用户名: 密码: 验证码:
碎石化沥青加铺结构力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着对修复或加铺旧水泥混凝土路面需求的快速增长,解决加铺层所涉及的关键技术和工程问题以及节约工程投资、提高效率、保证行驶质量,显得非常迫切。而旧水泥混凝土路面改建技术的关键,是对破损混凝土路面板的处理方法。水泥板碎石化方法是将旧水泥混凝土板块破碎后作为改建路面的基层或底基层,较好地利用了原混凝土板的强度,不仅节省投资、有效地防治反射裂缝的产生或发展,而且有效地解决了废料的处置问题。碎石化技术虽在国内工程实践中有所应用,但仍不成熟,工程界对旧水泥路面碎石化加铺层设计方法尚未取得共识,相关的力学机理、加铺层设计理论、路面设计及验收指标的选取、破碎层特性的表征等仍需做大量的研究工作。鉴于此,论文将在广泛调研的基础上,结合成绵高速公路改建工程,通过理论研究与数值分析、室内外试验等技术手段,对碎石化沥青加铺结构相关力学行为特性进行研究。
     首先,根据现场试验路的试验分析,研究碎石化层的材料特性和结构性能。通过现场调查、钻芯取样、开挖检查坑等手段,获得了碎石层的级配等基本物理参数。研究中,根据弯沉等效原理,对FWD弯沉检测值进行了反演分析,确定路面各结构层的回弹模量值。由于路表弯沉实为路面各结构层对荷载作用的综合响应,其中又以路基的竖向变形所占比例最大,因而反演过程中,根据结构层内荷载扩散规律,采用了由远及近、分步反演的方法,即先由远离承载板的弯沉值反算路基模量,再由承载板附近的弯沉值反算路面各结构层的模量。考虑到路面结构在FWD动载作用下所表现出的力学响应行为不同于静载,论文在大型有限元软件ABAQUS的平台上,应用python语言二次开发了动力有限元的反演程序,对碎石化前、后成绵高速的路面改建工程检测数据进行反演,得到了与现场实际情况较为接近的路面各结构层力学参数。
     在实体工程检测数据分析的基础上,选取两典型的碎石化沥青加铺结构(碎石化加铺结构1中旧混凝土上层破碎粒径≤15cm,碎石化加铺结构2中旧混凝土上层破碎粒径≤7.5cm)进行室内沥青加铺层足尺疲劳试验。在控制环境及荷载条件下,重点研究竖向动荷载累计作用所引起的沥青加铺层及下卧碎石层力学状态的变化,探讨碎石层物理指标与加铺层结构劣化的关系。试验结果证实了沥青加铺层层底应变随荷载重复作用次数增长呈现增加趋势;同时发现,相同环境及荷载作用下,加铺层层底应变增长率与旧混凝土层的碎石化程度有直接的关系,碎石化程度较低的加铺层结构(结构1)的应变变化率明显大于碎石化程度较高的加铺层结构(结构2)应变变化率,说明在基层承载力得以满足的情况下,适当提高旧混凝土路面的碎石化程度将有利于加铺层结构的抗疲劳性能。
     为进一步认识碎石化程度对沥青加铺层力学行为特性的影响,建立了混凝土碎石化路面沥青加铺结构计算模型,模型视沥青加铺层、基层及土基为连续介质,旧混凝土碎石层为离散介质,分别采用有限差分和颗粒离散元加以模拟,并通过界面的强制性连续条件,实现有限差分和颗粒离散元的耦合。根据现场检测情况,将破碎混凝土简化成三层,即碎粒层、碎石表层和碎石底层,通过模拟计算,探讨不同尺度材料组合情况下的结构计算方法。结果表明,碎粒层分层厚度越厚,旧混凝土板碎石化程度越高,沥青加铺层底承受的拉应变、拉应力和荷载中心作用处的弯沉也就越大。当碎粒层颗粒粒径由1mm变化到2mm时,沥青加铺层底的拉应力、应变也相应变大;而碎石表层颗粒粒径由5~8mm减小到3~5mm,即旧混凝土面层破碎越碎,原水泥混凝土面板的强度下降的越多,整体性也就越差,沥青加铺层底的拉应力、应变也就越大。计算结果证实,说明在施工过程中,破碎混凝土块的粒径应控制在一定的范围内。
     针对旧水泥混凝土路面碎石化后加铺沥青面层这类特定的复合结构形式,分别以路表弯沉和结构层底容许拉应力为控制指标,在2D有限元通用计算程序的平台上,进行了典型路面结构可靠度计算和灵敏性分析程序的二次开发,并通过计算,确定了对碎石化沥青加铺结构可靠性影响较为显著的因素。计算结果表明,以容许拉应力为控制指标对路面结构可靠度指标的影响大小依次为:土基、碎石层、基层与沥青面层。其中,土基和碎石层对结构可靠性指标的影响占到85%以上,是结构抗拉性能的决定性因素;另一方面以路表弯沉为控制指标对路面结构可靠性指标的影响大小依次为:加铺层、基层、土基与碎石层,其中,加铺层和基层的模量对结构可靠性指标的影响占到90%以上,是路面抵抗弯沉变形的决定性因素。因此,碎石化沥青加铺结构设计和施工过程中应综合考虑这两方面因素,寻求平衡点,达到路面结构对荷载响应的整体性最优。
In recent years, with the rapid growing of the demands of the rehabilitation and asphalt overlays over PCC pavements, it turns out to be urgent for how to solve the key technical problems and engineering issues, improve the functional pavement performance and ensure the quality of driving when considering save the investment. However, the key technology of the reconstruction of the old cement concrete pavement is the treatment method of the damaged concrete slab. Rubblization of PCC pavement is an optional technique to rubblize the slab into fragments, which includes transforming the original concrete slabs into an aggregate base or subbase. It's better to use the structural capacity of the existing pavements, which not only reduces the investment and effectively eliminates the reflective cracking, but also solves the waste disposal problems. Although the rubblization has already been applied in the domestic engineering, it's still need to refine and has not yet reached a consensus on the design method of asphalt overlays over PCC slabs under heavy traffic load. So there's much research work need to be done, such as the mechanical mechanism of rubblizing PCC pavement, the design method of AC overlays, the properties and pavement performances of the rubblized layer, etc. In this work, through theoretical research, numerical analysis, indoor and outdoor tests and other means, the mechanism behavior of the asphalt overlay over the rubblized PCC slabs is discussed compound with the extensive research and Chengdu-Mianyang highway reconstruction projects.
     At first, this paper carries out reseach on the properties of rubblized layer by the means of field investigating, core sampling and test pits excavating. It obtains the basic physical parameters and the gradation of rubblized layer. The resilient modulus of pavement materials has been backcalculated through the FWD testing data of experimental roads,according to the deflection equivalence principle.The surface deflection is actually a comprehensive response to the load, and the maximum proportion of the vertical deformation is caused by the subgrade. So, according to the load diffusion law, the backcalculated process of modulus is that the modulus of subgrade is first back calculated on basis of the deflection, which is away from the bearing plate. Then the modulus of the other structure layer of pavement is back calculated on the basis of the deflection near the bearing plate. Because it's the difference the mechanical response under the FWD dynamic loading from that under the static load, the measured FWD data that pre and post rubblization is used to back calculate the parameter of pavement materials using the finite-element software of ABAQUS, which is applied to secondary developed of using the python computer language, combined with Chendu-Mianyang highway reconstruction projects.The results suggest this program can give rational mechanical parameters of pavement structure.
     Then, combined with the actual conditions on site, two typical structures of asphalt overlays over the rubblized PCC slabs, which the broken particle size of the structure 1 is less than 15 cm, while the broken particle size of the structure 2 is less than 7.5 cm, is selected to carry out the full-scale fatigue experiment. The changes of the mechanical condition of the asphalt overlays and rubblized layer is studied, caused by the cumulative effect of the vertical dynamic loads. Meanwhile, the deterioration relationship between the physical indicators of the rubblied layer and overlays is discussed under the control of the environment and load conditions. The results show that the strain response of pavement varied with the load conditions.And the strain with load repetition has shown an increasing trend. The strain rate at the bottom of asphalt overlays varies with the particle size of the rubblized layer under the same load.The strain rate of the pavement structure 1 is 0.9119,which is larger than 0.3564 of the pavement structure 2. It indicated that the particle size has great influenced on the fatigue property of the alphalt overlays.
     To understand how the characteristics of mechanical behavior is affected by the degree of rubblization slabs, a numerical method which combines the finite difference and DEM is proposed, in which the rubblized PCC slab is described using DEM while the asphalt overlays, base and subgrade is simulated by the finite difference method, according to the actual structure. The conditions of mandatory continuity along the corresponding boundaries need to be satisfied in the computation process. To illustrate the effects of rubblization on asphalt overlays pavements more clearly, rubblized PCC slabs is further divided into three sublayers as the small particles layer, the surface layer and bottom layer. The calculation methods of material combination of different scales are discussed. The results show that the thicker the small particles layer is, the higher the degree of rubblization of the slabs is and the larger the tensile stress, strain and deflection at the bottom of the asphalt overlays are. It also found that the particle size of a small particles layers is increased about 1mm to 2mm, the tensile stress and strain at the bottom of the asphalt overlays are proportional to the particle size of the small particles layer; while the particle size is reduced from 5-8mm to 3-5mm, the smaller the particles size of the surface layer is, the higher the degree of rubblization of the slabs is and the larger the tensile stress and strain are. In other words, strength loss of the old PCC is proportional to degree rubblization of the slab. This shows that the degree of rubblization should be properly controlled in the reconstruction projects.
     Finally, combined with the actual structure of asphalt overlays over the rubblized PCC slabs, the significant factors affect the reliability of the asphalt overlays over the rubblized PCC slabs are determined. The two state equations are established in which the design deflection and the allowable tensile stress at the bottom of the asphalt layer are determined as the main index respectively. And the program of the reliability and the sensitiving analysis of the pavement structure is the secondary developed in the 2D finite element computer program platform.The results show that the factors which affect the reliability of the structure of pavement are as fellows:subgrade, the rubblized layer, base and asphalt overlays,according to the allowable tensile stress at the bottom of the asphalt layer. Among them, the factors of the subgrade and the rubblized layer are more than 85%,which are the decisive factor of the resistance to tensile strength of the structure.While the factors which affect the reliability of the structure of pavement are as fellows:asphalt overlays, base, subgrade and the rubblized layer, according to the surface deflection; Among them, the factors of the asphalt overlays and baser are more than 90%,which is the decisive factor of the resistance to deformation of the surface deflection. Therefore, seeking a balance in order to achieve overall optimum to the performance of the pavement structure under the load, two main factors which affect the reliability of the structure of pavement should be taken into account,comprehensively,in the design and construction.
引文
[1]胡昌斌.冲击压路机破碎改建旧水泥混凝土路面技术[M].北京:人民交通出版社,2007,07.
    [2]张娜.基于MHB碎石化技术的沥青碎石封层试验研究[D].重庆:重庆交通大学,2009,03.
    [3]Asphalt Overlays for Highway and Street Rehabilitation. Manual Series 17 (MS-17)[S]. Asphalt Institute. January 2000.
    [4]Thompson, M. R. Breaking/Cracking and Seating Concrete Pavements[J]. NCHRP Synthesis of Highway Practice No.144, National Cooperative Highway Research Program, Transportation Research Board, National Research Council. Washington, D.C.1989.
    [5]唐娴,李晓明,袁卓亚.路面再生技术研究[M].北京:中国建筑工业出版社,2009,09.
    [6]张玉宏.水泥混凝土路面碎石化综合技术研究[D].南京:东南大学,2006,04.
    [7]王松根,张玉宏,黄晓明等.旧水泥混凝土路面碎石化技术应用指南[M].北京:人民交通出版社,2007.
    [8]http://www.antigoconstruction.com.
    [9]陈英晖,王一兵,贺杰.破碎旧水泥路面的新机型[J].工程机械,2004,09.
    [10]张西农.水泥路面改造工程中的共振破碎技术[J].建设机械技术与管理,2005,02.
    [11]Rubblization of Portland Cement Concrete Pavements-Design and Construction of HMA Overlays on Rubblized PCC Pavements[J]. Transportation Research Board, Research Circular E-C087, January 2006.
    [12]Item P-215 Base Course From Rubblized Concrete Pavements[S]. Federal Aviation Administration(FAA), Engineering Brief No.66, February 13,2004.
    [13]Von Quintus, Harold L., Chetana Rao, Jagannath Mallela et al.. Guidance, Parameters, and Recommendations for Rubblized Pavements[R]. Applied Research Associates, Inc., Wisconsin Department of Transportation, January 2007.
    [14]Wolters, R.O., and J. M. Thomas. Best Management Practices for Rubblizing Concrete Pavements[J]. Minnesota Asphalt Pavement Association,2003.
    [15]Dar-Hao Chen, QinLong Huang, Jianming Ling. Shanghai's Experience on Utilizing the Rubblization for Jointed Concrete Pavement Rehabilitation [J]. Journal of Performance of Constructed Facilities,2008,22(6),398-406.
    [16]Dr.David H.Timm, and Aaron M. Warren. Performance of Rubblized Pavement Sections in Alabama[R]. Auburn University, Alabama, May 2004.
    [17]Richard O.Wolters, P.E. and Jill M. Thomas, P.E. Best Management Practices for Rubblizing Concrete Pavement[R]. Minnesota Asphalt Pavement Association, July,2003.
    [18]Halil Ceylan et al. Rehabilitation of Concrete Pavements Utilizing Rubblization and Crack and seat Methods [R]. Center for Transportation Research and Education, Iowa State University. IHRB Project TR-473 Final Report, June 2005.
    [19]Robert Boyer, Wayne Jones. State-of-the-Practice:Rubblization of Heavy Load Concrete Airfield Pavements[J]. Airfield Pavement,2003.
    [20]Michael G Niederquell, Gilbert Y. Baladi. Rubblizatin of Concrete Pavements Field Investigation[R].79th Transportation Research Board Annual Meeting, Washington D.C.2000.
    [21]George Wang水泥混凝土路面的现场碎石化处理[J].上海公路,2004,02.
    [22]Baladi, G.Y., K. Chatti, and M. G. Niederquell. Rubbilization of Concrete Pavements Field Investigations[R]. Presented at the 79th Annual Meeting of the Transportation Research Board, Washington, D.C.,2000.
    [23]Laura B. Heckel,P.E. Rubblizing with Bituminous Concrete Overlay-10 Years'Experience in Illinois[R]. Physical Research Report No.137, Illinois Department of Transportation, April 2002.
    [24]Robert La Force, P. E. Performance of Colorado's First Rubblization Project on I 76 Near Sterling[R]. Colorado Department of Transportation Research Branch, January 2006.
    [25]Bemanian, S., P. Sebaaly. Cost Effective Rehabilitation of Portland Cement Concrete Pavement in Nevada[R]. Transportation Research Record 1684,1999.
    [26]Thoms E. Freeman,P.E.,Evaluation of Concrete Slab Fracturing Techniques In Mitigating Reflective Cracking Through Asphalt Overlays[J],Virginia Transportation Research Council, Charlottesville,Virginia,VTRC 03-R3,September,2002.
    [27]Fitts, G. L. Performance Observations of Rubblized PCC Pavements[C]. Second International Symposium on Maintenance and Rehabilitation of Pavements and Technological Control, Auburn, AL 2001.
    [28]Guidelines and Methodologies for the Rehabilitation of Rigid Highway Pavements Using Asphalt Concrete Overlays[R]. PCS/Law Inc. PCS/Law, June 1991.
    [29]Witzack, M. and Rada, G. Nationwide Evaluation of Asphalt Concrete Overlays Placed on Portland Cement Concrete Pavement[J]. TRR 1374,1992.
    [30]Pavement Consultancy Services. Guidelines and Methodologies for the Rehabilitation of Rigid Highway Pavements Using Asphalt Concrete Overlays[S]. Engineering Report Prepared by NAPA and SAPAE, Maryland,1994.
    [31]Morian, D. A., L. Coleman, D. J. Frith, S. M. Stoffels, and D. Dawood. How Did It Work? Pennsylvania SPS-6 Performance at Ten Years-Strategy Evaluation of Concrete Pavement Rehabilitation[J]. Journal of the Transportation Research Board, No.1823, TRB, National Research Council, Washington, D.C.,2003:28-38.
    [32]Thompson, M. R. Breaking/Cracking and Seating Concrete Pavements[J]. NCHRP Synthesis of Highway Practice No.144, Transportation Research Board, National Research Council, Washington, D.C.1989.
    [33]Thompson, M. R. et al. HMA Overlay Construction with One-Pass/Lane-Width PCCP Rubblization[J]. Journal of the Association of Asphalt Paving Technologists,1997,66(407).
    [34]Sohila Bemanian. Cost-Effective Rehabilitation of Portland Cement Concrete Pavement[R]. Nevada Department of Transportation, University of Nevada,1996:
    [35]Khaled A. Galal et al. Structural Adequacy of Rubblized Pavement. Indiana Department of Transportation[J], November 1998.
    [36]Galal, Coree et al. Structural Adequacy of Rubblized PCC Pavement[J]. TRB,1999,1684, 172-177.
    [37]Svasdisant and Baladi. Backcalculation of Rubblized Pavement Layer Moduli and an Innovative Approach to Estimate the Depth to Stiff Layer[R]. TRB2004-002682,2004.
    [38]Baladi, G., and T. Svasdisant. Causes of Underperformance of Rubblized Pavements[R]. Michigan State University, August,2002.
    [39]Stephen Sebesta, Tom Scullion,and Christopher Von Holdt. Rubblization for Rehabilitation of Concrete Pavement in Texas:Preliminary Guidelines and Case Studies[R]. Texas Transportation Institute. February,2006.
    [40]Halil Ceylan et al. Rehabilitation of Concrete Pavements Utilizing Rubblization and Crack and seat Methods[R]. IHRB Project TR-473 Final Report,Center for Transportation Research and Education, June,2005
    [41]AASHTO Guide for Design of Pavement Structures[S]. American Association of State Highway and Transportation Officials, Washington D.C.,1993.
    [42]Coree,Brain,J.,K.A.Galal,and J.E. haddock. Final Report-Verification of Design Parameters for Overlaid Rubblized PCC Pavement[R]. Indiana Department of Transportation,December,1997.
    [43]James A. Crovetti. Portland Cement Concrete Pavement Over Rubblized PCC[R]. Wisconsin Department of Transportation, March,2008.
    [44]Rubblizing of Concrete Pavement:A Discussion of its Use[J]. American Concrete Pavement Association,1998.
    [45]Sohila Bemanian. Cost-effective Rehabilitation of Portland Cement Concrete Pavement[R]. Nevada Department of Transportation,1996.
    [46]刘萦.水泥混凝土路面改建技术[M].北京:人民交通出版社,2006,01.
    [47]苏卫国,卢辉,李林生.冲击压实后旧水泥混凝土路面回弹模量的现场试验[J].华南理工大学学报(自然科学版),2004,32(10),67-70.
    [48]苏卫国,卢辉.冲击压实后旧水泥混凝土路面作为垫层及其回弹模量的现场试验[J].公路,2004,(11),72-75.
    [49]苏卫国,卢辉.旧水泥混凝土路面应用冲击压实技术后的裂缝和沉降效果分析[J].中外公路,2004,24(01),65-68.
    [50]苏卫国,汪益敏.冲击压实技术在修复旧水泥混凝土路面工程中的应用[J].华南理工大学学报(自然科学版),2000,28(06),85-89.
    [51]苏新国,鲁圣地.冲击压实技术在混凝土路面改建工程中的应用[J].公路,2002(01),67-70.
    [52]施瑞新,黄新元,何培勇.冲击压实技术在旧混凝土路面修复中的应用[J].公路交通技术,2002,(03),29-32.
    [53]施瑞新,黄新元,何培勇.冲击压实技术在旧混凝土路面修复中的应用[J].华东公路,2002,138(05),11-15.
    [54]许海云,吴景泉.旧水泥混凝土路面改建技术[J].华东公路,2002,137(04),44-47.
    [55]项新里,黄勇生.水泥混凝土路面破碎修复试验研究[J].公路,2003,(09),164-167.
    [56]项新里.旧水泥混凝土路面改建技术与方法的探讨[J].公路交通技术,2003,(05),47-48.
    [57]唐学军,苏卫国.冲击压实旧混凝土路面结构受力三维有限元分析[J].上海公路,2003,(03),17-21.
    [58]唐学军,苏卫国.冲击压实旧混凝土路面路基的力学行为研究[J].岩土工程学报,2004,26(6),804-808.
    [59]刘荥,黄晓明,刘效尧.冲击破碎混凝土路面的三维叠层模型[J].交通运输工程学报,2005,5(01),11-18.
    [60]刘荥,黄晓明,刘效尧.冲击破碎混凝土路面的三维叠层有限单元计算模型[J].交通与计算机,2004,22(01),93-96.
    [61]刘荥,刘效尧,孙江等.冲击碾压混凝土路面的破碎尺度[J].公路交通科技,2004,21(04),16-18.
    [62]刘荥,孙江,黄晓明等.旧混凝土路面冲击破碎后表明弯沉和回弹模量[J].华东公路,2003,145(06),11-13.
    [63]刘荥,孙江,苏国新等.旧混凝土路面改建中的新技术与方法的研究[J].华东公路,2003,141(02),7-9.
    [64]刘荥,刘效尧,黄晓明.旧混凝土路面冲击破碎动力响应和安全振速标准[J].公路交 通科技,2005,22(12),23-26.
    [65]孙晓亮,胡昌斌.四楞冲击压路机破碎旧水泥混凝土路面力学机理研究[J].福州大学学报,2007(02):281-287.
    [66]王松根,张玉宏,曹茂坤,贾海庆,张建.水泥混凝土路面碎石化改造技术应用与探讨[J].公路2004,(05),32-34..
    [67]George Wang水泥混凝土路面的现场碎石化处理[J].上海公路,2004(02),1-5.
    [68]侯利国,洪秀敏,马建青等.碎石化技术在旧水泥路面改造加铺沥青路面中的应用[J].中外公路,2005(10):41-44.
    [69]柳正华,谈至明.旧水泥混凝土路面的碎石化技术综述[J].公路,2005,(12),187-190.
    [70]李发玉.水泥混凝土路面碎石化技术[J].路面机械与施工技术.2005(08),29-32.
    [71]邵学良,常乐东,孙同波.水泥混凝土路面碎石化改造技术与研究.[J]公路交通科技,2006,23(09),196-200.
    [72]贺铭,高艳龙,黄莘.多锤头碎石化技术在旧混凝土路面改造中的应用[J].重庆大学学报,2007(10):64~67.
    [73]晁德志,马晓力,姚佳良.旧水泥混凝土路面多锤头碎石化技术应用研究[J].公路,2008,,(07),148-151.
    [74]董元帅,朱洪洲.旧水泥混凝土路面碎石化改造技术[J].重庆交通大学学报(自然科学版),2008,27(增刊),920-923.
    [75]马有旺,刘占广.水泥混凝土路面多锤头碎石化技术在G320杭州段的应用[J].公路交通科技(应用技术版),2008,48(12),54-56.
    [76]梁晓程.旧水泥混凝土路面碎石化技术应用[J].交通世界,2008(02):91-93.
    [77]张世强.水泥混凝土路面碎石化技术研究[J].西安:长安大学,2008,10.
    [78]王荣.旧水泥混凝土路面碎石化施工工艺与设计参数研究[D].上海:同济大学,2008,12.
    [79]张双艺,王海荣.共振碎石化技术在旧水泥混凝土路面改建(白改黑)工程中的应用[J].上海公路,2009(01),11-13.
    [80]李豪,曹荣吉,韦武举.碎石化在旧水泥混凝土路面拓宽改造中的应用[J].现代交通技术,2009,6(06),18-20.
    [81]王荣.旧水泥混凝土路面碎石化施工工艺与设计参数研究[D].上海:同济大学,2008,12.
    [82]易勇,邓海斌,高燕希.104国道湖州段水泥面板碎石化技术[J].公路与汽运,2010,136(1),118~119.
    [83]王松根,李昶,张玉宏等.旧水泥混凝土路面MHB碎石化后强度机理分析[J].公路交通科技,2006(12),95~99.
    [84]黄晓明,张玉宏,李昶等.水泥混凝土路面碎石化层应力强度因子有限元分析[J].公路交通科技,2006(02),52-55.
    [85]张玉宏,李昶,王松根等.碎石化后沥青加铺层应力对比分析[J].公路交通科技,2006(03),1-5.
    [86]邓松.高等级公路大修改建的部分关键技术研究[D].南京:东南大学,2005,11.
    [87]万伟.道路白加黑碎石化技术研究[D].武汉:华中科技大学,2008,06.
    [88]于清泉,朱庆华,梁书亭.MHB碎石化振动影响范围的计算方法[J].公路,2008(01):41-45.
    [89]李自光,刘望球,张国凤.基于Patran的多锤头碎石化技术有限元分析[J].中国工程机械学报,2009,7(4),484-487.
    [90]侯利国,沈建荣,吕伟民.混凝土面板碎石化后承载能力的评定[J].中外公路,2006,26(1),61-63.
    [91]徐柱杰,凌建明,黄琴龙,谢旗.旧水泥混凝土共振碎石化路面模量分析[J].同济大学学报(自然科学版),2008,36(9),1195-1209.
    [92]徐柱杰,凌建明,黄琴龙.旧水泥混凝土路面共振碎石化效果研究[J].中国公路学报,2008,21(05),26-30.
    [93]郭林泉,周玉民,谈至明.碎石化旧混凝土路面上沥青加铺层应力及顶面模量[J].公路交通科技,2009,26(12),24-27.
    [94]Irwin, L.H., Practical realities and concerns regarding pavement evaluation, Proc.4th Int. Conf. on Bearing Capacity and Airfields, Minneapolis,1994.
    [95]Perea, R.W., et al, Use of non-destructive testing in evaluating composite pavements, Proc. 4th Int. Conf. on Bearing Capacity and Airfields, Minneapolis,1994.
    [96]Loizos, A., et al., Dynamic stiffness modulus for subgrade evaluation [J], J. of Trans. Eng. (ASCE),Vol.129(4),2003.
    [97]梁新政,路面结构层应力非线性特性反演研究[D],大连:大连理工大学,2000.
    [98]Tam, W.S. and Brown S.F., Back-analyzed elastic stiffness comparison between different evaluation procedures [S], Non-destructive testing of pavements and back-calculation of moduli,ASTM STP 1026.
    [99]Collop, A.C., et al, Assessing variability of in situ pavement stiffness moduli[J], Joural of Transportation Engineering,.127(1),2001.
    [100]Parker, F.Jr., et al, Development of a structural design procedure for rigid airport pavements, US Army Engineer, WES:Technical report TR-GL-79-4,1979.
    [101]Bush, A.J., Nondestructive Testing for Light Aircraft Pavements, phase Ⅱ, Development of the Nondestructive Evaluation Methodology[R], Report FFA-RD-80-9-Ⅱ, US. Department of Transport,Washington, D.C,1980.
    [102]周靖翔.落重挠度仪检测荷重与坚硬层深度对反算分析之影响[D],台湾:国立台湾大学,2001.
    [103]Chou,Y. Development Of An Expert System For Nondestructive Pavement Structural Evaluation [D], Texas A&M University, College Station, Texas,1989.
    [104]中交公路规划设计院.公路水泥混凝土路面设计规范(JTG D40-2002)[M].北京:人民出版社.2003.
    [105]中交公路规划设计院.公路沥青路面设计规范(JTG D50-2006)[M].北京:人民出版社.2007.
    [106]郑永来,夏颂佑.岩土类材料的动弹性模量的进一步研究[J].岩土工程学报.1997,19(1):75~78.
    [107]郑永来,夏颂佑,周澄.岩土类材料的动弹性模量机理[J].振动与冲击.1997,16(2):56~62.
    [108]田嘉宁,石怀理.岩石动弹性模量与静弹性模量对比试验研究[J].西北水力发电.1988,(4):21-27.
    [109]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998.
    [110]徐芝纶.弹性力学[M].北京:高等教育出版社,1996.
    [111]王旭东.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002.
    [112]魏翠玲,王复明,周晶,FWD无损检测数值的动态分析[J],岩土工程学报,1999,21(04),496-499.
    [113]侯芸,郭忠印,田波等.动荷载作用下沥青路面结构的变形响应分析[J].中国公路学报,2002,15(3):6-10
    [114]李田.结构时程动力分析中的阻尼取值研究[J].土木工程学报,1997,30(3),243-247.
    [115]T. Belytschko, W. L. Mindle. The Treatment of Damping in Transient Computations[Z]. ASME, Damping Applications for Vibration control,1980, vol.38.
    [116]黄立葵,孙晓立,易志华.路面结构的动荷载效应及对反分析结果的影响[J],湖南大学学报,2003,30(4):78-81.
    [117]董泽蛟,柳浩,谭忆秋,陈凤晨,王宝新.沥青路面三向应变响应现场实测研究[J].华南理工大学学报(自然科学版).2009,37(7),47-51.
    [118]胡小弟.轮胎接地压力分布实测及沥青路面力学响应分析[D].上海:同济大学,2003.
    [119]彭波,李文瑛,危拥军.沥青混合料组成与特性[M].北京:人民交通出版社,2007.
    [120]孙立军.路面结构行为理论[M].上海:同济大学出版社,2003.
    [121]黄仰贤,余定选,齐诚.路面分析与设计[M].北京:人民交通出版社,1998.
    [122]陈希哲.土力学地基基础[M].北京:清华大学出版社,2004.
    [123]中交公路规划设计院.公路沥青路面施工技术规范(JTG F40-2004)[M].北京:人民出版社.2005.
    [124]Park H.S.,Liu W.K. An introduction and tutorial on multiple-scale analysis in solids[J].Computer Methods in Applied Mechanics and Engineering,2004,(193),1733-1772.
    [125]韦乔彪,公平.旧路面破碎稳固后沥青加铺层受力特性分析[J].黑龙江交通科技,2007,155(1),9-10.
    [126]Cundall,P.A, Strack,O.D.L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1),47-65.
    [127]王泳嘉,刑纪波.离散单元法同拉格朗日元及其在岩土力学中的应用[J].岩土力学,1995,16(2),1-14.
    [128]黄晚清.SMA粗集料骨架结构的细观力学模型研究[D].成都:西南交通大学,2007.
    [129]Stewart I J, Brown E T. A static relaxation method for the analysis of excavation in discontinue rock [M]. Design and Performance of Underground Excavations, Cambridge, 1984.
    [130]Otter J R H, Cassell A C, Hobbs R E. Dynamic relaxation [J]. Proc. Int. Civ. Engrs.1966, (35),633-665.
    [131]王泳嘉,邢纪波.离散单元法的基本原理及其应用[A].第一届全国计算岩土力学研讨会论文集(一)[C].峨嵋:西南交通大学出版社,1987.
    [132]Brown E T.主编,余诗刚,王可钧译.工程岩石力学中的解析与数值计算方法[M].北京:科学出版社,1991.
    [133]Itasca Consulting Group,Inc.PFC2D theory and background. Minneapolis, Minnesota, 2004.
    [134]Itasca Consulting group Inc. FLAC2D user's manual version 5.0[M]. Minneapolis, Minnesota:Itaca Consulting Group Inc.,2005.
    [135]张锐,唐志平,郑航.离散元与有限元耦合的时空多尺度计算方法[J].吉林大学学报(工学版),2009,39(2),409-412.
    [136]陈虬,许廷兴.动态响应分析的有限元-边界元耦合迭代法[J].西南交通大学学报,1984,74(4),51-65.
    [137]金峰,贾伟伟,王光纶.离散元—边界元动力耦合模型[J].水利学报,2001,32(1):23-27.
    [138]唐志平,胥建龙.离散元与壳体有限元结合的多尺度方法及其应用[J].计算力学学报.2007,24(5):591-596.
    [139]H. Nakashima, A. Oida. Algorithm and implementation of soil-tire analysis code based on dynamic FE-DE method [J]. Journal of Terramechanics,2004, (41),127-137.
    [140]郑桂兰,马庆雷,潘秀华.旧水泥混凝土路面沥青加铺层结构设计方法研究[J].山东大学学报(工学版)2007,37(4):94-97.
    [141]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001.
    [142]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版,2005.
    [143]秦权,林道锦,梅刚.结构可靠度随机有限元理论及工程应用[M].北京:清华大学出版社,2006.
    [144]中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-1992).北京:中国计划出版社,1992.
    [145]卓家寿,邵国建,武清玺,黄丹.力学建模导论[M].北京:清华大学出,2006.
    [146]吴震宇.高堆石坝非线性强度指标坝坡稳定可靠度分析方法与安全系数标准研究[D].成都:四川大学,2009.
    [147]Wong F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering.1985,(111),32-53.
    [148]Kim S H,Na S W. Response surface method using vector projected sampling points[J].Struct.Safety.1997,19(1),3-19.
    [149]武清玺,卓家寿.二次序列响应面法分析重力坝的动力可靠度问题[J].振动工程学报,2001,14(2),224~227
    [150]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety.1990,(7),57-66.
    [151]陈厚群,梁爱虎.重力坝动力可靠度的随机有限元的分析方法[J].工程结构可靠性全国第三届学术交流会议论文集.南京:河海大学出版社,1992.
    [152]Handa K,Anderson K.Application of finite element methods in statistical analysis of structures[C]. Proc 3rd Int Conf on Structure Safety and Reliability,Nroway,Trondheim,1981.
    [153]Hisada T, Nakagiri S. Stochastic finite element method developed for structures. Safety and Reliability[C]. Proceed 3rd Internal Conferece on Structure Safety and Reliability,Nroway,Trondheim,1981.
    [154]Erik Vanmarcke. Random Fields:Analysis and Synthesis[M].Cambridge:The MIT Press,1983.
    [155]Ghanem R G. Ingredients for a General Purpose Stochastic Finite Elements Implementation[J]. Comput. Methods Appl. Meth. Engrg.1990,(168),19-34.
    [156]Jensen H, Iwan W D. Response Variability in Structural Dynamics[J]. Earthquake Engineering and Structural Dynamics.1991,(20),949-959.
    [157]Der Kiureghian Armen,Ke Jyh-Bin. Finite-element based reliability analysis of frame structures[C]. Proc. Of 4th Int Conf on structural safety and reliability. Iassar, Japan,1985.
    [158]娄峰.基于模糊理论的沥青路面可靠性分析[D].湖南:湖南大学,2004.
    [159]Brown,S.F.,Tam,W.S.,and Brunton,J.M. Development of an analytical method for the structural evalution of pavements[J].2nd Int. Conf. on Bearing Capacity of Roads and Airfields,WDM,Bristol, U.K.,1,267-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700