用户名: 密码: 验证码:
库尔勒香梨的动态粘弹特性及碰压损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对新疆特色的库尔勒香梨碰撞损伤问题,本研究从香梨不同组织的机械特性和果肉动态粘弹力学特性入手,分析香梨果肉的破坏机制及抗冲击损伤的性能,然后应用高速摄像分析的方法,对香梨跌落碰撞中的冲击能损耗与碰压损伤进行深入研究,并采用压力感应胶片测量和有限元数值模拟相结合的方法,对香梨碰撞接触应力分布特性进行进一步研究,确定了香梨碰撞接触应力分布与机械损伤的关系,揭示了香梨碰压损伤的规律,初步实现了香梨碰压损伤的预测和评估,为香梨机械化和自动化作业中的减损结构及工艺优化提供必要的基础数据和科学依据。本研究主要得出如下结论:
     (1)确定了香梨果肉的弹性模量为2.496 MPa、破坏应力为0.296 MPa、破坏能38.86 N·mm、坚实度为0.022 N/mm2,香梨果核部的各项机械特性参数值明显比果肉部的高;成熟度提高,香梨果肉的弹性模量、破坏应力、破坏能和坚实度都减小,低温储藏期的第2~4月各参数值变化不显著,显著差异发生在香梨由青熟进入黄熟的阶段和香梨过熟阶段;储藏温度升高,香梨果肉各项机械特性参数值呈下降趋势,-2°C低温时的香梨各项机械特性参数较大,但温度在10°C~30°C范围无显著差异。
     (2)建立了可精确拟合香梨果肉蠕变曲线的六元件广义Kelvin-Voigt模型,相关系数R2≥0.999;香梨果肉在蠕变回复阶段有一定的永久变形,即蠕变损伤,各蠕变参数中延迟弹性柔量对总蠕变柔量的贡献率最大;获得了香梨果肉的动态频谱响应特性,在0.1~10 Hz的频域中,常温下具有常膨压水平下的香梨果肉储能模量G′值范围为0.092~0.177 MPa,损耗模量G″值范围为0.009~0.031 MPa,其储能模量G′远高于损耗模量G″,损耗正切tanδ范围为0.08~0.20,表现出以弹性为主导的粘弹双重特性。
     (3)随着细胞膨压下降或者温度升高,香梨果肉的动态粘弹模量(G′,G″)逐渐减小,蠕变柔量(J0,J1,J2,1/η0)均逐渐增大,膨压增大或温度降低使香梨果肉趋于硬脆性,反之则使香梨果肉趋于软弹性;香梨的粘弹特性受温度影响较弱,在10°C变温范围内无显著变化,与之相比,膨压调控对香梨果肉粘弹特性有显著影响,是改变梨果肉的质地品质和抗碰撞损伤性能的有效方法;不同膨压水平香梨果肉组织的扫描电镜和光学电镜观察证明,膨压对香梨果肉组织的细胞结构和胞间隙有明显改变,是导致香梨果肉各粘弹参数都发生变化的本质原因,因此通过采摘期梨树适度灌溉或储藏期温湿调控改变香梨果肉的膨压水平,可达到改变香梨抗机械损伤性能的目的。
     (4)香梨在20~80 cm高度范围跌落,曲率半径较高的胴部比其它部位的损伤严重;在分级、运输和包装作业中应合理摆放香梨的姿态避免胴部碰撞;香梨与钢板、橡胶板、胶合板、瓦楞纸板、EPE板碰撞,在缓冲性能较差的钢板、橡胶板和胶合板上的冲击能损耗率在70%以上,碰撞损伤敏感度为6.32~10.32 N·mm2,香梨冲击能应限制在在0.18 J以下时,香梨才不会发生碰撞损伤;香梨在瓦楞纸板和EPE板这2种缓冲材料上的冲击能损耗率低于70%,碰撞损伤敏感度为2.32~3.74 N·mm2,香梨的冲击能应控制在0.4 J以下,香梨才不会发生碰撞损伤。
     (5)获得了香梨与不同触件材料碰撞接触应力分布的特征,接触应力峰值为0.5~0.6 MPa,果肉破坏的临界应力为0.2 MPa。与钢板、橡胶板和胶合板碰撞时,接触应力分布特征轮廓接近椭圆形,接触应力为正态分布特征,≤0.2 MPa的接触应力分布在边缘区域且面积很小,0.2~0.3 MPa范围应力的分布面积最大,接触应力分布面积接近香梨损伤面积,应力均值为0.25~0.30 MPa,不随着跌落高度提高而有明显增大趋势;与瓦楞纸板和EPE板碰撞,接触应力分布特征图的轮廓边缘呈现不同程度的放射状,接触应力呈非正态分布,较低冲击水平下,<0.2 MPa应力分布面积较大,接触应力分布面积与香梨损伤面积相差较大,但随着冲击能增大而逐渐减小,当冲击能≥0.55 J时,其分布开始萎缩而趋于边缘化,应力均值为0.19~0.25 MPa,随着跌落高度提高有较明显增大趋势;基于接触应力分布面积和应力均值建立的香梨的损伤面积和损伤体积预测的线性回归模型,可对香梨损伤精确评估。
     (6)不同储藏温度和成熟度的香梨碰撞接触应力分布面积由大至小顺序依次为:20°C黄熟>20°C青熟>0°C青熟,与之相应,香梨碰撞损伤敏感度由大至小顺序依次为:0°C青熟>20°C青熟> 20°C黄熟,冷藏的青熟香梨出库后,不适宜机械化作业;储藏温度对香梨碰撞损伤敏感度影响不显著,成熟度尽管对香梨碰撞损伤敏感度有显著影响,但远弱于缓冲材料对其影响作用,香梨机械防损应主要依靠接触材料的缓冲性能。(7)以线弹性和各向同性简化考虑,香梨的单层模型,即材料弹性模量取香梨果皮、果肉和果核弹性模量平均值时,可实现香梨在钢板和胶合板上碰撞接触应力分布和损伤的预测,精度可达到80%以上,但在非均质瓦楞纸板上的模拟结果对损伤面积预测的误差还很高,需进一步深入研究。
The Korla pear bruising is an important problem in the process of packaging, sorting, storage and transportation. In this work the focus was on dynamic loading due to single impacts as this appeared to be most prevalent. Firstly, the stress-strain property and viscoelasticity of pear tissue were tested to understand the failure mechanism and impact resistance capability of pear. The impact bruise and energy loss of dropped pears were then analyzed using high speed video camera. Moreover, the contact pressure was measured by pressure-sensitive film in order to know the relation between contact pressure distribution and bruise area and volume. Finally the contact pressure of pear against impact surface was dynamic finite element modeled and numerical analytical results were validated with the measurements of film to achieve the bruise predication of pear and provide a design tool for reducing the likelihood of pear bruising occurring. The main contributions are as follows:
     (1) The module of elasticity, failure stress, failure energy and toughness of Korla pear flesh was 2.496 MPa, 0.296 MPa, 38.86 N·mm and 0.022 N/mm2, respectively. The values of mechanical parameters of pear core were significantly higher than those of pear flesh. There was no difference between the modulus of skins in transverse and longitudinal directions. The results showed that all mechanical properties decrease with the increasing storage time. The higher effect of storage was seen at first stage and final stage of ripeness. The mechanical property did not changed significantly from second to fourth month of storage period of pear. Storage temperature had weaker influence on all mechanical properties, although the values of -2°C pear were relatively higher among pears at different storage temperatures.
     (2) The creep compliance responses have been best characterized by a generalized Kelvin-Voigt model with six elements, with a correlation coefficient≥0.999. All pear tissues remained considerable plastic (unrecovered) strain in the creep recovery test. The relative contribution of retarded compliance to the overall compliance was highest among all types of compliance. The dynamic spectra of pear tissue have been obtained. The values of storage moduli (G′) and loss moduli (G″) of the Korla pear tissue with normal turgor level at 20°C from 0.1 to 10 Hz were 0.092~0.177 MPa and 0.009~0.031 MPa, respectively. The loss tangent tanδ(G″/G′) was 0.08-0.20 over the entire frequency range. Therefore, the Korla pear tissue behaved an elastic solid with storage moduli (G′) much higher than loss moduli (G″). (3) The instantaneous (J0), retarded compliance (J1 and J2) and steady-state fluidity (1/η0) increased while the storage and loss moduli (G′, G″) decreased as turgor was reduced or temperature was raised. The results indicated that the tissue was more brittle with increasing turgor of decreasing temperature. Conversely, the tissue was more ductile. The values of rheological parameters differed insignificantly when temperature interval was 10°C or so. The changes caused by temperature were much less greater than the changes caused by turgor adjustment. Many rheological parameters (G″, G′, J0, J1, J2 and 1/η0) showed the greater changes due to turgor levels, which was related with the changes of cells and intercellular spaces due to the turgor manipulation, as observed in light and scanning electron microscopy. Therefore, the turgor manipulation for pear tissue through storage temperature and humidity control and inrrigration schedule is considered be more effective measure than temperature control to improve the mechanical bruise susceptibility of Korla pear.
     (4) It was found that cheek impacts will give larger bruise than stem of calix shoulder impacts as this region tends to have a high radius of curvature when Korla pears dropped at the heights from 20 cm to 80 cm. The cheek of pear should be avoided being impacted through its proper position during the processes of package, transport and grading. The impact energy loss rate was above 70% and the bruise susceptibility ranged from 6.32-10.32 N·mm2 when Korla pear dropped onto steel, rubber and plywood at impact energies over 0.18 J. In comparison with these, the impact energy loss rate was below 70% and the bruise susceptibility was 2.32-3.74 N·mm2 for pear impacts against with expanded polyethylene (EPE) and corrugated board at same impact levels. Moreover, the bruise of pear occurred only impact energy was more than 0.4 J.
     (5) The measurements of contact pressure distribution of Korla pear for impacts against different contact materials have been obtained. The peak contact pressure was 0.5-0.6 MPa and the critical pressure of pear flesh failure was 0.2 MPa for all impacts. For pears against steel, rubber and plywood surfaces, the outlines of pressure distribution region were elliptic and the pressures tended to a normal distribution with relative small pressure area which was approximated bruising area. Additional, the 0.2~0.3 MPa pressure covered largest area and the average pressure was 0.25-0.30 MPa, which increased insignificantly with the increasing drop height. In the case of pear dropping onto expanded polyethylene (EPE) and corrugated board at low impact level, the contact pressure distributed in radiate. The pressures did not conformed to normal distribution and the pressure area was much larger than bruise area of pear. Also, it was founded that the pressure below 0.2 MPa in larger area and the average pressure was 0.19-0.25 MPa for pear contacts with these cushion materials, which tended to increase with the increasing drop height. The linear regress models fitted by the production of pressure area and average pressure can precision predicate and assess pear bruise area.
     (6) The increasing pressured areas of Korla pear were in order of 0°C green pear, 20°C green pear and 20°C yellow pear. Accordingly, the bruising of Korla pear was in order of increasing impact susceptibility as 0°C green pear > 20°C green pear > 20°C yellow pea, indicating that the green pear from cold storage room can not be desirable for mechanical treatments. The impact bruise susceptibility of pear differed insignificantly with the changes of temperature. Although the impact bruise susceptibility was affected weakly by the changes of pear ripeness, but it was sharply decreased when pear dropped onto the cushion materials. To conclude, the impact bruising reduction of Korla pear should depend on the use of cushion materials, not on control of storage temperature and ripeness.
     (7) The charactering pressure and bruising for pear impacts has been achieved using finite element analysis. The linear elastic model of pear was developed and its material was assumed be isotropic. When the average value of Young’s module of skin, flesh and core was used, the differences between the numerical bruise predications for steel and plywood and experimental results were relatively small. It proved that the analytical modelling of pear impacts can be applied to optimal design for mechanized equipment to reduce pear bruising. However, the predication error is larger for soft counterfaces such as corrugated board due to its inhomogeneous material property.
引文
曹海燕,卢立新.梨果实跌落冲击特性与流变模型[J].食品与生物技术学报, 2007, 26(4): 11~14.
    程安邦,吴柏青,林连雄.压缩与碰撞之修正理论应用于蔬果坚实度之量测[J].农业机械学刊, 2000, 9(1): 19~32.
    陈萃仁,应铁进,钱冬梅.杨梅果实的力学特性及其贮藏过程变化规律的试验研究[J].食品科学, 1994a, (10): 56~60.
    陈萃仁,应铁进,朱宇平,等.草莓果实的流变特性及其在储藏过程中的变化规律[J].浙江农业大学学报, 1994b, 20(2) : 160~164.
    陈萃仁,钱冬梅,崔绍荣,等.桃果实冲击损伤规律的研究[J].中国食品学报, 1998, 2(2): 48~52.
    陈杰玲瞿彭志.关于新疆库尔勒市香梨产业供应链管理体系建立的思考[J].商场现代化, 2007,1: 246~247.
    陈善锋,周亦斌,王俊,等.梨的下落碰撞冲击加速度特性研究[J].浙江大学学报(农业与生命科学版), 2003, 29(3): 339~342.
    冯能莲,单明彻.苹果静重损伤的试验研究[J].农业机械学报, 1996, 27(3): 71~75.
    冯永延,谢云,陈同森.新疆库尔勒香梨产业可持续发展的对策及建议[J].中国农业信息, 2006, 6: 12~13.
    高敦禄.库尔勒香梨也有“公”和“母”[J].新疆农垦科技, 1988, (2): 12.
    高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006.
    高永毅,焦群英,唐果,等.葡萄力学模型的研究及对压缩载荷的响应分析[J].湖南科技大学学报(自然科学版), 2005, 20(1): 87~90.
    高永毅,焦群英,王荣.植物细胞对外加压缩载荷的响应分析[J].应用力学学报, 2005, 22(1): 79~82.
    过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社, 2002.
    黄得时,白世煜,黄裕益,等.新兴梨之物性的感测与分析[J].农业机械学刊, 1999, 8(3): 21~34.
    “库尔勒香梨产业化发展研究”课题组.库尔勒香梨产业化发展的思路和建议[EB/OL]. http://kjj.xjbz.gov.cn/html/2006/2008-4/9/2008_04_09_668.html, 2008-04-09.
    兰民国. Tekscan压力分布测量系统[J].测控技术, 2002, 21 (4): 8~9,17.
    李沛文.果品贮藏加工学[M].北京:农业出版社, 1996.
    李小昱,王为,赵静.苹果碰撞损伤预测模型的研究[J].西北农业大学学报, 1995, 23(2): 79~83.
    李小昱,王为.苹果碰撞响应数学模型的研究[J].农业工程学报, 1996, 12(4): 204~206.
    李小昱,朱俊平,王为,等.苹果蠕变特征与静载损伤机理的研究[J].西北农业大学学报, 1997, 25(6): 64~68.
    李小昱,王为.苹果压缩特性的研究[J].西北农业大学学报, 1998a, 26(2): 107~110.
    李小昱,王为.缓冲材料降低苹果碰撞损伤的研究[J].西北农业大学学报, 1998b, 26(3): 47~51.
    连振昌,洪滉佑.苹果碰撞损伤之研究[J].农业机械学刊, 2007, 16(1): 49~60.
    刘玲,李疆,覃伟铭.库尔勒香梨果实石细胞发育及其对果实肉质影响初探[J].西北植物学报,2005, 25 (10): 1965~1968.
    卢立新,王志伟.基于准静态压缩的果实黏弹塑性模型[J].农业工程学报, 2005a, 21(12): 31~33.
    卢立新.跌落损伤脆值及损伤边界[J].包装工程, 2005b, 26(6): 1~4, 11.
    卢立新,王志伟.跌落冲击下果实动态本构模型的构建与表征[J].农业工程学报, 2007, 23(4): 238~241.
    乔金玲.库尔勒香梨产业化发展现状及建议[J].新疆农业科技, 2010, (4): 4.
    桑永英,张东兴,张梅梅.马铃薯碰撞损伤试验研究及有限元分析[J].中国农业大学学报2008,13(1): 81~84.
    孙骊,鞠建伟,吴竞爽,等.苹果储存的接触面积和蠕变特征[J].西北农业大学学报, 1996, 24(1): 104~106.
    孙骊,鞠建伟,杨林青.苹果在存放过程中冲击破裂特性的研究[J].农业工程学报, 1998, 14(2): 641~642.
    王剑平,王俊,陈善锋,等.黄花梨的撞击力学特性研究[J].农业工程学报, 2002, 18(6): 32~35.
    王俊,许乃章,胥芳.桃子冲击力学特性及其与桃子硬度的数学模型[J].农业机械学报, 1994, 25(4): 58~62.
    王俊,杜尧舜,王剑平,等.梨的各向机械特性差异[J].农业机械学报, 2000, 31(6): 58~60, 64.
    王俊.梨桃各向流变特性及动态特性的研究[D].哈尔滨:东北农业大学, 2001.
    王荣,焦群英,高永毅.番茄力学特性的研究[J].农机化研究, 2003, (4): 56~59.
    王荣,焦群英,魏德强,等.葡萄的力学特性及有限元模拟[J].农业工程学报, 2005, 21(2): 7~10.
    王正,王志强,罗鸿顺.胶合板弹性模量与阻尼比的动态测量[J].木材加工机械, 2007, (6): 8~10.
    魏闻东.鲜食梨[M].郑州:河南科技出版社, 2005.
    吴刚智,程安邦.蔬果运销作业振动冲击状况之监测与分析──以水蜜桃及释迦为例[A]. 2007
    农业信息科技应用研讨会论文集[C],台北:中华农业机械学会, 2007, 76~86.
    吴晔斐.现代缓冲包装材料性能及设计方法研究[D].上海:上海大学, 2008.
    吴杰,郭康权,顾蓉,等.库尔勒香梨不同膨压水平下的动态粘弹特性[J].农业机械学报, 2010, 41(9) : 113~117.
    吴杰,葛云,王虎挺,等.储藏温度对库尔勒香梨动态粘弹特性的影响[J].石河子大学学报(自然科学版), 2010, 28(6) : 781~784.
    杨晓清,王春光.河套蜜瓜静载蠕变特性的试验研究[J].农业工程学报, 2007, 23(3): 202~207.
    杨晓清,王春光.河套蜜瓜机械特性与静载损伤关系的研究[J].农业工程学报, 2008, 24(3): 34~37.
    张大海,徐庆岫,李利民,等.库尔勒香梨果形变化规律研究[J].新疆农业科学, 1999,(6): 261~263.
    张谦益,吴洪华.梨果实蠕变基本流变特性研究[J].现代食品科技, 2006, 22(4): 46~48.
    张强,祁春节,彭抒昂.中国梨果国际竞争力的研究[J].世界农业, 2006, (8): 34~37.
    中华人民共和国国家质量监督检疫检验总局. GB/T19859-2005地理标志产品库尔勒香梨[S],北京:中国标准出版社, 2006.
    中华人民共和国国家质量监督检疫检验总局. GB/T6544-2008瓦楞纸板[S],北京:中国标准出版社, 2008.
    周祖锷.农业物料学[M].北京:农业出版社, 1994.
    新疆生产建设兵团农业局.新疆兵团果树品种志[M].乌鲁木齐:新疆人民出版社, 1991.
    约翰逊.接触力学[M].徐秉业等译. 1992.北京:高等教育出版社.
    河野澄夫,岩元睦夫,早川昭,等.二十世紀ナシの力学的特性と損傷性[J].農業機械學會誌, 1984, 46(1): 627~632.
    石橋貞人,小島孝之.農產食品の力学的性質に關すると研究(第1報)[J].農業機械學會誌, 1969, 30(4): 231~236.
    石橋貞人,小島孝之.農產食品の力学的性質に關すると研究(第2報)[J].農業機械學會誌, 1970, 32(1): 59~64.
    Ahmadi E, Ghassemzadeh H R, Sadeghi M, et al. The effect of impact and fruit properties on the bruising of peach[J]. Journal of Food Engineering, 2010, 97: 110~117.
    Alamar M C, Vanstreels E, Oey M L, et al. Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect[J]. Journal of Food Engineering, 2008, 86: 324~333.
    Alvarez M D, Saunders D E J, Vincent J F V. Fracture properties of stored fresh and osmotically manipulated apple tissue[J]. Eur. Food Res. Technol. 2000, 211: 284~290.
    Bajema R W, Hyde G M, Baritelle A L. Temperature and strain rate effects on dynamic failure properties of potato tuber tissue[J]. Transaction of the ASAE, 1998, 41 (3): 733~740.
    Bajema R W, Baritelle A L, Hyde G M, et al. Factors influencing dynamic mechanical properties of red "Delicious" apple tissue[J]. Transaction of the ASAE, 2000, 43 (6): 1725~1731.
    Baryeh E A. Strenghth properties of Avocado pear[J]. J.agric. Engng Res, 2000, (76): 389~397.
    Berardinelli A, Guarnieri J, Phuntsho, J, et al. Fruit damage assessment in peach packing lines[J]. Applied Engineering in Agriculture, 2001, 17(1): 57~62.
    Berardinelli A, Donati A, Giunchi A, et al. Mechanical behavior and damage of pink lady apples[J]. Applied Engineering in Agriculture, 2006, 22(5): 707~712.
    Blahovec J, Mare? V, Papr?tein F. Static and dynamic tests of pear bruise sensitivity [J]. Res. Agr. Eng., 2004, 50, (2): 54~60.
    Blahovec J, Papr?tein F. Susceptibility of pear varieties to bruising[J]. Postharvest Biology and Technology, 2005, 38: 231~238.
    Bollen A F, Cox N R, Dela Rue B T, et al. A descriptor for damage susceptibility of a population of produce[J]. J. agric. Engng Res., 2001, 78 (4): 391~395.
    Bollen A F. Technological innovations in sensors for assessment of postharvest mechanical handling systems[J]. Int. J. Postharvest Technology and Innovation, 2006, 1(1): 16~31.
    Braitelle A, Hyde G M. Commodity conditioning to reduce impact bruising[J]. Postharvest Biology Technology, 2001, 21: 331~339.
    Bu-Contreras R, Rao M A. Review: dynamic rheological behaviour of heated potatoes. Food Science and Technology International[J]. 2002, 81(3): 3~10.
    Cardenas-Weber M, Storoshine R L, Haghighi K, et al. Melon materials properties and finite element nalysis of melon compression with application to robot gripping[J]. Transaction of ASAE, 1991, 34(3): 920~979.
    Chen H Q, Baerdemaeker D. Optimization of impact parameters for reliable excitation of apples during firmness monitoring[J]. J.Agric.Eng.Res, 1995, 61: 275~282.
    Chen P, Ruiz-Altisent M, Lu F, et al. Study of impact and compression damage on Asian pears[J]. Transaction of the ASAE, 1987, 30 (4): 1193~1197.
    Chen P, Yazdani R. Prediction of apple brusing due to impact on different surfaces[J]. Transaction of the ASAE, 1991, 34 (3): 956~961.
    Chen P, Ruiz-Altisent M, Barreiro P. Effect of impacting mass on firmness sensing of fruits[J]. Transaction of the ASAE, 1996, 39 (3): 1019~23.
    Crisosto C H, Slaughter D, Garner D, et al. Stone fruit critical bruising thresholds[J]. Journal of the American Pomological Society. 2001, 54: 76~81.
    De Baerdemaeker J G, Segerlind L J. Determination of the viscoelastic properties of apple flesh[J]. Transaction of the ASAE, 1976, ASAE No.74-3512: 346~348, 353.
    De Belie N, Hallett I C, Harker F R, et al. Influence of ripening and turgor on the tensile properties of pears: a microscopic study of cellular and tissue changes [J]. J. Am. Soc. Hort. Sci. 2000, 125: 350~356.
    Desmet M, Van linden V, Hertog M L A T M, et al. Instrumented sphere prediction of tomato stem-puncture injury[J]. Postharvest Biology and Technology, 2004, 34: 81~92.
    Dewulf W, Jancsók P, Nicólai B, et al. Determining the firmness of a pear using finite element modal analysis [J]. J. agric. Engng Res., 1999, 74: 217~224.
    Diezma I B, Ruiz-Altisent M, Jancsók P. Vibrational analysis of seedless watermelons: use in the detection of internal hollows [J]. Spanish Journal of Agricultural Research, 2005, 3(1): 52~60.
    Dintwa E, Van Zeebroeck M, Ramon H, et al. Finite element analysis of the dynamic collision of apple fruit[J]. Postharvest Biology and Technology, 2008, 49: 260~276.
    Edan Y, Haghighi K, Stroshine R, et al. Robot gripper analysis: finite element modeling and optimization[J]. Applied Engineering in Agriculture, 1992, 8(4): 563~570.
    Fridley R B, Bradley R A, Rumsey J W. Some aspects of elastic behavior of selected fruits[J]. Transact ions of the ASAE, 1968, 11 (1): 46~49.
    FujiFilm Corportion. Operation Manual-Fujifilm pressure distribution mapping system for prescale [M]. 2008
    Fuji Film Corporation [EB/OL], 2009. http://www.fujindt.com/products/prescale/prescale-film.asp. García-Ramos F J, Ortiz-Ca?avate J, Ruiz-Altisent M. Reduction of mechanical damage to apples in a packing line mechanical devices[J]. Applied Engineering in Agriculture, 2003, 10(6): 703~707.
    García-Ramos F J, Ortiz-Ca?avate J, Ruiz-Altisent M. Evaluation and correction of the mechanical aggressiveness of commercial sizers used in stone fruit packing lines[J]. Journal of Food Engineering, 2004, 63: 171~176.
    Garcia J L, Ruiz-Altisent M, Barreiro P. Factors influencing mechanical properties and bruise susceptibility of apples and pears [J]. J. Agric. Eng. Res., 1995, 61: 11~18.
    Gerschenson L N, Rojas A M, Marangoni A G. Effects of processing on kiwi fruit dynamic rheological behaviour and tissue structure[J]. Food Research International, 2001, 34: 1~6.
    Hertog M L A, Ben-Arie R, Róth E, et al. Humidity and temperature effects on invasive and non-invasive firmness measures[J]. Postharvest Biology and Technology, 2004, 33: 79~91.
    Herold B, Geyer M, Studman C J. Fruit contact pressure distributions-equipment[J]. Computers and Electronics in Agriculture, 2001, 32: 167~179.
    Holt J E, Schoorl D. Bruising and energy dissipation in apples[J]. Journal of Textures Studies, 1977, 7: 421~432.
    Jackman R L, Marangoni A G, Stanley D W. The effects of turgor pressure on the puncture and viscoelastic properties on tomato tissue [J]. J.Texture Studies. 1992, 23: 491~505.
    Jancsók P T, Clijmans L, Nicola? B M, et al. Investigation of the effect of shape on the acousticresponse of‘conference’pears by finite element modelling[J]. Postharvest Biology and Technology, 2001, 23: 1~12.
    Jarimopas B, Singh S P, Sayasoonthorn S, et al. Comparison of package cushioning materials to protect post-harvest impact damage to apples[J]. Packag. Technol. Sci., 2007, 20: 315~324.
    John M A, Dey P M. Postharvest changes in fruit cell walls[J]. Advance in Food Research, 1986, 30: 139~193. Khan A A, Vincent J F. Anisotrophy in the fracture properties of apple flesh as investigated by crack
    opening tests[J]. J. Mater. Sci. 1993, 28: 45~51.
    Kim G W, Kim M S, Sagara Y, et al. Determination of the viscoelastic properties of apple flesh under quasi-static compression based on finite element method optimization[J]. Food Sci Technol Res, 2008a, 14(3): 221~231.
    Kim G W, Do G S, Bae Y, et al. Analysis of mechanical properties of whole apple using finite element method based on three-dimensional real geometry[J]. Food Sci Technol Res, 2008b, 14(4): 329~336.
    Konstankiewicz K, Zdunek A. Influence of turgor and cell size on the cracking of potato tissue [J]. Int. Agrophys. 2001, 15: 27~30.
    Lakes R S. Viscoelastic measurement techniques[J]. Review of Scientific Instruments, 2004, 75(4): 797~810.
    Lewis R, Yoxall A, Canty L A, et al. Development of engineering design tools to help reduce apple bruising [J]. Journal of Food Engineering, 2007, 83: 356~365.
    Lewis R, Yoxall A, Marshall L A, et al. Characterising pressure and brusing in apple fruit[J]. Wear, 2008, 264: 37~46.
    Lien C C, Ay C, Ting C H. Non-destructive impact test for assessment of tomato maturity[J]. Journal of Food Engineering, 2009, 91: 402~407.
    Lin T T, Pitt R E. Rheology of apple and potato tissue as affected by cell turgor pressure[J]. J.Texture Studies, 1986, 17(3): 291~313.
    Lu F, Ishikawa Y, Kitazawa H, et al. Measurement of impact pressure and bruising of apple fruit using pressure-sensitive film technique[J]. Journal of Food Engineering, 2010a, 96: 614~620.
    Lu F, Ishikawa Y, Kitazawa H, et al. Impact damage to apple fruits in commercial corrugated fiberboard box packaging evaluated by the pressure-sensitive film technique[J]. Journal of Food, Agriculture & Environment, 2010b, 8 (2): 132~136.
    Lu L X, Wang Z W. Dropping bruise fragility and bruise boundary of apple fruit[J]. Transaction of the ASAE, 2007, 50 (4): 1323~1329.
    Lu R, Abbott J A. Finite elements analysis of modes of vibration in apples[J]. Journal of Texture Studies, 1996, 27: 265~286.
    Lu T, Zhu G. The elastic constants of corrugated board panels[J]. Journal of Composite Materials, 2001, 35(20): 1868~1870.
    Martínez V Y, Nieto A B, Castro M A, et al. Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration[J]. Journal of Food Engineering, 2007, 83: 394~403.
    Masoudi H, Tabatabaeefar A, Borghaee A M. Determination of storage effect on mechanical properties of apples using the uniaxial compression test[J]. Candian Biosystems Engineering, 2007, 49(3): 29~33.
    Menesatti P., Beni C., Paglia G., et al. Predictive statistical model for the analysis of drop impactdamage on peach[J]. J. Agric. Engng Res., 1999, 73: 275~282.
    Menesatti P, Paglia G. Development of a drop damage index of fruit resistance to damage[J]. J. agric. Engng Res., 2001, 80 (1): 53~64.
    Menesatti P, Paglia G, Solaini S, et al. Non-linear multiple regression models to estimate the drop damage index of fruit[J]. Biosystems Engineering, 2002, 83 (3): 319~326.
    Miller W M, Wagner C J. Impact studies in Florida citrus packinghouse using an instrumented sphere[J]. Proc.Fla.State Hort.Soc., 1991, 104: 125~127.
    Miller W. Impact-cushioning material considerations[J]. Packinghouse Newsletter, 1998, 181: 1~4.
    Mohsenin N N. Physical properties of plant and animal materials[M]. New York: Gordon and Breach Science Publishers, 1970.
    Mohesenin N N, Jindal V K, Manor A N. Mechanics of impact of a falling fruit on a cushioned surface[J]. Transaction of the ASAE, 1978, 34 (3): 594~600.
    Nieto A B, Salvatori D M, Castro M A, et al. Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage, porosity, density and microscopic features[J]. Journal of Food Engineering, 2004, 61: 269~278.
    Nourain J, Ying Y B, Wang J P, et al. Firmness evaluation of melon using its vibration characteristic and finite element analysis[J]. Journal of Zhejiang University SCIENCE, 2005, 6B (6): 483~490.
    Oey M L, Vanstreels E, De Baerdemaeker J, et al. Effect of turgor on micromechanical and structural properties of apple tissue: a quantitative analysis[J]. Postharvest Biology and Technology, 2007, 44: 240~247.
    Opara L U. Bruise susceptibilities of‘Gala’apples as affected by orchard management practices and harvest date[J]. Postharvest Biology and Technology, 2007, 43: 47~54.
    Pang D W, Studman C J, Ward G T. Bruising damage in apple-to-apple impact[J]. J. Agric. Eng. Res. 1992, 52 (4): 229~240.
    Rabelo G F, Fabbro I M, Linares A W. Contact stress area measurement of spherical fruit[R]. Proceedings of Sensors in Horticulture III. 2001, 195~200. Ragni L, Berardinelli A. Mechanical behaviour of apples and damage during sorting and packaging[J]. J. agric. Engng. Res, 2001, 78(3): 273~279.
    Roudot A C, Duprat F, Wenian C. Modelling the response of apples to loads[J]. Agriculture Enginneering Resource, 1991, 48 (4): 249~259.
    Rojas A M, Gerschenson L N, Marangoni A G. Contributions of celluar compontens to the rheological behaviour of kiwifruit[J]. Food Research International. 2000, 34: 189~195
    Sadato I, Takayuki K. Studies on mechanical properties of agricultural products (part 2)[J]. Journal of JSAM, 1970, 32 (1): 59~64.
    Sadrnia H, Rajabipour A, Jafari A, et al. Internal bruising prediction in watermelon compression using nonlinear models [J]. Journal of Food Engineering 2008, 86: 272~280.
    Scanlon M G., Pang C H, Biliaderis C G. The effect of osmotic adjustment on the mechanical properties of potato parenchyma[J]. Food Res. Int. 1996, 29: 481~488.
    Schoorl D, Holt J E. Bruise resistance measurements in apples[J]. J.Texture.Stud, 1980, 11: 389~394.
    Schulte N L, Timm E J, Ladd J D, et al. Peach and pear impact damage thresholds: a progress report[J]. ASAE Paper, 6620, 1991.Sensor Products Inc. [EB/OL], 2010. http:// pressuresensitivefilm.net / PressureX.htm.
    Siyami S, Brown G K, Burgess G J, et al. Apple impact bruise predication models[J]. Transaction of the ASAE, 1988, 31 (4): 1038~1046.
    Studman C J, Brown G K, Timm, E J, et al. Bruising on blush and non-blush sides in apple-to-apple impacts[J]. Transaction of the ASAE, 1997, 40: 1655~1663.
    Varela P, Salvador A, Fiszman S. Changes in apple tissue with storage time: Rheological, textural and microstructural analyses[J]. Journal of Food Engineering, 2007, 78: 622~629.
    Van Canneyt T, Dierickx W, Verschoore R, et al. Effect of pre-load, vibration frequency, temperature and specific gravity of potato tissue on visco-elastic vibration damping and complex modulus properties[J]. Biosystems Engineering, 2006, 94 (3): 415~427.
    Van linden V, De Ketelaere B, Desmet M, et al. Determination of bruise susceptibility of tomato fruit by means of an instrumented pendulum[J]. Postharvest Biology and Technology, 2006a, 40: 7~14.
    Van linden V, Scheerlinck N, Desmet M, et al. Factors that affect tomato bruise development as a result of mechanical impact[J]. Postharvest Biology and Technology, 2006b, 42: 260~270.
    Van linden V. Identification of fruit parameters responsible for impact-bruising of tomatoes[D]. Belgium: Katholieke Universiteit Leuven, 2007.
    Van Zeebroeck M, Tijskens E, Van Liedekerke P, et al. Determination of the dynamical behaviour of biological materials during impact using a pendulum device[J]. Journal of Sound and Vibration, 2003, 266: 465~480.
    Van Zeebroeck M, Van linden V, Ramon H, et al. Impact damage of apples during transport and handling [J]. Postharvest Biology and Technology, 2007a, 45: 157~167.
    Van Zeebroeck M, Van linden V, Darius P, et al. The effect of fruit properties on the bruise susceptibility of tomatoes[J]. Postharvest Biology and Technology, 2007b, 45: 168~175.
    Van Zeebroeck M, Van linden V, Darius P, et al. The effect of fruit factors on the bruise susceptibility of apples[J]. Postharvest Biology and Technology, 2007c, 46: 10~19.
    Vursavus K, ?zgüven F. Determining the strength properties of the dixired peach variety[J]. Turk J Agric For, 2003, 27: 155~160.
    Wang J. Anisotropic Relaxation Properties of Pear[J]. Biosystems Engineering, 2003, 85 (1): 59~65. Wu J, Guo K Q. Dynamic viscoelastic behaviour and microstructural changes of Korla pear (Pyrus
    bretschneideri rehd) under varying turgor levels [J]. Biosystems Engineering, 2010, 106(4): 485~492.
    Yurtluy B, Erdoúan D. Effect of storage time on some mechanical properties and bruise susceptibility of pears and apples[J]. Turk J Agric For, 2005, 29: 469~482.
    Zapp H R, Ehlert S H, Brown G K, et al. Advanced instrumented sphere (IS) for impact measurement[J]. Transactions of the ASAE, 1990, 33(3): 955~960.
    Zarifneshat S, Ghassemzadeh H R, Sadeghi M, et al. Effect of impact level and fruit properties on Golden Delicious apples bruising[J]. American Journal of Agricultural and Biological Sciences, 2010, 5(2): 114~121.
    Zdunek A, Gancarz M, Cybulska J, et al. Turgor and temperature effect on fracture properties of potato tuber (Solanum tuberosum cv. Irga) [J]. Int. Agrophysics, 2008, 22: 89~97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700