用户名: 密码: 验证码:
含有控制时滞离散时间系统的最优控制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于对系统动态性能期望的提高,所建立的系统模型需要更加真实地反映实际系统的特性。由控制信号的计算、传输以及控制力的产生所引起的控制时滞普遍存在于实际控制系统中。同时,外界持续扰动是普遍存在的。控制时滞和扰动的存在可能会引起系统性能的下降,甚至导致系统不稳定。在车辆主动悬挂系统的最优减振控制问题中考虑控制时滞的影响,可以更加有效地抑制由路面不平整度引起的车体振动问题,并且提高车辆的乘坐舒适性和操作稳定性。离散时间协同自适应巡航控制系统通过感知周围环境以及应用相关车辆的信息,可以有效地提高道路通行能力以及行驶的安全性,同时对车辆的乘坐舒适度、燃料耗费以及实现驾驶员所期望的驾驶行为等性能有明显的改善。因此,针对含有控制时滞离散时间系统的最优跟踪控制、扰动抑制控制及其应用研究具有重要的理论价值和实际意义。
     全文主要研究内容以及创新点如下:
     1.研究了一类含有控制时滞离散时间系统基于二次性能指标的最优跟踪控制问题,其中参考输入的动态特性由外系统给定的。此类跟踪问题会导致既含有超前项又含有滞后项的两点边值(Two Point Boundary Problem, TPBV)问题。针对含有单个和多个控制时滞的离散时间系统的最优跟踪控制问题,提出两种不同的变量代换方法,将含有控制时滞离散时间系统转化为标准的无时滞系统,并将二次性能指标简化为与转化后无时滞系统相对应的形式,从而获得更加精确地性能指标。此时,此类跟踪问题转化为不含时滞项和超前项的TPBV问题。利用极大值原理,通过求解Riccati和Stein方程,得到系统的最优输出跟踪控制律,并验证了控制律的存在唯一性。利用构造参考输入外系统状态向量的降维观测器,解决了控制律中前馈补偿器的物理不可实现问题。仿真实例验证了针对含有控制时滞离散时间系统所设计的最优跟踪控制律的有效性。
     2.研究无限时域情形下在持续外部扰动作用下含有控制时滞离散时间系统的最优跟踪控制问题。首先研究了在正弦扰动影响下含有单个控制时滞离散时间系统的最优跟踪控制,根据正弦扰动的动态特性并利用扩维方法,原系统转化为不显含扰动的标准系统。基于上述对于含有单个控制时滞离散时间系统的变量代换,将此类问题转化为不含超前项和滞后项的TPBV问题。应用极大值原理,得到前馈反馈最优控制(Feedforward and FeedbackOptimal Control law, FFOC)律,保证了闭环系统的稳定性和性能,并且验证了FFOC的唯一性和最优性。在此控制律中,前馈控制项由扰动外系统和参考输入外系统的状态向量组成。进一步将外部扰动模型由正弦扰动推广到更一般的由线性外系统描述的已知动态特性的扰动模型,研究了在此类扰动作用下含有多控制时滞离散时间系统的最优跟踪控制问题。仿真结果表明所设计的FFOC不仅仅能减小扰动对系统性能的影响,而且有效地提高了被控系统的跟踪精度。
     3.研究路面扰动作用下含有控制时滞汽车主动悬挂离散时间系统的最优减振控制。考虑控制时滞存在的情况下,建立了二自由度四分之一汽车主动悬挂系统和路面随机激励输入的离散时间模型。根据汽车驾驶舒适性和操控稳定性的性能指标,设计了汽车主动悬挂系统前馈-反馈最优减振控制(Feedforward and Feedback Optimal Vibration Control,FFOVC)律。通过求解Riccati方程和Sylvester方程得到FFOVC控制律,并证明了最优解的存在唯一性。仿真算例说明了FFOVC律的有效性。
     4.研究离散时间协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)系统中与被控车辆相对位置有关的分布式纵向最优跟踪控制。考虑由不同车辆组成的交通流中纵向控制问题。根据车辆的特性、交通状况以及驾驶员所期望的驾驶行为,构建了与车辆速度、加速度以及前车车间距相关的跟踪目标,并将混杂交通流纵向控制问题规划为基于二次性能指标的最优跟踪控制问题。根据车辆间的通信结构,利用极大值原理,得到最优纵向跟踪控制律,其中包括由被控车辆状态组成的反馈项以及由相关车辆的预测信息组成的前馈项,从而权衡了三个相互矛盾的跟踪目标。另外,通过引入“虚拟期望速度”以及“虚拟期望加速度”的概念,设计了与车辆相对位置有关的期望速度以及加速度,从而规划了相关期望目标,并构建了相对应的跟踪问题。计算机仿真实验验证了所提出的跟踪控制律的可行性和有效性。
With the increasing expectations of dynamic performances, engineers need their models tobehave more like the real process. In actual control systems, the time-delay in control input isinevitable, which is caused by calculating and transporting the control singnal, building up therequired control force. External distuabance exists widely and inevitably. In general, theexistence of time-delay and disturbance usually deteriorate the performance of closed-loopsystems and maybe a source of instability. Taking into account control delays in activesuspension systems, the vibration problem for vehicles could be solved by using active force sothat ride comfort and driving safety are improved, in which the vibration is caused by persistentdisturbance of roughness road. In vehicle longitudianl control, the cooperative operation in avehicle platoon could be realized by using the information about the related vehicles andembient environment. Then, the traffic flow, driving safety, ride comfort, fuel comsumpation,and the drivers’ respond are significantly improved in CACC system. Therefore, the optimaltracking control, optimal rejection control, and application for discrete-time systems withcontrol delays are very important and significant in the field of theory research and actualpractice.
     The main results and contributions of this disseration are summarized as follows.
     1. The optimal trakcing control problem for discrete-time systmes with control delayswith quadratic performance index is studied, in which the referecen is given by an exosystem.The TPBV problems with both time-delay and time-advance terms is induced in this type problem. For the optimal tracking control problem with signal and multiple control delayss, twokinds of variable transformations are introduced. Then, the systems with control delays aretransformed into a non-delayed system, and the quadratic performance index of the optimaltracking control is transformed into a relevant format. The original TPBV problems aretransformed into a sequence of linear TPBV problem without time-delay and time-advanceterms. By using the maximum principle, the optimal tracking control law is constructed by thesolution of a Riccati matrix equation and a Stein matrix equation. A reduced-order observer isconstructed to solve the physically realizable problem of the feedforward compensator.Simulation results demonstrate the effectiveness of the proposed optimal tracking control law.
     2. The optimal trakcing control problem for discrete-time system with control delaysunder persistant disturbance is researched. Firstly, the optimal tracking controller fordiscrete-time system with signal input delay under sinusoidal disturbance is presented.According to the dynamic characters of sinusoidal and argument method, the originaldiscrete-time system is reformed into a transformed system without disturbance. Based on theabove variable transformation, this problem is transformed into a TPBV problem withouttime-delay and time-advance items. The feedback and feedforward control law is designed byusing the maximum prinpicle so that the stability and performance index of closed-loop systemare ensured. The feedforward items of this controller contant the states of disturbance exosystemand the reference exosystem. The conditions of existence and uniqueness of the control law arepresneted. Furthermore, the external disturbances model is generalized from the sinusoidaldisturbance form to more general deterministic disturbance that described by a linear exosystem.The optimal trakcing control problem for discrete-time systems with multiply control delayswith persistant disturbances is studied. Simulation results demonstrate the effectiveness of theoptimal tracking control law, which not only reduces the influence of virbation, but also improve the tracking precision.
     3. The problem of optimal vibration control for vehicle active suspension discrete-timesystems with actuator time delay under random road disturbance is considered. Firstly, thediscrete-time model for the two-degree-freedom vehicle active suspension system with actuatortime delay under random road disturbance is presented and the random road disturbance causedby road roughness is considered as the output of an exosystem. Based on the requirements ofride comforable and handing stability, the FFOVC law is obtained from Riccat and Steinequations by using maximum principle. The existence and uniqueness of the optimal control lawis proved. Numerical simulations illustrate the effectiveness of the optimal control law.
     4. Longitudinal tracking controller for discrete-time CACC systems are designed that cancomprehensively enable tracking of various spacing policies, designed desired velocity, anddesigned desired acceleration. Taking into account heterogeneous traffic, i.e., a platoon ofvehicles with possibly different characteristics, the longitudinal control problem is formulated asan output tracking control problem with a quadratic function so that the contradictions amongthe different tracking requirements are realized, which include inter-vehicle spacing, velocityand acceleration. Then, the optimal tracking longitudinal controller is proposed by using alimited communication structure and maximum prinpicle, in which the feedback items arecomposed of the states of host vehicles, and additional information of the nearest precedingvehicle and leading vehicle are used as feedforward items. In additional, the concepts of “virtualdesired velocity” and “virtual desired acceleration” are introduced to design the desired velocityand acceleration, realize additional objectives, and formulate the tracking problem. Numeroussimulation results show that the proposed tracking controller provides a reliable tool for asystematic and efficient design of a platoon controller within CACC systems.
     Finally, the main work in this dissertation is summarized and a proposition is indicated on the research work in the future.
引文
[1] Polyakov K Y, Rosenwasser E N, Lampe B P. Optimal design of2-DOF digital controllerfor sampled-data tracking systems with preview. The43th IEEE Conference on Decisionand Control,2004,3:2352-2357.
    [2] Tsai J S H, Chang Y P, Shieh L S. Multi-rate suboptimal digital redesign of a causcadedcontinuous-time input time-delay system. Computers and Electrical Engineering,2000,26(6):401-421.
    [3] Olenchikov D M. Global controllability of sampled-data bilinear time-delay systems.Journal of Applicated Mathematics and Mechanics,20047,68(4):537-544.
    [4]胡立生,孙优贤,等。非线性系统的鲁棒采样最优控制。控制理论与应用,2001,18,(2):191-194.
    [5] Lewis J. Discrete-time and computer control systems. IEEE Transactions on AutomaticControl,1973,18(2):197-198.
    [6] Zagalak P. Discrete-time control systems. Automatica,1997,33(12):2281-2282.
    [7] Alexander W. Robustness gradients for discrete-time control systems. Cybernetics andSystems,2006,37(4):283-292.
    [8] Janardhanan S, Bandyopadhyay B. Output feedback discrete-time sliding mode control fortime delay system. IEE Proceedings: Control Theory and Applications,2006,153(4):387-396.
    [9] Fei J, Chen S, Tao G, Joshi S M. Robust adaptive control scheme for discrete-time systemwith actuator failures. Journal of Dynamic Systems, Measurement and Control,Transactions of the ASME,2005,127(3):520-526.
    [10] Tang G Y, Zhang B L, Zhao Y D, Zhang S M. Optimal sinusoidal disturbance dampingfor linear singularly perturbed systems with state delay. Journal of Sound and Vibration,2007,300(1-2):368-378.
    [11] Rachik M, Lhous M, Tridane A. Controllability and optimal control problem for lineartime-varying discrete distributed systems. Systems Analysis Modelling Simulation,2003,43(2):137-164.
    [12] Califano C, Monaco S, Normand-Cyrot D. Non-linear non-interacting control withstability in discrete time: A dynamic solution. International Journal of Control,2005,78(6):443-459.
    [13] Huang J, Lin C F. Stability property and its applications to discrete-time nonlinear systemcontrol. San Antonnio, TX, USA: Publ by IEEE, Piscataway, NJ, USA,1993,2:1797-1798.
    [14] Benedetto P. Optimal control. Automatica,2002,38(8):1433-1434.
    [15] Sargent R W H. Optimal control. Journal of Computational and Applied Mathematics,2000,124(1-2):361-371.
    [16] Cimen T, Banks S P. Nonlinear optimal tracking control with application to super-tankersfor autopilot design. Automatica,2004,40(10):1845-1863.
    [17] Do K D, Pan J. State-and output-feedback robust path-following controller forunderactuated ships using Serret-Frenet fram. Ocean Engineering,2004,31(5-6):587-613.
    [18] No T S, Min B M, Stone R H, Wong K C. Control and simulation of arbitrary flighttrajectory-tracking. Control Engineering Practice,2005,13(5):601-612.
    [19] Barnard R D. Optimal-aim control strategies applied to large-scale nonlinear regulationan-d tracking system. IEEE Transaction on Circuits and Systems,1976, CAS-23(12):800-806
    [20] Sharma R, Tewari A. Optimal nonlieanr tracking of spacecraft attitude maneuvers. IEEETransactions on Control Systems Technology,2004,12(5):677-682.
    [21] Hu J, Feng G. Distributed tracking control of leader-follower multi-agent systems undernoisy measurement. Automatica,2010,46:1382-1387.
    [22] Fjellstad Q E, Fossen T I. Position and attitude tracking of AUV’s: A quaternion feedbackapproach. IEEE Journal of Oceanic Engineering,1994,19(4):512-518.
    [23] Huang S, Ren W. Safety, comfort, and optimal tracking control in AHS application. IEEEControl Systems,1998,4:50-64.
    [24] Grabbe M T, Dawson D M. Application of optimal control theory to the trajectorytracking of rigid robot manipulators. Optimal Control applications and Methods,1994,15(4):237-249.
    [25] Javier M V, Luis G H.Operational spacing trajectory tracking control of robotmanipulators endowed with a primary controller of synthetic joint velocity. ISATransactions,2011,50(1):131-140.
    [26] Tomei P. Tracking control of flexible joint robots with uncertain parameters anddisturbances. IEEE Transaction on Automatic Control,1994,39(5):1067-1072.
    [27] Satyanarayana A, Biswas S K, Chen J S. Control system design for accelerated coolingprocess for optimized temperature-time tracking. American Society of MechanicalEngineers, Production Engineering Division PED, Manufacturing Science andEngineering,1994,68(2):663-674.
    [28] Biswas S K, Chen S J, Satynanarayana A. Optimal temperature tracking for acceleratedcooling processes in hot rolling of steel. Dynamics and Control,1997,7(4):327-340.
    [29] Chen P C, Huang A C. Adaptive sliding control of non-autonomous active suspensionsystems with time-varying loadings. Journal of Sound and Vibration,2005,282:1119-1135.
    [30] Li H, Goodall R M. Linear and non-linear skyhook damping control laws for activerailway suspensions. Control Engineering Practice,1999,7(7):843-850.
    [31] Sun woo M, Cheok K A C, Huang N T. Model reference adaptive control for vehicleactive suspension systems. IEEE Transaction on Industrial electronics,1991,38(3):217-222.
    [32] Bisht R S, Jain A K. Wind and wave induced behaviour offshore guyed tower platforms.Ocean Engineering,1998,25(7):501-519.
    [33] Li H J, Hu S J, Cheng Z. Multiple-step predictive control for offshore structures. ChinaOcean Engineering,1999,13(3):231-246.
    [34] Fragopoulos D, Spathopoulos M P, Zheng Y. A pendulation control system for offshorelifting operations. Proceedings of the14thWorld Congress of IFAC, Beijing, P. R. China,1999,465-470.
    [35] Wang W, Tang G Y. Feedback and feedforward optimal control for offshore jacketplatforms. China Ocean Engineering,2004,18(4):515-526.
    [36] Ma H, Tang G Y, Zhao Y D. Feedback and feedforward optimal control for offshorestructures subjected to irregular wave forces. Ocean Engineering,2006,33(7):1105-1117.
    [37] Miele A. Optimal trajectories and guidance trajectories for aircraft flight throughwindshears. Proceedings of the29thIEEE Conference on Decision and Control, Honolulu,United States,1990,737-746.
    [38] Hall S R, Wereley N M. Performance of high harmonic control algorithms for helicoptervibration reduction. Journal of Guidance, Control and Dynamics,1993,16(4):793-797.
    [39] Mulgund S S, Stengel R E. Optimal nonlinear estimation for aircraft flight control in windshear. Automatica,1996,32(1):3-13.
    [40] Aydogan S, Ramazan T, Yasar B. Intelligent adaptive nonlinear flight control for a highperformance aircraft with neural networks. ISA Transactions,2006,45(2):225-247.
    [41] Sacks A, Bodson M, Khosla P. Experimental results of adaptive periodic disturbancecancellation in a high performance magnetic disk drive. ASME Journal of DynamicSystems, Measurement and Control,1996,118(3):416-424.
    [42] Lee M N, Jin K B, Lee J K. Design of a robust tracking following controller for opticaldisk drives. IEEE Transactions on Consumer Electronics,2004,50(2):723-731.
    [43] Lei J, Tang G Y. Disturbance attenuation for nonlinear systems with control delay viahigh-gain observer-based control approach. Dynamics Continuous Discrete and ImpulsiveSystems-Series-A-Mathematical Analysis,2006,13(1S):245-248.
    [44] Tang G Y. Feedforward and feedback optimal control for linear systems with sinusoidaldisturbances. High Technology Letters,2001,7(4):16-19.
    [45] Francis B A, Wonham W M. Internal model principle of control theory. Automatica,1976,12(5):457-465.
    [46] Utkin V I, Young K D. Methods for constructing discontinuity planes in multidimensionalvariable structure system. Autom. Rem. Control,1978,39:1466-1470.
    [47] Dorling C M, Zinober A S I. Robust hyperplane design in multivariable variable structurecontrol. International Journal of Control,1988,48:2043-2053.
    [48] Xi a Y, Jia Y. Robust sliding-mode control for uncertain time-delay systems: An LMIapproach. IEEE Transactions on Automatic Control,2003,48(6):1086-1092.
    [49] Bartolini G, Punta E, Zolezzi T. Simplex methods for nonlinear uncertain sliding-modecontrol. IEEE Transactions on Automatic Control,2004,49(6):922-933.
    [50] Choi H. On the existence of linear structure control system design: A linear matrixinequality approach. Automatica,1997,33:2089-2092.
    [51] Bodson M, Douglas S C. Adaptive algorithms for the rejection of sinusoidal disturbanceswith unknown frequency. Automatica,1997,33(12):2213-2221.
    [52] Marino R, Santosuosso G L, Tomei P. Robust adaptive compensation of biaseddisturbances with unknown frequency. Automatica,2003,39(10):1755-1761.
    [53] Marino R, Santosuosso G L, Tomei P. Robust adaptive observers for nonlinear systemswith bounded disturbances. IEEE Transactions on Automatic Control,2001,46(6):967-972.
    [54] Ilchmann A, Ryan E P. On tracking and disturbance rejection by adaptive control. SystemsControl Letters,2004,52(2):137-147.
    [55] Stephanopoulos G, Huang H P. Two-port control system: a generalized predictivecontroller. International Journal of Control,1987,45(2):617-639.
    [56] Chisci L, Rossiter J A, Zappa G. Systems with persistent disturbances: predictive controlwith restricted constraints. Automatica,2001,37(5):1019-1028.
    [57] Tan K K, Huang S N, Lee T H, Tay A. Disturbance compensation incorporated inpredictive control system using a repetitive learning approach. Systems and ControlLetters,2007,56(1):75-82.
    [58] Chen W H, Ballance D J, Gawthrop P J, O'Reilly J. Nonlinear disturbance observer forrobotic manipulators. IEEE Transactions on Industrial Electronics,2000,47(4):932-938.
    [59] Chen W H. Nonlinear disturbance observer-enhanced dynamic inversion control ofmissiles. Journal of Guidance, Control and Dynamics,2003,26(1):161-166.
    [60] Chen W H. Harmonic disturbance observer for nonlinear systems. Journal of DynamicSystems, Measurement and Control, Transactions of the ASME,2003,125(1):114-117.
    [61] Kolmanovskii V B, Myshkis A. Introduction to the theory and applications of functionaldifferential equations. Dordrecht: Kluwer Academy,1999
    [62] Niculescu S I. Delay effects on stability. Lecture notes in control and informationsciences,2001,269.
    [63] Bushnell L. Editorial: Networks and control. IEEE Control System Magazine,2001,21(1),22-99.
    [64] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-timesystems with random delays. Automatica,1998,34(1),57-64.
    [65] Merigot A, Mounier H. Quality of service and MPEG4video transmission.14thsymposium on mathematical Theory of Networks and Systems, Perpignan, France,2000.
    [66] Abdallah C, Chiasson J. Stability of communication networks in the presence of delays. In3th IFAC workshop on time delay systems, Sante Fe, NM, Decemeber,2001.
    [67] Biberovic E, Iftar A, Ozbay H. A solution to the robust flow control problem for networkswith multiple bottlenecks. In40thIEEE CDC’01, Orlando, FL,2001,2303-2308.
    [68] Shakkottai S, Srikant R T, Meyn S. Boundedness of utility function based congestioncontrollers in the presence of delay. In40thIEEE CDC’01, Orlando, FL,2001,616-621.
    [69] Kim W S, Hannaford B, Bejczy A K. Force-reflection and shared compliant control inoperating telemanipulators with time-delay. IEEE Transactions on Robotics andAutomation,1992,8(2):176-185.
    [70] Leleve A, Fraisse P, Dauchez P. Telerobotics over IP networks: Towards a low level realtime architecture. International Conference on Intelligent Robots and Systems, Maui,Hawaii,2001.
    [71] Abdallah C, Birdwell J D, et al. Load balancing instabilities due to time delays in parallelcomputations. In3th IFAC workshop on time delay systems, Sante Fe, NM,2001.
    [72] Ailon A, Gil M I. Stability analysis of a rigid robot with output-based controller andtime-delay. Systems and Control Letters,2000,40(1):31-35.
    [73] Shin K G, Cui X. Computing time delay and its effects on real-time control systems. IEEETransactions on Control and System Technology,1995,3(2):218-224.
    [74] Mazenc F, Mondie S, Niculescu S I. Golobal asymptotic stabilization for chiains ofintegrators with a delay in the input. IEEE Transactions Automatic Control,2001,48:57-63.
    [75] Abdallah C T, Dorato P, Benitez-Read J, Byrne R. Delayed positive feedback can stabilieoscillatory systems. Proceeding of American Control Conference, San Francisco,1993,3106-3107.
    [76] Smith O J M. A controller to overcome dead time. Instrument Society of America Journal,1959,6:28-33.
    [77] Artstein Z. Linear systems with control delays: a reduction. IEEE Transaction onAutomatic Control,1982,23(5):887-890.
    [78] Manitius A Z, Olbrot A W. Finite spectrum assignment problem for systems with delay.IEEE Transaction on Automatic Control,1979,24(4):541-553.
    [79] Michiels W, Engelborghs K, Vansevenant P, Roose D. Continuous pole placementmethod for delay equations. Proceeding of2th IFAC Workshop on Linear Time DelaySystems, Ancona, Italy,2000,129-134.
    [80] Kharatashvili G. A maximum principle in external problems with delays. MathematicalTheory of Control, New York: Academic Press,1961
    [81] Eller D, Aggarwal J, Banks H. Optimal control of linear time-delay systems. IEEETransactions on Automatic Control,1969,6(14):678-687..
    [82] Basin M, Rodriguez-Gonzalez J, Martinez-Zuniga R. Optimal control for linear systemswith time delay in control input. Journal of the Franklin Institute,2004,341(3):267-278.
    [83] Lee T T, Shih C L. Discrete-time optimal control for linear time-delay systems withdeterministic disturbances. IEE Proceeding on Control Theory and Applications,1991,138(6):573-578.
    [84] Hsiao F H, Pan S T, Teng C C. Optimal D-stable control for discrete multiple time-delaysystems with parametric uncertainties. Journal of Frankin Institute,1996,333B(6):991-1000.
    [85] Tung T S, Liu X, Zhang X M. Time delay compensation of the optimal computer controland its application to reactive power regulation systems. Zhongguo Dianji GongchengXuebao,1988,8(6):66-72.
    [86] Cai G P, Huang J Z. Optimal control method for linear vibration systems with time delayin control. Shanghai Jiaotong Xuebao,2002,36(11):1596-1599.
    [87] Kwon W H, Pearson A E. Feedback stabilization of linear systems with control delays.IEEE Transaction on Automatic Control,1980,25(2):266-269
    [88] Cai G P, Huang J Z, Yang Simon X. An optimal control method for linear systems withtime delay. Computers&Structures,2003,81:1539-1546.
    [89] Luus R. Optimal control by dynamic programming using accessible grids points andregion contraction. Huangarian Journal of Industrial Chemistry,1989,17:523-543.
    [90] Chen C L, Sun D Y, Chang C Y. Numerical solution of time-delayed optimal controlproblems by iterative dynamic programming. Optimal Control Application and Methods,2000,21(3):91-105.
    [91] Furuta K, Yamakita M. Computation of optimal control for linear systems with delay.Interational Journal of Control,1988,48(2):577-589.
    [92] Basin M, Rodriguez-Gonzalez J. Optimal control for linear systems with multiple timedelays in control input. IEEE Transactions on Automatic Control,2006,51(1):91-97.
    [93] Tang G Y, Xie N, Liu P. Sensitivity approach to optimal control for affine nonlineardiscrete-time systems. Asian Journal of Control,2005,7(4):448-454.
    [94] Xie N, Tang G Y, Liu P. Optimal guaranteed cost control for nonlinear discrete-timeuncertain systems with state delay. The5thworld Congress on Intelligent Control andAutomation,2004,1:893-896.
    [95] Tang G Y, Wang H H. Successive approximation approach of optimal control fornonlinear discrete-time systems. International Journal of Systems Science,2005,36(3):153-161.
    [96]唐功友,王芳。具有小时滞的线性大系统的次优控制。控制理论与应用,2003(1):121-124.
    [97]王芳,唐功友。具有小时滞的线性系统次优控制的无滞后转换法。青岛海洋大学学报:自然科学版,2001(2):281-286.
    [98]刘永清,唐功友。大型动力系统的理论与应用:滞后、稳定与控制。广州:华南理工大学出版社,1992.
    [99] Yanushevsky R T. Lyapunov's approach to analysis, synthesis and robustness of nonlinearsystems with delays. Nonlinear Analysis,1997,30(3):1469-1478.
    [100]Jeung E T, Oh D C, Kim J H, Park H B. Robust controller design for the uncertainsystems with time-delay: LMI approach. Automatic,1996,8(32):1229-1231.
    [101]Huang C M, Tsai J S H, Provence, Shieh L S. The observer-based linear quadraticsub-optimal digital tracker for analogy systems with input and state delays. OptimalControl Applications and Methods,2003,24(4):197-236.
    [102]Marzban H R, Razzaghi M. Optimal control of linear delay systems via hybridblock-pulse and Legendre polynomials. Journal of the Franklin Institute,2004,341(3):279-293.
    [103]Tsay S C, Wu I L, Lee T T. Optimal Control of Linear Time-Delay Systems via GeneralOrthogonal Polynomials. International Journal of Systems Science,1988,19(2):365-376.
    [104]Singly T, Vadali S R. Robust time-optimal control: frequency domain approach. Journalof Guidance, Control, and Dynamics,1994,17(2):346-353.
    [105]Tsai J S H, Shieh C S, Sun Y Y. Observer-based hybrid control of sampled-data uncertainsystem with input time delay. International Journal of General Systems,1999,28(4-5):315-349.
    [106]Michel K. Robust fault detection based on observers for bilinear systems. Automatica,1999,35(11):1829-1842.
    [107]Crolla D. A Vehicle Dynamics Theory into Practice. Journal of Automobile Engineering,1996,210(2):83-94.
    [108]Poussot-Vassal C, Sename O, Dugard L, Gaspar P, Szabo Z, Bokor J. A new semi-activesuspension control stategy through LPV technique. Control Engineering Practice,2008,16(12):1519-1534.
    [109]Tamboli J A, Joshi S G. Optimum design of a passive suspension system of a vehiclesubjected to actual random road excitations. Journal of Sound Vibration,1999,219(2):193-205.
    [110]Gysen B L J, Paulides J J H, Janssen J L G, Lomonova E A. Active electromagneticsuspension system for improved vehicle dynamics. IEEE Transactions on VehicularTechnology,2010,59(3):1156-1163.
    [111]Doyle J C, Stein G. Multivariable feedback design concepts for a classic/modern synthesis.IEEE Transaction on Automatic Control,1981,26(1):4-16.
    [112]Beheshti M T H, Nematollahzadeh S M. Design of active suspension control usingsingular perturbation theory. In proceeding of IFAC15thTriennial World Congress.Barcelona, Spain,2002,789-797.
    [113]Lin J S, Ioannis K. Nonlinear design of active suspensions. IEEE Control SystemMagazine,1997,17(3):45-49.
    [114]Sunwoo M, Cheok K A C, Huang N T. Model reference adaptive control for vehicleactive suspension systems. IEEE Transaction on Industrial Electronics,1991,38(3):217-222.
    [115]Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strictfeedback form. Automatica,1997,33(5):893-900.
    [116]Bu F, Yao B. Desired compensation adaptive robust control of single rodelectro_hydraulic actuator. www:.
    [117]Dean K. Active damping in road vehicle suspension systems. Vehicle System Dynamics,1983,12(6):291-311.
    [118]Liu S, Li Y. Study on anticipated control method pertineet to active suspension based on ahalf-car model. Information and Control,2000,29(1):6-13.
    [119]Langlois R G, Anderson R J, Hanna D M. Implementing preview control on an off-roadvehicle with active suspension. Vehicle System Dynamics: International Journal ofVehicle Mechanics and Mobility,1992,20(1):340-353.
    [120]Morit A T, Tanaka T, Kishim N. Ride comfort improvement using preview sensor. IntSymposium on Advanced Vehicle Control, Yokohama, Japan,1992:123-129.
    [121]Mianzo L, Peng H. LQ andH∞preview control for a durability simulator. Inproceeding of American Control Conference, Albuquerque, New Mexico:1997:699-703.
    [122]Yagiz N, Ozbulur V, Inanc N. Sliding mode control of active suspension.The12thIEEEInt Symposium on Intelligent Control, Istanbul, Turkey,1997:373-378.
    [123]Choi S B, Choi Y T, Park D W. A sliding mode control of a full car suspension system viahandware in the loop simulation. Journal of Dynamic Systems, Measurement, and Control,2000,122(1):114-121.
    [124]Ta-Tau C, Tzuu_Hseng S. Integrated fuzzy GA based simplex sliding mode control.International Journal of Fuzzy Systems,2000,2(4):267-277.
    [125]Yokoyama M, Hedrick J K. A model following sliding mode controller for semi-activesuspension systems with MR dampers. In proceeding of American Control Conference,Virgia,2001,7:2652-2657.
    [126]Baumal A E, Mcphee J J, Calama P H. Application of genetic algorithms to the designoptimization of an active vehicle suspension system. Computer Methods in AppliedMechanics and Engineering,1998,7(1):87-94.
    [127]Buckner G D, Schuetze K T. Intelligent estimation of systems parameters of activevehicle suspension control, SAE Technical Paper on Journal of Passenger Cars,1999,108(6):1257-1263.
    [128]Peng X, Vadakkepat P, Tong H. DNA coded GA for the rule hase optimization of a fuzzylogic controller. IEEE Congess on Evolutionary Computation, Seoul, Korea,2001,2:1191-1196.
    [129]Taylor J H, Sheng L. Recursive optimization procedure for fuzzy logic controllersynthesis. American Control Conference,1998:1211-1219.
    [130]Yoshimura T, Nakaminami K, Kurimoto M. Active suspension of passenger cars usinglinear and fuzzy logic controls. Control Engineering Practice,1999,7(7):41-47.
    [131]Araujo F M U, Yoneyam A T. Improved vibration suppression via hierarchical fuzzycontrol. IFAC15thTriennial World Congress, Barcelona, Spain,2002:1321-1330.
    [132]Muller N. Development of a robust driver model with parameter adaptation. UniversityKarlsruhe, laboratoire Automatique de Grenoble,1996.
    [133]Webers C, Zimmer U R. Practical trade_offs in robust target following. www:.
    [134]Piao J and McDonald M. Advanced driver assistance systems from autonomous tocooperative approach. Transport Reviews: A Transnational Transdisciplinary Journal,2008,28(5):659-684.
    [135]Ioannou Ed P A. Automated Highway Systems. New York: Plenum,1997.
    [136]Van Arem B, Tampere C M J, Malone K M. Modeling traffic flows with intelligent carsand intelligent roads. IEEE Intelligent Vehicles Symposium, Columbus, OH,2003:456-451.
    [137]Augello D. Description of three PROMETHEUS demonstrators having potential safetyeffects. The13thIntelligence Technology Conference Express Safety Vehicles,1993:4-7
    [138]Bonnet C, Fritz H. Fuel consumption reduction experienced by two promotes chauffeurtrucks in electronic tow bar operation. The7thWorld Congress on Intelligence TransportSystems,2000.
    [139]Yu F, Li D F, Crolla D A. Integrated vehicle dynamics control-state-of the art review.IEEE Proceeding of Vehicle Power and Propulsion, Harbin, China,2008:1-6
    [140]Stankovic S, Milorad J Stanojevic, Dragoslav D Siljak. Decentralized overlapping controlof a platoon of vehicles. IEEE Transaction on Control and Systems Technology,2000,8(5):816-832.
    [141]Swaroop D, Hedrick J K, Chien C C, and Ioannou P. Comparison of spacing and headwaycontrol laws for automatically controlled vehicles. Vehicle System Dynamic,1994,23:597-625.
    [142]Shladover S E. Longitudinal control of automotive vehicles in close-formation platoons.Journal of Dynamic System, Measurement, and Control,1991,113,(2):231-241.
    [143]Ferrara A, Pisu P. Minimum sensor second-order sliding mode longitudinal control ofpassenger vehicles. IEEE Transaction on Intelligence Transport Systems,2004,5,(1),20-32
    [144]Stankovic S S, Stanojevic M J. Decentralized overlapping control of a platoon of vehicles.IEEE Transaction on Control Systems Technolgy,2000,8,(5):816-831
    [145]Lattemann F, Neiss K, Terwen S, Connolly T. The predictive cruise control-A systemreduce fuel consumption of heavy duty trucks. SAE International, Warrendale, PA,2004-01-2616
    [146]Corona D, Lazar M, Schutter B, Heemels M. A hybrid MPC approach to the design of asmart adaptive cruise controller. IEEE International Symposium on Intelligent Control,2006, pp.231-235
    [147]Ioannou P, Stefanovic M. Evaluation of the ACC vehicles in mixed traffic: Lane changeeffects and sensitivity analysis. IEEE Transaction on Intelligent Transport Systems,2005,6(1),79-90.
    [148]Bose A, Ioannou P. Mixed manual/semi-automated traffic: A macroscopic analysis.Transportation Research Part C: Emerging Technologies,2003,11:439-462.
    [149]Zhang J, Ioannou P. Longitudinal control of heavy trucks in mixed traffic: Environmentaland fuel economy considerations. IEEE Transaction on Intelligent Transport Systems,2006,7(1):92-104.
    [150]Ioannou P, Xu Z. Throttle and brake control systems for automatic vehicle following.Journal of IVHS,1994,1(4):345-377.
    [151]Yi K, Kwon Y. Vehicle-to-vehicle distance and speed control using an electronic-vacuumbooster. JASE Review,2001,4:403-412.
    [152]Li S, Li Khrottle, Rajamani R, Wang J. Model predictive multi-objective vehicularadaptive cruise control. IEEE Transaction on. Control Systems Technology,2011,19(3).
    [153]Wang J, Rajamani R. The impact of adaptive cruise control system on highway safety andtraffic flow. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2004,111-130.
    [154]Shladover S E. Longitudinal control of automotive vehicles in close formation platoons.Journal of Dynamic System, Measurement, and Control,1991,113:231-241.
    [155]Foster E R. A constant separation control law for use in automated guideway transit.Proceedings of29th IEEE, Vehicular Technology Conference,1979,358-361.
    [156]Brackstone M, McDonald M. Car-following: A historical review. TransportationResearch Part F: Traffic Psychology and Behaviour,1999,2(4):181-196.
    [157]Chien C, Ioanou P. Automatic vehicle-following. American Control Conference,1992,1748-1752.
    [158]Seiler P, Song B, Hedrick J K. Development of a collision avoidance system. SAE,Warrendale, PA, Tech. Rep,98PC-417,1998.
    [159]Yi K, Chung J. Nonlinear brake control for vehicle CW/CA system’, IEEE/ASMETransaction on Mechatronics,2001,6(1):17-25.
    [160]Alvarez L, Horowitz R. Hybrid controller design for safe manoeuvrings in the PATHAHS architecture. American Control Conference,1997,2454-2459.
    [161]Yanakiev D, Kanellakopoulos I. Variable time headway for string stability of automatedheavy-duty vehicles. The34th IEEE Conference on Decision and Control,1995,4077-4081.
    [162]Zhao J, Oya M, EI Kamel A. A safety spacing policy and its impact on highway trafficflow.2009IEEE Intelligent Vehicle Symposium,2009,960-965.
    [163]Soo T, Chong K T, Roh D H. A lyapnov function approach to longitudinal control ofvehicles in a platoon. IEEE Transaction on Vehicle Technology,2001,50(1).
    [164]Van Eenennaam M, Wolterink W, Karagiannis G, and Heijenk G. Exploring the solutionspacing of beaconing in VANETs. In Rroceeding of IEEE VNC,2010,1-8.
    [165]Bruin D D, Kroon J, Van Klaveren R, Nelisse M. Design and test of a cooperativeadaptive cruise control system. In Proceeding of IEEE Intelligent Vehicles Symposium,2004,392-396.
    [166]Yanakiev D, Kanellakopoulos I. Nonlinear spacing policies for automated heavy-dutyvehicles. IEEE Transaction on Vehicle Technology,1998,47(4):136-1377.
    [167]Peppard L. String stability of relative-motion PID vehicle control systems. IEEETransaction on Automatic Control,1974,19(5):579-581.
    [168]Rajamani R, Zhu C. Semiautonomous adaptive cruise control systems. IEEE Transactionon Vehicle Technoloty,2002,51(5),1186-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700