵向动力学系统的模糊—PID控制[J].中国机械工程,2006, 17(1): 99-103.
    [31]宾洋,李克强,李升波,王坚强.重型车辆走-停巡航系统的干扰解耦控制[J].机械工程学报, 2006, 42(9): 207-213.
    [32] Sunan Huang, Wei Ren. Use of Neural Fuzzy Networks with Mixed Genetic/Gradient Algorithm in Automated Vehicle Control[J]. IEEE Transactions on Industrial Electronics, 1999, 46(6): 1090-1102.
    [33] Rajamani R, Choi S B, Law B K. Design and experimental implementation of longitudinal control for a platoon of automated vehicles[J]. Journal of Dynamics, Measurement and Control, 2000, 122: 470-476.
    [34] Bongs Song, Hedrick J K. Design and experimental implementation of longitudinal control for automated transit buses[C]. Proceedings of the American Control Conference, Boston: AACC, 2004, 2751-2756.
    [35] M A Jarrah, Adnan K Shaout. Fuzzy Modular Autonomous Intelligent Cruise Control (AICC) System [J]. Journal of Intelligent and Fuzzy Systems, 2001, (11): 121-134.
    [36] G D Lee, S W Kim. A Longitudinal Control System for a Platoon of Vehicles Using a Fuzzy-sliding Mode Algorithm [J]. Mechatronics, 2002, (12): 97-118.
    [37] Peng Hui, Masayoshi Tomizuka. Vehicle Lateral Control for Highway Automation [C]. Proceedings of the American Control Conference, Boston: AACC, 1990, 2751-2756.
    [38]周俊,姬长英.智能车辆横向控制研究[J].机器人, 2003, 25(1): 26-30.
    [39]王春燕,吴超仲,丁振松等.基于磁道钉导航的智能公路车道保持硬件控制系统研究[J].公路交通科技, 2003, 20(1): 129-135.
    [40] Joon Woong Lee. A Machine Vision System for Lane-Departure Detection [J]. Computer Vision and Image Understanding, 2002, 86: 52-78.
    [41] J Pohl, W Birk, L Westervall. A Driver-Distraction-based Lane-Keeping Assistance System [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007, 221(6): 541-552.
    [42] Hiroyuki Furusho, Hiroshi Mouri. Research on Automated Lane Tracking using Linear Quadratic Control: Control Procedure for a Curved Path [J]. JSAE Review, 1999, 20: 325-329.
    [43] A El Hajjaji, S Bentalba. Fuzzy Path Tracking Control for Automatic Steering of Vehicles [J]. Robotics and Autonomous Systems, 2003, 43: 203–213.
    [44]高振海,管欣,郭孔辉.驾驶员确定汽车预期轨迹的模糊决策模型[J].吉林工业大学学报(自然科学版), 2000, 30(1): 7-10.
    [45] Wonshik Chee, Masayoshi Tomizuka, Satyajit Patwardhan, Wei-Bin Zhang. Experimental Study of Lane Change Maneuver for AHS Applications [C]. Proceedings of the American Control Conference, Washington, 1995: 139-143.
    [46] Wonshik Chee, Masayoshi Tomizuka. Unified Lateral Motion Control of Vehicles for Lane Change Maneuvers in Automated Highway Systems [R]. California PATH Research Report, University of California at Berkeley, 1997, UCB-ITS- PRR-97-29.
    [47] Masahiro Hashimoto, Takamasa Suetomi, Akihiro Okuno, etc. A Study on Driver Model for Lane Change Judgement [J]. JSAE Review, 2001, 22: 183-188.
    [48]张发,宣慧玉,赵巧霞.基于有限状态自动机的车道变换模型[J].中国公路学报, 2008, 21(3): 97-100.
    [49] Cem Hatipoglu,ümit ?zgüner, Keith A Redmill. Automated Lane Change Controller Design [J]. IEEE Transactions on Intelligent Transportation Systems, 2003, 4(1): 13-22.
    [50] JoséE. Naranjo, Carlos González, Ricardo García, etc. Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver [J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 438-450.
    [51]游峰,王荣本,张荣辉,熊文华.智能车辆换道与超车轨迹跟踪控制[J].农业机械学报, 2008, 39(6): 42-45.
    [52] Said Mammar, Damien Koenig. Vehicle Handling Improvement by Active Steering [J]. Vehicle System Dynamics, 2002, 38(3): 211-242.
    [53] B Zheng, S Anwar. Yaw Stability Control of A Steer-by-Wire Equipped Vehicle via Active Front Wheel Steering [J]. Mechatronics, 2007, 19(6): 799-804.
    [54] E Ono, Y Hattor, Y Muragishi, K. Koibuchi. Vehicle Dynamics Integrated Control for Four-Wheel-Distributed Steering and Four-Wheel-Distributed Traction/Braking Systems [J]. Vehicle System Dynamics, 2006, 44(2): 139–151.
    [55] M S Bang, S H Lee, C S Han. Performance Enhancement of a Sliding Mode Wheel Slip Controller by the Yaw Moment Control[J]. Proceeding of institution of mechanical engineers, Part D: Journal of Automobile Engineering, 2001, 215(10): 455-468.
    [56] M J Hancock, R A Williams, E Fina. Yaw Motion Control via Active Differentials[J]. Transactions of the Institute of Measurement and Control, 2007, 29(2): 137-157.
    [57] O Mokhiama, M Abe. Active Wheel Steering and Yaw Moment Control Combination to Maximize Stability as well as Vehicle Responsiveness During Quick Lane Change for Active Vehicle Handling Safety [J]. Proceeding of Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(4): 115-124.
    [58]武建勇,唐厚君,欧阳涛.基于AFS与DYC集成控制提高车辆操纵稳定性的研究[J].系统仿真学报, 2009, 21(5): 1227-1232.
    [59] Ossama Mokhiamar, Masato Abe. Effects of Model Response on Model Following Type of Combined Lateral Force and Yaw Moment Control Performance for Active Vehicle Handling Safety [J]. JSAE Review, 2002, 23: 473–480.
    [60] Dirk Ehmanns, Peter Zahn, Helmut Spannheimer, etc. Integrated Longitudinal and Lateral Guidance Control——A New Concept in the Field of Driver Assistance Technology [J]. ATZ Worldwide, 2003, 105(4): 10-13.
    [61] Hans B Pacejka. Tyre and Vehicle Dynamics [M]. Oxford: Society of Automotive Engineers and Butterworth Heinemann, 2002.
    [62] E Velenis, P Tsiotras, C Canudas De Wit. Dynamic Tyre Friction Models for Combined Longitudinal and Lateral Vehicle Motion [J]. Vehicle System Dynamics, 2005, 43(1): 3-29.
    [63] Seong-Jin Kwon, Takehiko Fujioka, Ki-Yong Cho, etc. Model-matching Control Applied to Longitudinal and Lateral Automated Driving [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(5): 583-598.
    [64]李以农,卢少波,郑玲等.车辆弯道变速行驶时的纵横向耦合控制研究[J].系统仿真学报, 2007, 19(23): 5524-5528.
    [65] Ying-min Jia. Robust Control with Decoupling Performance for Steering and Traction of 4WS Vehicles under Velocity-Varying Motion [J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 554-569.
    [66] Rajesh Rajamani, Han-Shue Tan, Boon Kait Law, etc. Demonstration of Integrated Longitudinal and Lateral Control for the Operation of Automated Vehicles in Platoons [J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 695-708.
    [67]张文丰.车辆动力学及其非线性控制理论技术的研究[D].南京:南京航空航天大学, 2002.
    [68] Masao Nagai, Sachiko Yamanaka, Gao Feng. Study on Integrated Control of Active Front Steer Angle and Direct Yaw Moment[J]. JSAE Review, 2002, 23(3): 309-315.
    [69] Bedner Edward, Hsien H Chen. A Supervisory Control to Manage Brakes and Four-wheel-steer Systems[J]. SAE Technical Paper: 2004-01-1059.
    [70] He Junjie. Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability [J]. SAE Technical Paper: 2004-01-1071.
    [71]高晓杰,余卓平,张立军.基于车辆状态识别的AFS和ESP协调控制研究[J].汽车工程, 2007, 29(4): 23-29.
    [72] Peter Lauer, Sascha J, Semmler. Simulation based Development within Global Chassis Control[C]. Proceedings of the 2006 IEEE conference on Computer Aided Control SystemsDesign, 2006: 2309-2314.
    [73]高晓杰,余卓平,张立军.集成底盘控制系统的控制构架研究[J].汽车工程, 2007, 29(1): 21-26.
    [74]孙宁,陈南,万亦强.汽车底盘控制系统总线的应用现状研究[J].汽车技术, 2007, 12: 25-29.
    [75] Hac Aleksander, Bodie Mark O. Improvements in Vehicle Handling Through Integrated Control of Chassis Systems [J]. International Journal of Vehicle Design, 2002, 29 (1/2).
    [76] Peter Rieth. Advanced and Next Generation Stability Systems[C]. SAE 2006 Automotive Dynamics, Stability and Controls Conference and Exhibition, 2006.
    [77]万亦强.车辆底盘控制技术的发展[J].机械制造与自动化, 2006, 35(6): 6-10.
    [78] R David Hampton, David Nash, David Barlow, etc. An Autonomous Tracked Vehicle with Omnidirectional Sensing [J]. Journal of Robotic Systems, 2004, 21(8): 429–437.
    [79] Tan H S, The Development of an Automated Steering Vehicle Based on Roadway Magnets [J]. IEEE/ASME Transportation on Mechatronics, 1999, 4(3): 258-272.
    [80] J Llinas, E Waltz. Multisensor Data Fusion [M]. Boston: Artech House, 1990.
    [81] J Z Sasiadek, Q Wang, M B Zeremba. Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion [C]. Proceedings of the 15th IEEE International Symposium on Intelligent Control, Patras, 2000: 181-186.
    [82] J Z Sasiadek. Sensor Fusion [J]. Annual Reviews in Control, 2002, 26: 203-228.
    [83] Kai-Wei Chiang, Yun-Wen Huang. An Intelligent Navigator for Seamless INS/GPS Integrated Land Vehicle Navigation Applications [J]. Applied Soft Computing, 2008, 8: 722-733.
    [84] Zhen Jia, Arjuna Balasuriya, Subhash Challa. Vision based Data Fusion for Autonomous Vehicles Target Tracking using Interacting Multiple Dynamic Models [J]. Computer Vision and Image Understanding, 2008, 109(1): 1-21.
    [85] Dominique Gruyer, Morgan Mangeas, Rudy Alix. Multi-sensors Fusion Approach for Driver Assistant System [C]. IEEE International Workshop on Robot and Human Interactive Communicaiton, Versailles, 2001: 479-486.
    [86] Ali Y Ungoren, Huei Peng, H E Tseng. A Study on Lateral Speed Estimation Methods [J]. International Journal of Vehicle Autonomous Systems, 2004, 2(1): 126-144.
    [87] Toshihiro Hiraoka, Hiromitsu Kumamoto, Osamu Nishihara. Sideslip Angle Estimation and Active Front Steering System Based on Lateral Acceleration Data at Centers of Percussion with Respect to Front/Rear Wheels [J]. JSAE Review, 2004, 25(1): 37-42.
    [88] H E Tseng. Dynamic Estimation of Road Bank Angle [J]. Vehicle System Dynamics, 2001, 36(4-5): 307–328.
    [89] N K M’Sirdi, A Rabhi, N Zbiri, etc. Vehicle–Road Interaction Modelling for Estimation of Contact Forces [J]. Vehicle System Dynamics, 2005, 43: 403-411.
    [90] Laura R Ray. Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments [J]. Automatica, 1997, 33(10): 1819-1833.
    [91]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学, 2008.
    [92] Adam Michael Fosbury. Control and Kalman Filtering for Relative Dynamics of a Formation of Uninhabited Autonomous Vehicles [D]. New York: State University of New York at Buffalo, 2006.
    [93] Pavel Antos, A C Jorge, Ambrosio. A Control Strategy for Vehicle Trajectory Tracking Using Multibody Models [J]. Multibody System Dynamics, 2004, 11: 365-394.
    [94] Reza N Jazar. Vehicle Dynamics: Theory and Applications [M]. New York: Springer-Verlag, 2008.
    [95] Mike Blundell, Damian Harty. The Multibody Systems Approach to Vehicle Dynamics [M]. Pennsylvania: Society of Automotive Engineers, 2004.
    [96] Pushkar S. Hingwe. Robustness and Performance Issues in the Lateral Control of Vehicles in Automated Highway Systems [D]. Berkeley: University of California, 1997.
    [97]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学, 2008.
    [98]吴利军.汽车ABS/ASR/ACC集成控制系统仿真研究[D].北京:北京理工大学, 2006.
    [99] Jeonghoon Song, Kwangsuck Boo. Performance Evaluation of Traction Control Systems using a Vehicle Dynamic Model [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(7): 685-696.
    [100]宾洋.车辆走停巡航系统的非线性控制研究[D].北京:清华大学, 2006.
    [101] Henning Wallentowitz. Lecture Longitudinal Dynamics of Vehicles [M]. Aachen: Institut für Kraftfahrwesen Aachen, 2004.
    [102] Georg Rill. A Modified Implicit Euler Algorithm for Solving Vehicle Dynamic Equations [J]. Multibody System Dynamics, 2006, 15: 1-24.
    [103] W Hirschberg, G Rill, H Weinfurther. Tire Model TMeasy [J]. Vehicle System Dynamics (Supplement), 2007, 45: 101–119.
    [104] C Ghike, T Shim, J Asgari. Integrated Control of Wheel Drive–Brake Torque for Vehicle-Handling Enhancement [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223(3): 1-19.
    [105] Wolfgang Hirschberg, Georg Rill, Heinz Weinfurter. User-Appropriate Tyre-Modelling for Vehicle Dynamics in Standard and Limit Situations [J]. Vehicle System Dynamics, 2002,38(2): 103–125.
    [106] D Ammon. Vehicle Dynamics Analysis Tasks and Related Tyre Simulation Challenges. Vehicle System Dynamics (Supplement), 2005, 43:30–47.
    [107] Konghui Guo, Dang Lu, Shihken Chen, et al. The UniTire model: a nonlinear and non-steady-state tyre model for vehicle dynamics simulation [J]. Vehicle System Dynamics (Supplement), 2005, 43: 341–358.
    [108] Yukiyo Kuriyagawa, Hyung-eun Im, Ichiro Kageyama, etc. A Research on Analytical Method of Driver-Vehicle-Environment System for Construction of Intelligent Driver Support System [J]. Vehicle System Dynamics, 2002, 37(5):339-358.
    [109]钱学森.论系统工程(新世纪版)[M].上海:上海交通大学出版社, 2007.
    [110]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报, 2008, 39(6): 1-7.
    [111] Rajamani R. Vehicle Dynamics and Control [M]. New York: Springer-Verlag, 2006.
    [112]侯德藻.汽车纵向主动避撞系统的研究[D].北京:清华大学, 2004.
    [113] Tohru Yoshioka, Tomohiko Adachi, Tetsuro Butsuen, etc. Application of Sliding-Mode Theory to Direct Yaw-Moment Control [J]. JSAE Review, 1999, 20: 523-529.
    [114] Kaoru Sawase, Yoshiaki Sano. Application of Active Yaw Control to Vehicle Dynamics by utilizing Driving/Braking Force [J]. JSAE Review, 1999, (20): 289-295.
    [115] Kaoru Sawase. Left/Right Drive Torque Adjusting Apparatus for Vehicle and Left/Right Drive Torque Adjusting Method for Vehicle [P]. United States, No.5456641, 1995.10: 1-3.
    [116] Hancock M. Vehicle Handling Control using Active Differentials [D]. Loughborough: Loughborough University, 2006.
    [117] J C Gerdes, J K Hedriek. Vehicle Speed and Spacing Control via Coordinated Throttle and Brake Actuation [J]. Control Engineer Practice, 1997, 5(11): 1607-1614.
    [118]施绍有,高峰,王江锋.起-停车辆巡航技术的发展及关键技术[J].汽车工程, 2006, 28(9): 823-828.
    [119] R Karbalaei, A Ghaffari, R Kazemi, S H Tabatabaei. A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic [J]. International Journal of Mathematical, Physical and Engineering Sciences, 2008, 1(1): 47-52.
    [120]李以农,卢少波,杨柳.车辆转向与驱动综合控制及横向速度观测器的设计[J].汽车工程, 2007, 29(8): 692-697.
    [121] Hung Pham, Karl Hedrick, Masayoshi Tomizuka. Combined Lateral and Longitudinal Control of Vehicles for IVHS [C]. Proceedings of the American Control Conference. America, Maryland, 1994: 1205-1206.
    [122] Zbigniew Lozia, Wieslaw Pieniazek. Real Time 7 DOF Vehicle Dynamics Model and itsExperimental Verification [J]. SAE Technical Paper: 2002-01-1184.
    [123]交通部公路管理司,中国公路学会.公路工程技术标准[S](JTJ001-91).北京:人民交通出版社, 1997.
    [124] Matthew Blank, Donald L Margolis. Minimizing the Path Radius of Curvature for Collision Avoidance [J]. Vehicle System Dynamics, 2000, 33(2): 183-201.
    [125] Sasipalli V S R, Sasipalli G S, Harada K. Single spiral in highway design and bounds for their scaling [J]. IEICE Transactions on Information and Systems, 1997, 80(11): 1084-1091.
    [126] Uwe Kiencke, Lars Nielsen. Automotive Control Systems for Engine, Driveline and Vehicle [M], Berlin: Springer-Verlag, 2005.
    [127] Wonshik Chee, Masayoshi Tomizuka. Vehicle Lane Change Maneuver in Automated Highway Systems [R]. California PATH Research Report, University of California at Berkeley, 1994, UCB-ITS-PRR-94-22.
    [128]廖传锦,黄席樾,柴毅.基于多传感器信息融合的目标跟踪与防撞决策[J].控制理论与应用, 2005, 22(1): 127-133.
    [129] Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching coefficients [J]. IEEE Transactions on Automatic Control, 1988, 33(8): 780-783.
    [130] Bar-Shalom Y, Chang K C, Blom H A P. Tracking a Maneuvering Target using Input Estimation versus the Interacting Multiple Model Algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 296-300.
    [131] Li R L, Bar-Shalom Y. Design of an Interacting Multiple Model Algorithm for Air Traffic Control Tracking [J].IEEE Transaction Control System Technology. 1993, 3(1): 186-194.
    [132]康耀红.数据融合理论与应用[M].西安:西安电子科技大学出版社, 1997.
    [133] Jang J. Multiple Sensor Fusion for Single Target Tracking using Interacting Multiple Model (IMM) Algorithm [D]. California, US: Department of Mechanical Engineering, University of California at Berkeley, 2003
    [134]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社, 2004.
    [135]乔向东.信息融合系统中目标跟踪技术研究[D].西安:西安电子科技大学计算机学院, 2003.
    [136]何友,修建娟,张晶炜等.雷达数据处理及应用[M].北京:电子工业出版社, 2006.
    [137]王志敏,肖卫初.机动目标跟踪中IMM算法的性能分析[J].湖南城市学院学报(自然科学版), 2003, 24(6): 109-111.
    [138] Olaf Gietelink, Jeroen Ploeg, Bart De Schutter, etc. Development of Advanced Driver Assistance Systems with Vehicle Hardware-in-the-loop Simulations [J]. Vehicle SystemDynamics, 2006, 44(7): 569-590.
    [139] Susanne K?hl Dirk Jegminat. How to Do Hardware-in-the-Loop Simulation Right [C]. SAE Technical Paper: 2005-01-1657.
    [140]宋昱,吴晴,余春暄.基于Simulink和VR工具箱的车辆制动稳定性计算机仿真[J].交通与计算机, 2006, 24(6): 103-106.
    [141]费贤松.联合主动转向和横摆力矩控制的汽车操纵稳定性研究[D].南京:南京航空航天大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700