用户名: 密码: 验证码:
精密机床床身的动态特性分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着精密机床向高速度、高精度、高柔度方向的迅速发展,除了要求机床重量轻、成本低、使用方便和具有良好的工艺性外,还着重要求机床具有愈来愈高的加工性能。机床的加工性能包括其加工质量和切削效率两个重要的方面,通常甩被加工零件能达到的最高精度和表面光洁度来评定机床的加工质量,用金属切除率或切削用量的最大极限值来评定机床的切削效率。而机床的加工性能又与其动态性能紧密相关,事实证明,随着机床加工性能的不断提高,对机床动态性能的要求也愈来愈高。
     床身是机床的一个重要基础部件,因此床身动态性能直接影响到机床的加工精度。精密机床的床身一般为具有筋板的框形结构,床身内部的筋板的布置以及筋板开孔的尺寸对机床动态性能有巨大的影响。合理地选择筋板的布置形式和筋板孔的尺寸,不但可以提高床身的动态性能,而且可以节约材料和降低生产成本。
     本文以VMC750立式加工中心床身为例,对影响精密机床床身动态性能的因素进行了探究。首先建立床身的有限元模型,并对其进行动态分析,找出床身的薄弱环节。再以改变床身的内部结构为出发点,提高床身的抗振性能。即先提出床身的几种典型筋板布局方案并对其进行分析,以床身结构固有频率为优化目标,从中选取合理的筋板布局型式;然后提取床身的典型元结构并进行结构优化设计,找出合理的结构优化参数;最后以元结构优化结果为依据,提出该床身结构的优化方案,并对方案进行分析。分析结果表明,该方案床身的动态性能有了明显的提高。
With the rapidly development of Precision machine tools in higher speed, higher precision and higher flexibility, besides the requirement of machine's weight being light, lower cost, convenient application and good technical capability, higher and higher machining capability is also demand. Machining capability includes machining quality and cutting efficiency. Machine's machining capability is usually assessed by the tiptop precision and superficial roughness that can be reached of the being processed part. The cutting efficiency is usually assessed by the most limit value of removal rate or cutting dosage. And machining capability is closely correlation with machine's dynamic capability. It is proved that the demand of machine's dynamic capability is higher and higher with the improvement of machining capability.
    The machine tool bed is an important component for machine tool, thus its dynamic capability will directly influence the accuracy of the machining. The structure of the precision machine tool bed is made up of basic frames. The distribution of the rib wall and the hole size on the rib wall which compose the machine tool bed will influence the dynamic capability greatly. As a result, how to put out the rib wall and choose the hole size on the rib wall is a key point to improve its dynamic capability and economy the materials used and cut the cost.
    This thesis analizes the factors which will influence the dynamic capability of the machine bed, taking the vertical machine center 750 for example. First, the FEM model of the machine bed is setup with its dynamic analysis to find the weak points. Then, through the analysis result for the anti-vibration, the inner structure of the bed is improved. It contains three aspects: firstly, several kinds of typical scheme for the rib wall is put forward and analyzed. A rational scheme for the rib wall is choosed. Secondly, typical unit structures (US) of the lathe bed are picked up and optimized. Thirdly, depending on optimized results of unit structures, the improved bed schemes are presented and analyzed. According to the analysis based on the scheme, the dynamic capability of the lathe bed is improved a lot.
引文
[1] 杨橚,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1983:1-2
    [2] 诸乃雄.机床动态设计原理与应用[M].上海:同济大学出版社,1987:1-3
    [3] 杜君文.机械制造技术装备及设计[M].天津:天津大学出版社,1998,222-224
    [4] Tlusty J, Ismail F. Dynamic Structural Identification Task and Method[J]. Annals of the CIRP, 1980,29:238-247
    [5] Lee J M. A Study on the Dynamic Modeling of Structures with Bolted and Bearing Joints[J]. Annals of the CIRP, 1988,37:136-144
    [6] Yuan J X, Wu X M. Identification of the Joint Structural Parameters of Machine Tool by DDS and FEM[J]. ASME Journal of Engineering for Industry, 1985,107: 64-69
    [7] Yoshimura M. Computer Aided Design Improvement of Machine Tool Structural Incorporation Joint Dynamic Data[J]. Annals of CIRP, 1979,28: 241-246
    [8] Tsai J S. The Identification of Dynamic Characteristics of a Single Bolt Joint[J]. Journal of Sound and Vibration. 1988,125:487-502
    [9] Hull, Partick V. Optimal synthesis of compliant mechanisms using subdivision and commercial FEA[J]. American Society of Mechanical Engineers. 2006,25:83-86
    [10] Bianchi.G, Daolucei.F. Towards Virtual engineer in machine tools design[J].Annals of the CIRP, 1996, 45 (1):381-384
    [11] J. M. Vance, T. P. Yeh. Computer Aided Dsign Improvement of Machine tools[J].Structure Incoporting Joint Dynamics Dynamics Data, 1979, 128(1): 391-396
    [12] T. jiang, M. Ciredast. Virtual assembly using virtual reality techniques[J]. Computer-Aided Design, 1997, 29(8): 575-584
    [13] 杨永亮.基于有限元的车床床身结构优化:[大连理工大学硕士学位论文].大连:大连理工大学机械系,2006,1-3
    [14] 林有希.大型机床动态性能的整机有限元分析[J].福州大学学报,2003,31(1):69-72
    [15] 张广鹏,史文浩,黄玉美.机床整机动态特性的预测解析建模方法[J].上海交通大学学报,2001,35(12):1834-1837
    [16] 毛海军.新一代数控内圆磨床的动力学建模与优化:[东南大学博士学位论文]. 南京:东南大学机械系,2001,42-51
    [17] 杜奕.MYS平面手动磨床的试验模态分析和动态特性修改:[昆明理工大学硕士学位论文].昆明:昆明理工大学机械系,2002,8-62
    [18] 梁志强.加工中心整机试验模态分析及主要结合部参数识别方法研究:[昆明理工大学硕士学位论文].昆明:昆明理工大学机械系,2004,25-67
    [19] 赵宏林,张文河,盛伯浩等.机床整机综合特性的预测[J].制造技术与机床,1998(3):12-14
    [20] 覃文洁,左正兴,刘玉桐等.机床整机的动态特性分析[J].机械设计,2000,(10):24-26
    [21] 唐文成,易红,唐寅.机床大件结构的拓扑优化设计[J].东南大学学报,1996,26(5):22-26
    [22] 汤文成,易红.板厚对机床床身的动态特性的影响[J].制造技术与机床,1997(3):13-14
    [23] 唐文成,易红.W型隔板床身壁厚与振型关系的研究[J].机械设计,1996(2)27-29
    [24] 唐文成,易红.地脚螺钉对床身动态性能影响的研究[J].机械设计,1997(12):16-17
    [25] 伍建国,陈新.内圆磨床床身结构的动态分析与优化设计[J].精密制造与自动化,2002,(2):25-27
    [26] 徐燕申,张学玲.基于有限元分析的机械结构静动态性能优化设计[J].精密制造与自动化,2003增刊
    [27] 张学玲,徐燕申,钟伟泓.基于有限元分析的数控机床床身结构动态优化设计方法研究[J].机械强度,2005,27(3):353-357
    [28] 徐燕申,张兴朝,牛占文等.基于元结构和框架优选的数控机床床身结构动态设计研究[J].机械强度,2001,23(1):001-003
    [29] 王艳辉,伍建国.精密机床床身的模态分析与结构优选[J].机械设计与制造,2005(3):76-77
    [30] 王艳辉.基于动态灵敏度分析的版辊磨床床身结构参数修改[J].机械设计与制造,2004,7(1):22-25
    [31] 王艳辉,伍建国.精密机床床身结构参数的优化设计[J].机械设计与研究,2003(6):35-37
    [32] 陈文锋,毛汉领.MXBS-1320型高速外圆磨床动态性能的试验研究[J].广西机械,1997(2):21-25
    [33] 张海伟.数控机床动态性能的分析及其结构优化[J].制造技术与机床,2006(5)
    [34] 陈新,何杰,毛海军等.基于动力学特征的磨床床身结构优化布局设计[J]. 制造技术与机床,2001(2):21-22
    [35] 贺兵,黄红武,必海青等.基于ANSYS的超高速平面磨床结构优化设计[J].机械,2004(1):7-9
    [36] 温熙森,陈循,徐永成等.机械系统建模与动态分析[M].北京:科学出版社,2004:1-50
    [37] 师汉民.机械振动系统[M].武汉:华中科技出版社,2004:2-80
    [38] 张国瑞.有限元法[M].北京:机械工业出版社,1999
    [39] 李景涌.有限元法[M].北京:北京邮电大学出版社,1996
    [40] 王润富.有限元法概念与习题[M],北京:机械工业出版社,1982
    [41] 孙靖明.机床结构计算的有限元法[M].北京:机械工业出版社,1983:1-4
    [42] J.Zhao, S.Masood. An Intelligent Computer Computer-Aided Assembly Process Planning System [J]. Advanced Manufacturing Technology, 1999(15):332-337
    [43] 李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005
    [44] 易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,2002
    [45] 陈立新,徐长航,陈江荣等.ANSYS7.0基础教程[M].北京:机械工业出版社,2004
    [46] 江洪,江帆,陈利锋等.soliworks机械设计实例解析[M].北京:机械工业出版社6006.1
    [47] 曹岩,赵汝嘉.Soliworks2003基础篇[M].北京:机械工业出版社6004.3
    [48] 机械设计手册新版[M].北京:机械工业出版社,2004.8
    [49] 张学龄.基于广义模块化设计的机械结构静动态特性分析及优化[天津大学博士学位论文].天津:天津大学机械工程学院,2004
    [50] 刘惟信.机械最优化设计[M].北京:清华大学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700