用户名: 密码: 验证码:
封装包封层材料环氧模塑料材料失效对芯片可靠性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧模塑料是电子封装中芯片的外包封材料,是一种新型复合材料,它保证芯片免受灰尘、水分、冲击、振动和化学物质等外界因素的干扰,保证电子元器件正常工作。本文利用实验研究和数值模拟相结合的方法对环氧模塑料的微观力学性能和高应变率下的动态力学性能进行了研究,得到了以下结论:
     1.采用纳米压痕技术对电子封装用KL-4500-1 S型环氧模塑料进行了测试,得到了环氧模塑料的载荷位移曲线,弹性模量和硬度。利用纳米压痕硬度测得的实验数据,采用数值模拟的方法,建立了环氧模塑料压痕实验中载荷-位移曲线与其弹塑性材料参数之间的关系,确定环氧模塑料的特征应力和特征应变。建立了电子封装用KL-4500-1S型环氧模塑料的幂指数本构关系模型。
     2.利用带温控系统的微型霍普金森压杆(SHPB)装置,对直径6mm,高3mm的环氧模塑料圆柱形饼料试件进行了动态压缩实验,与准静态实验对比。研究结果表明环氧模塑料在准静态试验条件下,体现出脆性性质;在动态试验中随着应变率的增加,材料的屈服强度和流动应力有显著的提高,材料表现出应变率效应。在温度20℃-160℃范围内,随着温度的升高,环氧模塑料有轻微的软化,强度减弱,反之则材料变硬,强度增大。此外,环氧模塑料表现出应变硬化特征,即流动应力随应变增加而增加的现象。建立了电子产品正常工作温度60℃下的环氧模塑料的Cowper-Symonds弹塑性本构模型和朱-王-唐非线性粘弹性本构模型,确定了本构模型的材料常数,得到了环氧模塑料的动态本构关系。
     3.采用ANSYS/LSDYNA有限元软件,根据Input-G方法,以JEDEC规范中冲击条件B,作用时间为0.5ms的半正弦的加速度脉冲作为载荷,对VFBGA封装在板级跌落条件下环氧模塑料的可靠性进行了分析,得到以下结论:在跌落冲击条件下,机械冲击引起的PCB板弯曲或振动是导致环氧模塑料层发生破坏的根本原因;数值模拟分析结果发现,在跌落冲击中环氧模塑料的垂直应力是包封层发生破坏的主要应力;环氧模塑料层中部受到的破坏应力远大于其四周受到的应力;对应电路板长边方向受到的应力小于短边方向的应力。
As the outer packaging of chips, Epoxy Molding Compound (EMC) is used to avoid the interference of external factors, such as dust, moisture, impact, vibration and chemical materials, etc. It is a kind of new-style composite material. So, electrical components would work normally with it. Combining experimental studies and FEM analysis, the micro-mechanical properties and dynamic properties under high strain rates of EMC were studied. The main procedures and conclusions are as following.
     1. The KL-4500-1S EMC was tested by using Hysitron's nanomechanical testing instrument. The load-displacement curve, elastic module and hardness of EMC were obtained. Using reverse analysis method and numerical simulation, the relationship of load-displacement and elasto-plastic parameters of EMC were ascertained and the representative stress and representative strain of EMC were gained. Then the elastic-plastic constitutive equation for EMC was achieved.
     2. Using a micro Hopkinson pressure bar which includes temperature controlling system,a series of dynamic compressive experiments of EMC with diameter of 6mm and height of 3mm were conduct. Compared with quasistatic tests, the results indicate that EMC has fragility in quasistatic experiments, while in dynamic experiments, the yield strength and flow stress increase remarkably with the increase of strain rate. Therefore, EMC has effects of strain rate. Between the temperature of 20℃and 160℃, EMC is slightly softened and its strength decreases along the increase of temperature, on the contrary, if it becomes harder, its intensity will increase. Further more, EMC has properties of strain hardening, i.e. the flow stress increases with the increase of strain. When the adjacent temperature is 60℃, Cowper-Symonds elasto-plastic constitutive model and Zhu-Wang-Tang constitutive model were adopted. Using experimental results, the constants of above constitutive relationships were obtained, so, the constitutive equation of EMC was determined.
     3. Adopting Input-G method, limited in the B condition of JEDEC standards, the reliabilities of EMC loaded with Half-Sine Accelerate wave on which the action time was 0.5ms were analysed by using software ANSYS/LSDYNA, when VFBGA packaging was in the drop impact conditions. The results indicate that the bending and vibration of PCB caused by mechanical impact are the basic reason for EMC's failure. The damage of packaging layer is aroused by vertical stress of EMC. Failure stress in the center of EMC is higher than that in the periphery and corresponding circuit board has higher stress in the long edge than in the short edge.
引文
[1]蒋建飞,蔡琪玉.纳米电子学——电子学的前沿.固体电子学研究与发,1997;17(3):218-226
    [2]汤庭熬,面向21世纪微电子发展预测和一些关键技术介绍,第一届半导体与集成电路成品率研讨会,1997年11月
    [3]李志坚,21世纪微电子技术发展展望,1999(3)
    [4]邵虞.穆尔定律,B/B值和硅周期评介.电子产品世界,1999(10):6-7
    [5]Moore G E. Cramming more components on integrated circuits[J]. Electronics,1965,38(8): 144-147.
    [6]Rao R. Tummala编.微电子封装手册.电子封装丛书编辑委员会译.北京:电子工业出版社,2001:6-8.
    [7]高尚通,杨克武.新微型电子封装技术.电子与封装,2004,4(1):10-16.
    [8]张蜀平,郑宏宇.电子封装技术的新进展.电子与封装,2004,4(1):3-9.
    [9]Tummala著,黄庆安,唐洁影译.微系统封装基础[M].南京:东南大学出版社,2005,16-18.
    [10]半导体元器件和集成电路封装2007-11-24
    [11]李晓云,张之圣.环氧树脂在电子封装中的应用及发展方向.Vol.22 No.2 Feb.2003
    [12]王义贤,半导体用环氧树脂封装胶粉概况介绍2006-11-28
    [13]刘志,塑封料环氧塑封料绿色塑封料发展状况及其工艺选择2007-04-19
    [14]谢广超,环氧塑封料的发展现状与未来(2005)08-0004-03
    [15]张群,倒装焊及相关问题的研究[D].上海:中国科学院上海冶金研究所,2001:54-60.
    [16]Dudek R, Scherzer M,Schubert A.FE-Simulation for Polymeric Packaging materials[J].IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A.1998,2:86-93.
    [17]Wu J, Bhattacharya S K, Tummala R R. Evaluation and Characterization of High-Performance Filling Encapsulants for System on Chip (SOC) Appilcation. Porc. of the 50th Electronic Components and Technology Conference,2000:235-241.
    [18]陈柳,张群,王国忠等.倒装焊SnPb焊点热循环失效和底充胶的影响[J].半导体学报,2001,10:1335-1342.
    [19]Wang J, Ren W, Zou D. Processing mechanics for flip-chip assemblies[J]. Computers & Structures,1999,71:457-468.
    [20]Shilong Liu, Liancheng Qin, Daoguo Yang. A Study on the Creep Damage of Epoxy Molding Compound in IC Package. ICEPT2003:254-259.
    [21]M. Amagai, Mechanical reliability in electronic packaging, Microelectronics Reliability, 2002, Vol.42, pp.607-627
    [22]Katsuaki Suganuma, Current Status of Lead-Free Soldering and Conductive Adhesive, Lead-free Manufacturing Seminar,2003,10:42-49.
    [23]John H. Lau, Katrina Liu, Global Trends of Lead-Free soldering and Technologies, Lead-free Manufacturing Seminar,2003,10:52-61.
    [24]Niu, Xiaoyan, Modeling solder joint reliability of VFBGA packages under board level drop test based on dynamic constitutive relation with thermal effect,2009 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT2009:365-369.
    [25]L J.Emst, K.B.M.Kaspar. Fully cured dependent modeling and simulation of FMC's with Application to package warpage simulation, IEEE2006 Proceding, ICEPT2006:123-129
    [26]况延香,朱颂春.微电子封装技术[M].安徽:中国科学技术大学出版社,2003.
    [27]Zhang G Q, Tay A A O, Ernst L J, etc. Virtual Thermo-Mechanical Prototy-ping of Electronic Packaging-Challenges in material characterization and modeling[C]. Electronic Components and Technology Conference Proceedings 51st,2001:1479-1486.
    [28]王珺,含湿热的耦合粘弹性本构、断裂及应用[D].成都:西南交通大学,2002.
    [29]徐步陆.电子封装可靠性研究[D],上海:中国科学院上海微系统与信息技术研究所,2002.
    [30]彩霞,高密度电子封装可靠性研究[D],中国科学院上海微系统与信息技术研究所,2002.
    [31]Lau J H, Lee SWR, Chang C. Effects of underfill material properties on the reliability of solder bumped flip chip on board with imperfect underfill encapsulants[J]. IEEE Trans Compon Packag Technol,2000,23 (2):323-328.
    [32]Cheng ZN, etc. Influences of packaging materials on solder joint reliability of chip scale package assemblies[C]. International Symposium on Advanced packaging Materials, Braselt-on,Georgia,1999:144-150.
    [33]Cheng Z N, Cai X, Chen L, etc. Thermal fatigue failure analysis of SnPb solder bumped flip chip on low-cost board with and without underfill encapsulants[C]. Proceedings of the Fourth International Symposium on Electronic Packaging Technology,2001: 403-450.
    [34]Cheng Z N, Xu B, Zhang Q, et al. Underfill delamination analysis of flip chip on low cost board[C]. Proceedings of 2001 International Symposium on Electronic Materials & Packaging,2001:280-288.
    [35]徐步陆,张群,程兆年.倒装焊底充胶分层和焊点失效[J].半导体学报.2001,37(10)1135-1140.
    [36]Desai C.S., Whitenack R. Review of models and the disturbed State concept for thermo mechanical analysis in electronic packaging[J]. Journal of Electronic Packaging, 2001,123(1):19-33.
    [37]Evans A.G.,Hutchinson J.W. Thermo mechanical integrity of thin films and multilayers[J]. Acta Metallurgica et Materialia.1995.43(7):2507-2530.
    [38]Crank J, Park G S. Diffusion in Polymers [M].London:Academic Press,1968:1-39.
    [39]Crank J. The mathematics of diffusion [M]. Oxford, [Eng]:Clarendon Press,1975:1-40.
    [40]Schapery R A, Sun C T. Time dependent and nonlinear effects in polymers and composites [C].Proceedings of the ASTM Symposium, Atlanta,1998:353-377.
    [41]Browning C E. The mechanisms of elevated temperature property losses in high performance structural epoxy resin matrix materials after exposure to high humidity environments [J]. Polymer Engineering & Science,1978,1(1):18-24.
    [42]Malyshev B M, Salganik R L. The strength of adhesive joints using the theory of cracks [J]. International Journal of Fracture Mechanics,1965,1:114-128.
    [43]Belton D J, Sullivan E A, Molter M J. Moisture sorption and its effects upon the microstructure of epoxy moulding compounds[C], Proc.3rd Int.Electron. Manufact. Technol. Symp.,1987:158-169.
    [44]Brewis D M, Comyn J, Cope B C, etc. Effect of carrier on the performance of aluminum alloy joints bonded with a structural film adhesive. Polymer Engineering & Science,1981,21(12):797-803.
    [45]Wong E H, Koh S W, Lee K H. Advanced moisture diffusion modeling and characterization for electronic packaging [C]. Proceedings of Electronic Components and Technology Conference,2002:1297-1303.
    [46]Kitano M, Nishimura A, Kawai S. Analysis of packages cracking during reflow soldering process[C]. IEEE International Reliability Physics Symposium, Monterey,1988:90-95.
    [47]Tay A A O, Lin T.Moisture diffusion and heat transfer in plastic IC packages [J]. IEEE Components Packaging and Manufacturing Technology,1996,19(2):186-193.
    [48]Tee T Y, Ng H S. Whole field pressure modeling of QFN during reflow with coupled hygro-mechanical and thermo-mechanical stresses [C]. IEEE 52nd Proceedings of Electronic Components and Technology Conference,2002:1552-1559.
    [49]Li zhigang.Unstable void growth in thermohyperelastic plastic IC packaging material due to thermal load and vapor pressure. Proceedings of the Electronic Packaging Technology Conference, EPTC,2007, Proceedings of the 2007 8th International Conference on Electronic Packaging Technology, ICEPT
    [50]Lam T F. FEA simulation on moisture absorption in PBGA packages under various moisture pre-conditioning [C]. Electronic Components and Technology Conference, 2000:1078-082.
    [51]A. Ishisaka, M. Kawagoe Examination of the Time-Water Content Superposition on theDynamic Viscoelasticity of Moistened Polyamide 6 and Epoxy [J] Journal of Appiled Polymer Science,2004.93:560-567
    [52]Gabriel LaPlante. Moisture Efects on FM300 Structural Film Adhesive:Stress Relaxation, Fracture Toughness, and Dynamic Mechanical Analysis[J]. Jounral of Appiled Polymer Science,2005,95:1285-1294
    [53]Shijian Luo.Moistuer Absorption in Uncured Underfill Materials [J] IEEE Transactions. on componentsand Packaging Tcehnologies,2004,27 (2):345-351.
    [54]Haleh Ardebili. Hygroscopic Swelling and Sorption Characteristics of Epoxy Molding Compounds Used in Elecrtonic Packaging [J]. IEEE, Tarnsactions on components and Packaging Technologies,2003,26 (1):203-214.
    [55]E. H. Wong R Rajoo, S. W Koh, T B. Lim. The Mechanics and Impact of Hygroscopic Swelling of Polymeirc Materials in Electronic Packaging [J]. Journal of Electornic Packagin,2002,124:123-126.
    [56]P.Gonon. Combined Effects of Humidity and Thermal Sterss on the Dielectirc Properties of Epoxy-Silca Composites [J]. Materials Science and Engineering B,2001,83:158-164.
    [57]X.J.Fan, H.B.Wang, T.B.Lin. Investigation of the Underfill Delamination and Cracking in Filp-Chip Modules under Temperature Cycilc Loading. Electronic Components and Technology Conference.1999:98-104.
    [58]Derick Wu, Bingzhi Su, Y. C. Lee. Prediction-of Fatigue Crack Initiation Between Underfill Epoxy and Substrate. Electornic Components and Technology Confeernce. 2000:234-241.
    [59]Nathan A Jones, Alan J. Lesser. Morphological Study of Fatigue-Induced Damage in Isotactic Polypropylene [J]. Journal of Polymer Science:PartB:Polymer Physics.1998,36:2751-2760.
    [60]罗文波,杨挺青,张平.高聚物细观损伤演化的研究进展[I],力学进展.2001,31(2).264-275.
    [61]陈小异,刘忠,邓旭华,聚合物裂尖损伤-钝化基质与损伤裂纹模型闭,湘潭大学学报(自然科学版),1999,6:35-39
    [62]于杰,金志浩,周惠久,银纹萌生机制及判据田.高分子材料科学与工程.1997,13(6):98-103.
    [63]轩福贞,孙树勋,唐红卫等.两级载荷下复合材料层板疲劳与寿命预测[J].应用力学学报.1998,15(1):90-94.
    [64]顾怡,FRP疲劳累积损伤研究进展[J],力学进展,2001,31(2):193-202.
    [65]C.S.LEE, W.HWANG Fatigue Life Prediction of Matrix Dominated Polymer Composite Materials Department of Mechanical Enginearing [J]. Polymer Composites, 2000,21 (5):75-83.
    [66]Yao Weixing, Himmel N. A New Theory to Predict Cumulative Fatigue Damage Model for Fibre-Reinforced Plastics [J]. Composites Science and Technology,2000,60 (1):59-64
    [67]童小燕,万小朋,孙秦等,复合材料的疲劳寿命预测田.机械强度,1995,17(3):94-100.
    [68]C.S. LEE, W. Hang. Fatigue Life Prediction of Matrix Dominated Polymer Composite Materials [J]. Polymer Composites,2000,21(5):67-75
    [69]刘扬,陈定方,基于纳米压痕技术和有限元仿真的材料力学性能分析,武汉理工大学学报(交通科学与工程版),2003,05.
    [70]高鹏,陶敏中.纳米压痕技术及其应用.中国机械工程,1996,7(5):58-59.
    [71]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002,32(3):349-363.
    [72]J. L. Loubet, J. M. Georges, Meille Gerard, Vickers Indentation Curves of Elastoplastic Materials, ASTM. Special Technical Publication.1985, (5):72-89.
    [73]万建松,岳珠峰.采用压痕试验获得材料性能的研究现状.试验力学,2002,17(2):131-139.
    [74]I.N.Sneddon, The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, International Journal of Engineering Science.1965, (3):47-56.
    [75]D. Tabor. Indentation Power-law Creep of High-purity Indium. R. Proc. Soc 1948, (9):247-255.
    [76]D. L. Joslin, W. C. Oliver. A new method for analyzing data from continuous depth-sensing microindentation tests [J]. J. Mater. Res.,1990,5(1):123-126.
    [77]A. P. Temovskii, V. P. Alekhin, M. K. Shorshorov et al. Micromechanical testing of materials by depression [J]. Zavod. Lab.,1973,39:1242-1247.
    [78]Ternovskii A. P., Ternovskii, Alekhin V P., M. Kh. Shorshorov., Krushchov M. M., Skvortsov V N. Micromechanical Testing of Materials by Depression. Industrial Laboratory (USSR).1973,39(10):1620-1624.
    [79]G.M. Pharr, W. C. Oliver, F. R. Brotzen. On the Generality of the Relationshi among Contact Stiffness, Contact Area, and elastic Modulus during Indentation on Journal of Materials Research.1992,7(3):613-615.
    [80]J. B. Pethica, W. C. Oliver. Mechanical Properties of Nanometer Volumes of Material: Use of the Elastic Response of Small Area Indentations. Thin Films-stresses and Mechanical Properties, MRS Symposium Proceeding, Vol.130,Materials Research Society,1989:13-23.
    [81]W. C. Oliver, J. B. Pethica. U.S. Patent No.4848141
    [82]Li X, Bhushan B, Development of continuous stiffness measurement technique for composite magnetic tapes, Scr Mater,2000,42(10):929-935.
    [83]International standard. Metallic materials-indentation test for hardness and materials parameters iso14577:2002
    [84]Zeng K, Rowcliffe D. Analysis of penetration curves produced by sharp indentations on ceramic materials, Philo Mag A,1996,74(5):1107-1116.
    [85]Cheng Yang-tse, Cheng Che-min. Scaling relationships in concial indentation of elastic-perfectly plastic solids, Inter J of Solids and Structures,1999,36:1231-1243.
    [86]Lost a, Blgot r. Indentation size effect:reality or artefact [J], J. Mater. Sci.,1996,31: 3573-3577.
    [87]Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater,2001, 49:3899-3918.
    [88]Tuck J R, Korsunsky A M, Bull S J, et al. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems [J], Surface and Coating Technology,2001,137:217-224.
    [89]Simo JC, Laursen TA. Compos Struct 1992;42:97.
    [90]Menezes LF, Teodosiu C. J Mater Process Technol 2000;97:100.
    [91]Antunes JM, Menezes LF, Fernandes JV. Int J Solids Struct 2006;43:784.
    [92]Fleck, N. A. and Hutchinson, J. W., J. Mech. Phys. Solids,1993,41,1825.
    [93]Gao, H., Huang, Y., Nix, W. D. and Hutchinson, J. W., J. Mech. Phys. Solids,1999,47, 1239.
    [94]Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. and Wyrobek, J. T., Acta mater.,1996,44,3585.
    [95]Cheng YT, Cheng CM, Scaling approach to conical indentation in elastic-plastic solids with work hardening, J Appl Phys,1998,84:1284-1292.
    [96]Cheng YT, Cheng CM, Scaling, dimensional analysis and indentation measurements, Mater Sci Eng 2004, R44:91-149.
    [97]J.M. Antunes, J.V. Fernandes, L.F. Menezes, et al. A new approach for reverse analyses in depth-sensing indentation using numerical simulation, Acta Materialia,2007,55:69-81.
    [98]K. Mishiro, S. Ishikawa, M. Abe, et al., Effect of the drop impact on BGA/CSP package reliability, Microelectronics Reliability,2002,42:77-82.
    [99]E. D. Davies and S. C. Hunter, The dynamic compression testing of solids by the method of the split Hopkinson pressure bar, J. Mech, Phys. Solids,1963, v01.11,155.
    [100]Kolsky H, An investigation of the mechanical properties of materials at very high rates of loading, Proc Phys Soc,1949, B62:676-700.
    [101]Cowper GR, Symonds PS, Strain hardening and strain-rate effect on the impact loading of cantilever beams, Division of Applied Mathematics Report 28, Brown University; September 1957.
    [102]王礼立,杨黎明,固体高分子材料非线性粘弹性本构关系[A],冲击动力学进展[M]合肥:中国科技大学出版社,1992
    [103]王礼立,G.Pluvinage, K.Labibes,冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响宁波大学学报(8)3:1995
    [104]王礼立,应力波基础,国防工业出版社,北京,1985.
    [105]Zukas J A. et al.Impact Dynamics, John Wiley and Sons,1982
    [106]Wang Lili, Labibes K, Azari Z, Pluvinage G. A Generalization of split Hopkinson Bar Technique to Using Viscoe-lastic Bars Int J Impact Engrg,1994;(15)5:669-686
    [107]娄浩焕,朱笑(?),瞿欣等.无铅BGA封装可靠性的力学试验与分析.半导体技术,2005,30(3):36-40.
    [108]刘芳,跌落碰撞下SMT无铅焊点可靠性理论与实验研究,上海交通大学博士学位论文,2008.
    [109]周斌,无铅便携式电子产品板级组件的TFBGA跌落可靠性研究,桂林电子科技大学硕士学位论文,2007.
    [110]JEDEL Solid state technology association, Board Level Drop Test Method of Component for Handheld Electronic Products JESD22-B111[S], Arlington:JEDEL Solid State Technology Association,2003.
    [111]祖景平,薛澄岐.手机跌落破坏仿真分析研究[J].中国制造业信息化.2006,35(11):68
    [112]秦飞,白洁,安彤,板级电子封装跌落/冲击中焊点应力分析,北京工业大学学 报10.2007
    [113]周新,板级无铅焊点跌落冲击载荷下可靠性分析,上海交通大学硕士学位论文,2007.
    [114]Tee TY, Luan J-E, Pek E, Lim CT, Zhong Z. Advanced experimental and simulation techniques for analysis of dynamic responses during drop impact. In:Proc 54th electronic components and technology conference, Las Vegas, NV,2004. p.1088-94.
    [115]Luan J-E, Tee TY. Novel board level drop test simulation using implicit transient analysis with input-G method. In:Proc 6th electronics packaging technology conference, Singapore,2004. p.671-7.
    [116]Tee TY, Luan J-E, Ng HS. Development and application of innovational drop impact modeling techniques. In:Proc 55th electronic components and technology conference, Lake Buena Vista, FL,2005. p.504-12.
    [117]Tong Yan Tee, Jing-en Luana, Eric Pekb, et al, Novel numerical and experimental analysis of dynamic responses under board level drop test[A],5th. Int. Conf on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, 2004:134-140.
    [118]Tan L.B., Ang C.W., Lim C.T., et al., Modal and Impact Analysis of Modern Portable Electronic Products.2005 Electronic Components and Technology Conference, pp, 645-653.
    [119]Yi-Shao Lai, Po-Chuan Yang, Chang-Lin Yeh, Effects of different drop test conditions on board-level reliability of chip-scale packages, Microelectronics Reliability 48(2008), 274-281.
    [120]周新,刘芳,周海亭等,无铅焊点在跌落冲击载荷下动态特性研究.噪声与振动控制,2007,8,4:1-4.
    [121]Tong Yan Tee, Jing-en Luan, Advanced experimental and simulation techniques for analysis of dynamic responses during drop impact[A],54th Electronic Components and Technology Conference[C],2004:1088-1094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700