用户名: 密码: 验证码:
氮合金化堆焊硬面合金及其冶金行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮作为间隙原子,与其它合金元素相互作用,能改善钢的强度、韧性、蠕变抗力、耐磨性和耐腐蚀性能。在硬面合金材料中用氮代替碳进行合金化,能提高抗焊接热裂纹、耐磨蚀和高温稳定性能。以氮代替部分碳进行硬面合金的氮合金化,成为提高硬面合金综合使用性能的新途径。
     系统研究了堆焊马氏体不锈钢硬面合金中氮的行为及其影响因素,确定了硬面合金中的合理氮含量,并设计出了氮合金化硬面合金的合金系列。通过药芯中添加氮化铬进行埋弧堆焊获得硬面合金的方法,对硬面合金中氮的吸收与析出进行了研究,结果表明Cr13马氏体不锈钢硬面合金中最大氮含量约为0.10%左右,添加微量的固氮元素铌、钒和钛能使硬面合金的氮含量达到0.20%以上,而不产生气孔。铌、钒、钛提高氮在马氏体不锈钢硬面合金中的溶解度,主要作用表现为:一是降低N在熔池金属中的活性系数,增大N的固溶度;二是作为碳氮化物形成元素与N作用,在硬面合金中形成复杂的碳氮化物粒子,增大含N量。氮合金化硬面合金中氮含量控制在0.10~0.13%,碳的含量可降低到0.20%以下。
     成功研制了焊接工艺性能良好的氮合金化自保护和埋弧硬面药芯焊丝。通过对自保护焊接过程深入分析,实现了利用空气中的自然氮进行合金化。研究发现,在没有气孔发生的条件下,通过调整渣系和固氮元素,可使自保护硬面堆焊合金增氮0.08%,开发出一种低成本的氮合化自保护硬面药芯焊丝。通过在药芯中加入适量氮化物的方法研制出了氮合金化埋弧硬面药芯焊丝,并研制出了与之匹配的烧结焊剂,渣系为MgO—CaF_2—Al_2O_3—SiO_2,碱度为1.8~2.0。
     对氮合金化硬面合金中的碳氮化物析出行为进行了深入分析,并对氮合金化硬面合金的强化机理进行了深入研究。研究发现硬面合金中的碳氮析出物为弥散分布在晶界和晶内的M(C、N)复合物,碳氮析出物的尺寸、形状和成分与其形成过程有关。在焊态条件下,碳氮化物主要为在液态金属凝固过程中形成的(Nb、Ti、V)(C、N)复合物,其尺寸大小为1~3.5μm;在450~650℃回火条件下,大量尺寸大小为5~200nm的细小碳氮析出物Nb(C、N)以棒形、球形弥散析出,产生二次硬化作用。硬面合金中的碳氮化物起到了细化一次结晶组织、钉扎位错阻碍晶粒长大促进显微组织细化和沉淀强化作用。碳氮化物不易长大,具有良好的高温稳定性,抑制了富Cr相的形成,使得硬面合金具有良好的热稳定性和耐腐蚀性能。研究了碳氮化物在硬面合金中的耐磨粒磨损作用,结果表明硬面合金中的碳氮化物沉淀相能有效抵御磨粒的微切削,起到提高耐磨性的作用,在500~600℃温度回火,大量弥散细小的碳氮化物沉淀析出,能有效促进硬面合金耐磨性能的提高。
     对氮合金化硬面合金组织进行了深入分析,结果表明氮合金化硬面合金的组织结构为板条马氏体、碳氮化物以及少量残余奥氏体。研究发现回火温度对硬面合金的组织产生重要影响。碳氮化物的析出温度高于碳化物,在500~650℃能大量沉淀析出,并具有良好的高温稳定性能;而碳化物在低于500℃沉淀析出,在高于600℃时分解,导致基体的硬度显著下降。大量弥散分布细小碳氮化物沉淀析出能有效促进硬面合金硬度的提高,并使硬面合金具有良好的抗回火软化性能。建立了氮合金化硬面合金的Ms温度计算公式:Ms/℃=550-330(w_C+0.86w_N-0.05)-35w_(Mn)-17W_(Ni)-12W_(Cr)-21W_(Mo)-10 W_(Si)-35(W_(Nb)+W_V+W_(Ti))。
     对氮合金化和碳合金化硬面合金进行了高温高载荷金属间磨损对比试验研究。研究发现硬面合金与42CrMo钢的高温金属间磨损,为42CrMo钢表面高温下形成的氧化皮,粘着于堆焊马氏体不锈钢硬面合金表面,导致硬面合金产生了磨粒磨损。磨损金属间的高应力造成硬面合金的沿晶界开裂,降低了硬面合金的耐金属间磨损。氮合金化硬面合金细小的显微组织、良好的强韧性和碳氮化物质点在高温磨损过程中大量沉淀析出,使其具有比碳合金化硬面合金更优的耐高温磨损性能。
As a gap-atom element, nitrogen can improve many properties of steels throughcombining with other alloy elements, including hardness, toughness, creep resistance,wearing resistance and corrosion resistance. Using the nitrogen instead of the carbon, thewelding hot-crack resistance, wear resistance, corrosion resistance and high temperaturestability of hardfacing materials can be greatly improved. The hardfacing materials arealloyed through nitrogen replacing part of carbon, which has been used as a new way toimprove the comprehensive properties of hardfacing alloy.
     The behavior of nitrogen and the factors affecting nitrogen content in the martensitestainless hardfacing alloy had been studied systematically. The reasonable nitrogen contentof hardfacing alloy was obtained, and the alloying composition of the nitrogen-alloyhardfacing alloy was designed. The dissolution and release of nitrogen during welding ofhardfacing alloy was studied by submerged-arc welding using nitrogen-alloyinghardfacing flux-cored wire with addition of CrN. The maximal nitrogen content in Crl3steel is approximately 0.10%, which can up to 0.20% and has no porosity in it throughadding extremely a little quantities of Nb, V and Ti elements. Additions of Nb, V and Tican increase nitrogen solubility in the hardfacing alloy, which has two means: Firstly, theycan reduce activity coefficient of nitrogen in molten metal and then increase its solidsolubility. Secondly, these alloying elements as the most effective carbonitride formingelements added in harfacing alloy to enlarge nitrogen content. When the nitrogen contentof nitrogen-alloying hardfacing alloy is controlled within reasonable range from 0.10% to0.13%, the carbon content can be reduced to less than 0.20%.
     The self-shielded and submerged-arc nitrogen-alloying hardfacing flux-cored wireswith good welding performance had been developed successfully. The welding process ofself-shield hardfacing flux-cored wire was gone deep into analysis, and a new preparingapproach of nitrogen-alloying harfacing alloy had been created by making full use ofnatural nitrogen in air. The hardfacing alloy of self-shielded hardfacing flux-cored wirecould get 0.08% nitrogen content through adjusting slag system and effectivenitride-forming elements, which had no porosity in it. And a low cost of nitrogen-alloying self-shielded nitrogen-alloying hardfacing flux-cored wire was developed. Thenitrogen-alloying submerged-arc hardfacing flux-cored wire was made by addition ofnitride, and a kind of sintered flux which is adaptive to the hardfacing flux-cored wire wasalso developed. It has the slag series for MgO-CaF_2-Al_2O_3-SiO_2, and the alkalinity is1.8~2.0.
     The precipitation behavior of carbonitride in hardfacing alloy was systematicallyanalyzed, and the strengthening mechanism of it was also studied. It was revealed thatcarbonitride particles in the hardfacing alloy are complex M(C、N) distributing on thegrain boundary or matrix of the hardfacing alloy. These carbonitrides have dissimilar size,morphology and composition in different formation process of it. In as-welded condition,most of carbonitride are (Nb、V、Ti)(C、N) precipitate with characteristic cuboidal shape,which can readily precipitate from the hardfacing alloy with large size(1~3.5μm) as theywere formed already during solidification. At the temper temperature of 450~650℃, alarge number of carbonitride Nb(C、N) can be precipitated out with the size range from 5to 200nm. These fine carbonitride has two forms of bar and globular, which have a greatsecondary hardening effect on the matrix. The carbonitride in hardfaced alloy caneffectively refine the microstructure during welding and hinder the crystal boundarymigration by fixing the crystal boundary, which had a grain refinement and precipitationstrengthening effect on the hardfacing alloy. The carbonitride precipitates prevented theformation of chromium-rich phase at grain boundaries and intergranular chromiumdepletion, so the hardfacing alloy had good stability and corrosion resistance. The effect ofcarbonitride precipitates on the abrasive wear behaviour of hardfacing alloy was studied.The results showed that the carbonitride had an effectively protecting effect on thehardfacing alloy to keep the hardfacing alloy from wearing by the abrasion particles. Thehomogeneous distribution of very fine carbonitride could precipitate out during the tempertemperature of 500~600℃and improve markedly the wear resistance of hardfacing alloy.
     The microstructure of nitrogen-alloying hardfacing alloy was deeply analyzed. Theresult shows that the hardfacing alloy has three main phases of lath martensite,carbonitride and the residual austenite. It is found that the temper temperature has asignificant effect on the microstructure of hardfacing alloy, and the temperature of carbonitride precipitation was above that of the carbide precipitation. The carbonitride canprecipitate out during the temperature of 500~650℃and has a good stability at the hightemperature. Meanwhile, the carbide precipitated out below the temper temperature of 500℃and decompounded above 600℃. The hardness of hardfacing alloy decreased sharplywhen the carbide decompounded. The homogeneous distribution of very fine carbonitridecould improve markedly the hardness of hardfacing alloy, so the nitrogen-alloyinghardfacing alloy had a good softening resistance at high temperature tempering. The Ms ofnitrogen-alloying hardfacing alloy was established, and the calculation formula is listed:Ms/℃=550-330(w_C+0.86w_N-0.05)-35w_(Mn)-17w_(Ni)-12w_(Cr)-21w_(Mo)-10 w_(Si)-35(w_(Nb)+w_(V)+w_(Ti)).
     The high temperature wear resistance of nitrogen-alloying hardfacing alloy wastested under a high load, and compared with those of conventional carbon-alloyinghardfacing alloy. It is found that the high temperature wear mechanism of hardfacing alloyand 42CrMo steel was abrasive wear due to the effect of scale formation on the surface of42CrMo steel. The scale was sticking on the surface of hardfacing alloys and increasingthe abrasive wear damage. And the crack occured on the grain-boundary because of thehigh stress effect on the wear surface of metals, which decreased the metal-metal wearresistance of hardfacing alloy. The results showed that the nitrogen-alloying hardfacingalloy had more excellent high temperature wear property than that of carbon-alloyinghardfacing alloy due to the fine microstructure, good tenacious property and the effect of alarge number carbonitride homogeneously precipitated out during high temperaturewearing.
引文
[1] 徐坚.腐蚀金属学及耐腐蚀金属材料.杭州:浙江科学技术出版社,1981.
    [2] Menon R. Recent advances in cored wire for hardfacing. Welding Journal, 2002, 82(11): 53-58.
    [3] Wang X H, Han F, Liu X M, et al. Microstructure and wear properties of the Fe-Ti-V-Mo-C hardfacing alloy. Wear, 2008, 265(5-6): 583-589.
    [4] Chatterjee S, Pal T K. Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate. Journal of Materials Processing Technology, 2006, 173(1):61-69.
    [5] 王宝森.超高硬度耐磨抗裂堆焊材料的强韧化研究:[博士学位论文].天津:天津大学图书馆,2003.
    [6] Reddy G M, Mohandas T, K.Papukutty. Enhancement of ballistic capabilities of soft welds through hardfacing. International journal of impact engineering, 1999, 22(8): 775-791.
    [7] Yildizli K, Eroglu M, Karamis M B. Microstructure and erosive wear behavior of weld deposits of high manganese electrode. Surface and Coatings Technology, 2007, 201(16-17): 7166-7173.
    [8] Chatterjee S, Pal T K. Wear behaviour of hardfacing deposits on cast iron. Wear, 2003, 255: 417-425.
    [9] Gulenc B, Kahraman N. Wear behaviour of bulldozer rollers welded using a submerged arc welding process. Materials and Design, 2003, 24(7): 537-542.
    [10] 桂业炜.硬面材料的选择.海南矿冶,1994,(2):38-43.
    [11] 桂业炜.硬面技术的应用.机械制造,1995,(2):8-10.
    [12] Kirchgaβner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear, 2008, 265(5-6): 772-779.
    [13] Bhaduri A K, Indira R, Albert S K, et al. Selection of hardfacing material for components of the indian prototype fast breeder reactor. Journal of Nuclear Materials, 2004, 334(2-3): 109-114.
    [14] Fan C, Chen M C, Chang C M, et al. Microstructure change caused by(Cr, Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys. Surface and Coatings Technology, 2006, 201(3-4): 908-912.
    [15] Wang X H, Han F, Qu S H, et al. Microstructure of the Fe-based hardfacing layers reinforced by TiC-VC-Mo_2C particles. Surface and Coatings Technology, 2008, 202(8): 1502-1509.
    [16] Wang X H, Zou Z D, Qu S H. Microstructure of Fe-Based alloy hardfacing coating reinforced by TiC-VC particles. Journal of Iron and Steel Research, 2006, 13(4): 51-55.
    [17] Berns H, Fischer A. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B. Materials Characterization, 1997, 39(2-5): 499-529.
    [18] Ren X J, James R D, Brookes E J, et al. Machining of high chromium hardfacing materials. Journal of Materials Processing Technology, 2001, 115(3): 423-429.
    [19] 郭铮匀.钢的氮化.北京:国防工业出版社,1979.
    [20] 雷廷权,傅家骐.金属热处理工艺方法500种.北京:机械工业出版社,1998.
    [21] Moller W, Parascandola S, Telbizova T, et al. Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium. Surface and Coatings Technology, 2001, 136: 73-79.
    [22] Yilbas B S, Sunar M, Gasem Z, et al. Laser gas assisted nitriding and tin coating of Ti-6Al-4V alloy: Experimental and numerical investigation of mechanical properties. Journal of Materials Processing Technology, 2009, 209(3): 1199-1208.
    [23] Durst O, Ellermeier J, Berger C. Influence of plasma-nitriding and surface roughness on the wear and corrosion resistance of thin films(PVD/PECVD). Surface and Coatings Technology, 2008, 203(5-7): 848-854.
    [24] Niizuma K, Utsushikawa Y. Effect of treatment temperature on iron nitride foils irradiated with nitrogen plasma. Journal of Materials Science, 2000, 16(2): 143-144.
    [25] Li S, Manory R R. Comparison of compound layer nucleation mechanisms in plasma nitriding and nitrocarburizing: the effect of CH_n species. Journal of Materials Science, 1999, 34: 1045-1049.
    [26] Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy. Surface and Coatings Technology, 2008, 202(11): 2471-2476.
    [27] Raman S G S, Jayaprakash A, Influence of plasma nitriding on plain fatigue and fretting fatigue behaviour of AISI 304 austenitic stainless steel. Surface and Coatings Technology, 2007, 201(12): 5906-5911.
    [28] Alphonsa I, Chainani A, Raole P M, et al. A study of martensitic stainless steel AISI 420 modified using plasma nitriding. Surface and Coatings Technology, 2002, 150(2-3): 263-268.
    [29] 许大庆,赵建生.几种工业用钢的氮化层脆性测试.钢铁研究学报,1999,11(1):61-65.
    [30] Stevens S M. Forms of nitrogen in weld metal. Welding Research Council Bulletin, 1991-1992, 369: 1-2.
    [31] Mudali U K, Bhuvaneswaran N, Shankar P, et al. Corrosion behaviour of intermetallic aluminide coatings on nitrogen-containing austenitic stainless steels. Corrosion Science, 2004, 46(12): 2867-2892.
    [32] Zhekova L, Rashev T. Feasibility study on developing high-nitrogen steels by refining in suspended state under high pressure. Metallurgist, 51(1-2): 90-96.
    [33] Sumita M, Hanawa T, Teoh S H. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-review. Materials Science and Engineering C, 2004, 24(6-8): 753-760.
    [34] Mudali U K, Shankar P, Ningshen S, et al. On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels. Corrosion Science, 2002, 44(10): 2183-2198.
    [35] Oh Y J, Hong J H. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels. Journal of Nuclear Materials, 2000, 278(2-3): 242-250.
    [36] Ridolfi M R, Tassa O. Formation of nitrogen bubbles during the solidification of 16-18% Cr high nitrogen austenitic stainless steels. Intermetallics, 2003, 11(11-12): 1335-1338.
    [37] Gavriljuk V G., Shanina B D, Berns H. Ab initio development of a high-strength corrosion-resistant austenitic steel. Acta Materialia, 2008, 56(18): 5071-5082.
    [38] Kaputkina L M, Prokoshkina V G. Martensitic transformations and martensite structure in thermomechanically strengthened high-nitrogen steels. Materials Science and Engineering A, 2006, 438-440: 228-232.
    [39] 唐伯钢,尹士科,王玉荣.低碳钢与低合金高强度钢焊接材料.北京:机械工业出版社,1987.
    [40] Lin Z, Tian Z L, Yun P, et al. Influence of nitrogen and heat Input on weld metal of gas tungsten arc welded high nitrogen steel. Journal of Iron and Steel Research, International, 2007, 14(5): 259-262.
    [41] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels. Science and Technology of Advanced Materials, 2004, 5(1-2): 231-240.
    [42] Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel. ISIJ International, 2002, 42(12): 1334-1343.
    [43] Harzenmoser M. Welding of high nitrogen steels. Materials and Manufacturing Processes, 2004, 19(1): 75-86.
    [44] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels. Science and Technology of Advanced Materials, 2004, 5 (1-2): 231-240.
    [45] (印度)U.卡曼奇.曼德里,(印度)R.贝德威著,李晶,黄远华译.高氮钢和不锈钢-生产、性能与应用.北京:化学工业出版社,2006.
    [46] (苏)卢兹金,(苏)雅沃依斯基著,胡瑞富译.钢中气体和钢的质量.北京:冶金工业出版社,1991.
    [47] Du Tiot M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel-Part1: Experimental observations. Welding Journal, 2003, 82(8): 219-224.
    [48] Du Tiot M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel-Part2: A kinetic model for nitrogen absorption and desorption. Welding Journal, 2003, 82(9): 231-237.
    [49] Palmer T A, Ebroy T D. Numerical modeling of enhanced nitrogen dissolution during gas tungsten arc welding. Metallurgical and Materials Transactions B, 2000, 31(10):1371-1385.
    [50] 冯灵芝,张智,张文钺.氧对焊缝金属吸氮机制的影响.天津大学学报,2001,7(1):48-51.
    [51] 孙珍宝,朱谱藩,林慧国,等.合金钢手册(上册).北京:冶金工业出版社,1984.
    [52] Sourmail T. Precipitation in creep resistant austenitic stainless steels. Materials Science and Technology, 2001, 17(1): 1-14.
    [53] Kallqvist J, Andren H O. Development of precipitate size and volume fraction of niobium carbonitrides in stabilised stainless steel. Materials Science and Technology, 2000, 16(10): 1181-1185.
    [54] Erneman J, Schwind M, Andren H O, Nilsson J O, et al. The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing. Acta Materialia, 2006, 54(1): 67-76.
    [55] Gotz G, Blum W. Influence of thermal history on precipitation of hardening phases in tempered martensite 10%Cr-steel X12CrMoWVNbN10-1-1. Materials Science and Engineering A, 2003, 348(1-2): 201-207.
    [56] 徐滨士,马世宁,刘世参,等.21世纪的再制造工程.中国机械工程,2000,11(1-2):36-39.
    [57] (美)John C Lippold,Damian J Kotecki著,陈剑虹译.不锈钢焊接冶金学及焊接性.北京:机械工业出版社,2008.
    [58] 王清宝,刘景凤,沈风刚.超低碳氮强化自保护药芯焊丝的研制及性能分析.焊接学报,2006,27(4):81-84.
    [59] 王清宝,刘景风,沈风刚.超低碳氮强化埋弧与自保护药芯焊丝堆焊层性能分析.焊接学报,2006,27(6):87-90.
    [60] Li D, Liao B, Liu L G, et al. Process stress simulation of medium-high carbon steel after hard-face-welding during martensite transformation. Computational Materials Science, 2008, 44(2): 280-285.
    [61] Kotecki D J, Ogborn J S. Abrasion resistance of iron-based hardfacing alloys. Welding Journal, 1995, 74(8): 269-278.
    [62] Berns H. Increasing the wear resistance of stainless steels. Mareraial-wissenschaft Und Werkstofftechunik, 2007, 38(6): 464-472.
    [63] Lee K Y, Lee S H, Kim Y, et al. The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys. Wear, 2003, 255(1-6): 481-488.
    [64] Tsai M C, Chiou C S, Du J S, et al. Phase transformation in AISI 410 stainless steel. Materials Science and Engineering A, 2002, 332(1-2): 1-10.
    [65] 田志凌,潘川,梁东图.药芯焊丝.北京:冶金工业出版社,1995.29-56.
    [66] Su Y L, Chen K Y. The influence of niobium, chromium, molybdenum and carbon on the sliding wear behavior of nickel-base hardfacing alloys. Wear, 1997, 209(1-2):160-170.
    [67] Allum C J. Nitrogen absorption from welding arcs. Welding Research Council Bulletin, 1991-1992, 369: 68-84.
    [68] Gonzalez J G, Torga G. Nitrogen in weld metal deposited by flux cored arc welding. Welding Research Council Bulletin, 1991-1992, 369: 98-112.
    [69] 夏明生,田志凌,彭云,等.高氮奥氏体不锈钢熔焊时电弧空间及熔池的氮行为.钢铁研究学报,2007,19(6):9-13.
    [70] 魏寿昆.冶金过程热力学.上海:上海科学技术出版社,1980.
    [71] Stevent S M. Nitrides in iron and steel. Welding Research Council Bulletin, 1991-1992, 369: 39-56.
    [72] Shankar V, Gill T P S, Mannan S L, et al. Effect of nitrogen addition on microstructure and fusion zone cracking in type 316L stainless steel weld metals. Materials Science and Engineering A, 2003, 343(2): 170-181.
    [73] Hertzman S. The influence of nitrogen on microstructure and properties of highly alloyed stainless steel welds. ISIJ International, 2001, 41(6): 580-589.
    [74] Bazaleeva K O. Mechanisms of the influence of nitrogen on the structure and properties of steels(a review). Metal Science and Heat Treatment, 2005, 47(9-10): 455-461.
    [75] 余圣甫.高强度低合金钢二氧化碳气体保护碱性药芯焊丝冶金过程研究:[博士学位论文].武汉:华中科技大学图书馆,1999.
    [76] Klimpel A, Sawicki G, Klimpel S T. The effect of exposed length of wire, current intensity and the rate of resurfacing on the process of arc overlaying with self-shielded wire. Welding International, 2006, 20(2): 89-94.
    [77] 张清辉,吴宪平,洪波.焊接材料研制理论与技术.北京:冶金工业出版社,2002.
    [78] 刘守平,孙善长.含氮钢吹氮合金化.重庆大学学报,2002,25(5):83-85.
    [79] 王宝.焊接电弧物理与焊条工艺设计.北京:机械工业出版社.1998.
    [80] 陈伯蠡.焊接冶金原理.北京:清华大学出版社,1991.
    [81] 余圣甫,李志远,石仲堃等.氟化物对碱性药芯焊丝焊接工艺性能的影响.焊接,2000,(12):30-33.
    [82] 张军,孙波.不锈钢烧结焊剂的研制.焊接,1996,(12):14-16.
    [83] Paniagua-Mercado A M, Estrada-Diaz P, Lopez-Hirata V M, et al. Chemical and structural characterization of the crystalline phases in agglomerated fluxes for submerged-arc welding. Journal of Materials Processing Technology, 2003, 141(1): 93-100.
    [84] 王凯.钒微合金化高强度低合金钢组织超细化与碳氮化物析出动力学研究:[博士学位论文].天津:天津大学图书馆,2003.
    [85] 陈茂爱,武传松,杨敏,等.Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律.金属学报,2004,40(2):148-154.
    [86] Zhang Y B, Ren D Y. Effect of strong carbide forming elements in hardfacing weld metal. Journal of University of Science and Technology Beijing, 2004, 11(1): 71-74.
    [87] 姜越.马氏体时效不锈钢合金化设计与组织性能.哈尔滨:哈尔滨工业大学出版社,2006.
    [88] 雍歧龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金.北京:机械工业出版社,1989.
    [89] Sourmail T. Precipitation in creep resistant austenitic stainless steels. Materials Science and Technology, 2001, 17(1): 1-14.
    [90] Erneman J, Schwind M, Andren HO, et al. The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing. Acta Materialia, 2006, 54(1): 67-76.
    [91] K(a|¨)llqvist J, Andr(?)n H O. Developmet of precipitate size and volume fraction of niobium carbonitrides in stabilized stainless steel. Materials science and technology, 2000, 16: 1181-1185.
    [92] Erneman J, Schwind M, Liu P, et al. Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic steel. Acta Materialia, 2004, 52(14): 4337-4350.
    [93] 刘宗昌,任慧平,宋义全.金属固态相变教程.北京:冶金工业出版社,2003.
    [94] 陈天佐,李泽高.金属堆焊技术.北京:机械工业出版社,1991.
    [95] 王国承,王铁明,尚德礼,等.超细第二相粒子强化钢铁材料的研究进展.钢铁研究学报,2007,19(6):5-8.
    [96] 赵沛,Gladman T.用第二相粒子细化HSLA钢晶粒.北京科技大学学报,1993,15(5):472-478.
    [97] Byun J S, Shim J H, Cho Y W, et al. Non-Metallic inclusion and intragranular nucleation of ferrite in Ti-Killed C-Mn steel. Acta Materialia, 2003, 51: 1593-1606.
    [98] 尹桂全,王世俊,黄贞益.低碳微合金Ti-Nb可焊钢中的N及其第二相粒子.焊接学报,2006,27(5):57-60.
    [99] Bang K S, Park C, Liu S. Effects of nitrogen content and weld cooling time on the simulated heat-affected zone toughness in a Ti-containing steel. Journal of Materals Science, 2006, 41(18): 5994-6000.
    [100] 曲朝霞.新一代钢铁材料焊接HAZ奥氏体晶粒长大规律的研究:[博士学位论文].天津:天津大学图书馆,2000.
    [101] 尹桂全,黄龙旺.微Ti钢焊接热循环过程中的第二相粒子.焊接学报,2000,21(4):50-53.
    [102] 徐祖耀.马氏体相变与马氏体.北京:科学出版社,1999.
    [103] Prokoshkina V, Kaputkina L. Peculiarities of martensitic transformations and martensite structure in high nitrogen steels. Materials Science and Engineering A, 2008, 481-482: 726-765.
    [104] Cheng L, Mittemeijer E J. The tempering of iron-nitrogen martensite; dilatometric and calorimetric analysis. Metallurgical Transactions A, 1990, 21(1): 13-26.
    [105] 隋鹤龙.新型高Cr热作模具钢的组织与性能:[博士学位论文].长春:吉林大 学图书馆,2006.
    [106] Liu H H, Wang J, Shen B L, et al. Influence of secondary carbide precipitation and transformation on abrasion resistance of a 3Crl5Mo1V1.5 white iron. Journal of University of Science and Technology Beijing, 2007, 14(3): 231-235.
    [107] Wang J, Sun Z P, Zuo R L, et al. Effects of secondary carbide precipitation and transformation on abrasion resistance of the 16Cr-1Mo-1Cu white iron. Journal of Materials Engineering and Performance, 2006, 15(3): 316-31.
    [108] Li S P, Feng D, Luo H L. Microstructure and abrasive wear performance of chromium carbide reinforced Ni3Al matrix composite coating. Surface and Coatings Technology, 2007, 201(8): 4542-4546.
    [109] Aksoy M, Yilmaz O, Korkut M H. The effect of strong carbide-forming elements on the adhesive wear resistance of ferritic stainless steel. Wear, 2001, 249(8): 639-646.
    [110] Sapate S G, Rama Rao A V. Effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Wear, 2004, 256(7-8): 774-786.
    [111] Lee K Y, Lee S H, Kim Y, et al. The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys. Wear, 2003, 255(1-3): 481-488.
    [112] Colaco R, Vilar R. A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear, 2003, 254(7-8): 625-634.
    [113] Ding W B, Jiang H Y, Zeng X Q, et al. The surface modified composite layer formation with boron carbide particles on magnesium alloy surfaces through pulse gas tungsten arc treatment. Applied Surface Science, 2007, 25(8): 3877-3883.
    [114] 俞德钢.铁基马氏体时效-回火转变理论及其强韧性.上海:上海交通大学出版社,2008.
    [115] 孟工龙,逯允龙,李丹.耐高温磨损堆焊焊条的研制.焊接,2005(4):27-32.
    [116] Stott F H, Jordan M P. The effects of load and substrate hardness on the development and maintenance of wear-protective layers during sliding at elevated temperatures. Wear, 2001, 250: 391-400.
    [117] Gunduz S, Acarer M. High-temperature tensile and wear behaviour of microalloyed medium carbon steel. Industrial Lubrication and Tribology, 2005, 57(4): 145-149.
    [118] Fontalvo G A, Mitterer C. The effect of oxide-forming alloying elements on the high temperature wear of a hot work steel. Wear, 2005, 258(10):1491-1499.
    [119] Kim C H, Lee S, Jung J Y, et al. Effects of complex carbide fraction on high-temperature wear properties of hardfacing alloys reinforced with complex carbides. Materials Science and Engineering A, 2003, 349(1-2):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700