用户名: 密码: 验证码:
大型支撑辊工作应力及堆焊层组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧辊是轧钢和有色金属轧制的一项重要的大型消耗工具。大型热轧支撑辊售价在百万以上。支撑辊长期在严酷环境中服役,由于磨损造成的支撑辊的辊身直径低于其使用下限,或者在其服役期间出现的剥落等损伤现象,支撑辊就会失去使用功能。如何采用新材料、新技术、新方法对已失去使用功能的大型支撑辊进行修复再制造,恢复使用功能,这是钢铁冶金企业非常关心、重视的课题。
     使用ANSYS模拟了支撑辊在工况下的受力状态,并用采力可夫公式和赫兹理论计算了轧制力、最大接触应力、最大剪应力等数据。计算得到的轧制力大小为5.799MN,使用ANSYS得到轧制力大小为5.33MN。根据赫兹原理得到的最大接触应力和最大剪应力分别为1031.7MPa和313MPa,最大剪应力的最大值距离轧辊表面6.26mm。根据ANSYS模拟的结果,接触应力的最大值为1158MPa,最大剪应力的最大值为348MPa,最大剪应力最大值出现的位置为距离表面5mm处,这与轧辊实际发生接触疲劳片状剥落的位置近似。这些研究为硬面层材料的制备提供了目标和方向。
     使用ANSYS模拟了轧辊堆焊修复过程中轧辊的温度场和应力场,模拟得到的焊接热循环曲线与熔池尺寸与实测数据非常吻合。残余拉应力的实测值比模拟值低,压应力比模拟值高,这是由于模拟未考虑焊后材料的相变应力。模拟结果表明环向应力对焊缝的影响大于横向应力,环向应力在焊后最初表现为压应力,冷却后由于塑变表现为拉应力,拉伸应力最大值出现在焊缝中心和焊趾附近,拉应力模拟最大值为1086MPa,实测值为805MPa。横向应力主要表现为压应力,模拟压应力最大值为531MPa,实测值为354MPa,因此残余应力主要为较大的环向拉伸应力。在不同预热温度下模拟残余应力场,结果表明未预热的焊后残余应力的最大值为1190MPa,300℃预热残余应力最大值为801MPa,400℃预热残余应力最大值为642MPa,500℃预热残余应力最大值为491MPa。可见焊前预热可以有效减小焊后残余应力。
     通过优化实验制备了两种埋弧焊用硬面药芯焊丝,考察了硬面层硬度在不同回火热处理温度下的高温稳定性,两组硬面合金的最佳热处理温度为480℃,且高合金钢配方硬面合金的硬度值高于马氏体不锈钢配方硬面合金。并分析了Ni和Mo对硬面层高温稳定性的影响,根据硬度测试结果并考虑制备药芯焊丝的经济性决定钼和镍的添加量均为4%。氮合金化使残余的奥氏体更加稳定并且尽量保留固溶的Cr,从而延迟了M23C6及M6C型析出物的析出,因此氮合金化硬面合金的二次硬化温度为520℃,高于碳合金化的480℃。经强碳氮化物形成元素Nb、V、Ti的合金化后,硬面层的硬度明显得到提高。研究强碳氮化合金元素在堆焊冶金反应过程中的析出特点,碳氮化物主要分为两种,第一类为尺寸较大的富Ti的碳氮化物,在焊缝凝固初期形成,碳氮化物生长时间较长。第二类为小尺寸圆形颗粒的碳氮化物,此类碳氮化物应是在低温凝固过程和回火热处理过程中析出的,由于此类碳氮化物析出后生长时间较短,新的析出相没有足够的时间依附其上,所以尺寸较小,析出温度在520℃以上。这些析出的小颗粒碳氮化物成为堆焊合金回火热处理过程中二次硬化的重要原因。
     高温磨损实验表明氮合金化可以提高硬面合金的高温耐磨性。高温磨损的主要失效形式为高温氧化皮的剥落和磨粒磨损两种形式。硬面合金组织主要由马氏体和残余奥氏体组成。氮合金化具有稳定奥氏体区的作用,残余奥氏体含量增加,使得碳氮合金化硬面合金的韧性比碳合金化硬面合金的韧性高。塑性较差的碳合金化基体会更容易产生疲劳裂纹并更容易使裂纹扩展,产生的裂纹会使基体连同其上的氧化膜一起剥落,使得硬面合金的磨损率提高。在高温环境中硬面合金基体表面析出的的较细小的碳氮化物可以降低磨粒磨损引起的磨损失效。
     研究了稀土Ce对硬面合金断裂韧性和磨粒磨损行为的影响。Nb和稀土氧化物可以细化组织,从而提高堆焊金属的硬度,硬面合金的组织主要包括板条马氏体,残余奥氏体和点状碳化物。添加稀土后,柱状晶晶粒得到细化而且碳化物在基体中的分布也更加均匀弥散。Nb的添加对提高堆焊金属的断裂韧性有一定的影响,但是效果不如稀土氧化物。稀土氧化物仅细化了组织,而且可以净化晶界,使碳化物球化,这些都为提高堆焊层的韧性做出了贡献。添加稀土氧化物后硬面合金的耐磨性得到提高。“犁”作用和显微切削是其主要的磨损机理。硬度的提高能减小由微观切削形成的划痕的深度。同时断裂韧性的提高能增加塑性变形的抗力,所以由“犁”作用形成的犁沟两侧和前部材料的剥落数量减少。所以添加稀土氧化物后硬面合金的耐磨性由此得到提高。
Roll is a large and important consumption tool for steel and nonferrous rolling. The selling price of large-scale backup roller for hot rolling is over one million RMB. Because the backup rollers are applied to severe conditions for long time, the decrease of roller diameter caused by abrasion and the spalling caused by high stress cycle are the main reason for the roller failure. How to repair the failure roller with the new material, new technology and new method is a big problem that ferrous metallurgy enterprises pay much attention.
     The stress state of backup roller during working was simulated by ANSYS. The rolling force (P), the maximal contact stress (σmax) and the maximal shear stress (τ45°) were also calculated with formula. The calculated value of the rolling force is5.799MN while the simulation value is5.33MN. According to the Hertz formula, the values of amax and τ45°respectively are1031.7MPa and313MPa, and the distance between the position of the maximal145°and the surface is6.26mm. According to the result calculated by ANSYS, the value of σmax and τ45°respectively are1158MPa and348MPa, and the distance between the position of the maximal145°and the surface is5mm, which agrees with the practice. These works provide purpose and direction for the preparation of hardfacing materials.
     The temperature field and stress field of roller during welding repairing process were simulated by ANSYS, and the welding thermal cycle curve and the pool size is quite consistent with the experiment data. The experiment data of residual tensile stress is bigger than the simulation value while the residual compressive stress is smaller than the simulation value. This is because the simulation process didn't consider the influence of transformation stress. The simulation results show that the influence of circumferential stress on the weld is greater than the transverse stress. The circumferential residual stress after welding appears as compressive stress in initial stage, and then changes to tensile stress because of plastic deformation, the maximal tensile stress appears at the middle of the weld and the weld toe, the value of simulation maximal tensile stress is1086MPa while the experiment data is805MPa. The transverse residual stress appears as compressive stress, the value of simulation maximal tensile stress is531MPa while the experiment data is354MPa, which means the main residual stress after welding appears as circumferential tensile stress. The residual stress field of roller after welding under different preheating temperature was simulated, and the results show that the maximal residual stress is1190MPa without preheating, the maximal residual stress is801MPa while preheating temperature is300℃, the maximal residual stress is642MPa while preheating temperature is400℃, the maximal residual stress is491MPa while preheating temperature is500℃. It is obvious that preheating processing before welding is an effective method to decrease the residual stress.
     Two kinds of hardfacing flux-cored wire were prepared through optimization experiment. The tempering stability of hardness for the hadfacing alloy under different tempering temperature was studied, and the result shows that the best heat treatment temperature is480℃. The hardness value of hadfacing alloy measured from the high Cr alloy steel series is better than the martensitic stainless series. The influence of Ni and Mo on the tempering stability of hardness alloy was studied. According to the result and economic evaluation, the optimum additive content of Ni and Mo are both4%. Nitrogen alloying make the retained austenite and the Cr dissolves in the base stock more stable, thus the precipitate time of M23C6and M6C is put off, so the secondary hardening temperature of Nitrogen alloying hardfacing alloy is520℃, which is higher than the480℃of carbon alloying hardfacing alloy. The strong carbonitride forming elements, such as Nb, V, and Ti, which added to the flux-cored wire can obviously improve the hardness of hardfacing alloy. Precipitation characteristic of strong carbonitride forming elements was studied, and it is shows that there are two kinds of carbonitride particle. First, these particles are Ti-rich carbonitride with large size, and these particles are formed in the initial stage of weld solidification, thus particles have enough time to grow. The second kind is small and round carbonitride, these particles are precipitated in the low temperature solidification process and the tempering process. Because the growth time of the second kind particles after precipitation is very shot, the new precipitated phase has not enough time to grow on its surface, thus the particle size is very small and the precipitation temperature is above520℃. These small size carbonitride particles are the main reason for the secondary hardening of hardfacing alloy during tempering process.
     The result of high temperature wear experiment shows that the nitrogen can improve the high temperature wear resistance. The main failure modes of high temperature wear include the spalling of high temperature oxide skin and abrasive wear. There are two main phases in the hardfacing alloys, lath martensite and the residual austenite. Nitrogen alloying make the retained austenite more stable, and the increase of retained austenite proportion is benefit to the toughness of Nitrogen alloying hardfacing alloy. The base of carbon alloying hardfacing alloy with poorer toughness is easier to generate endurance crack and the crack is easier to grow. The crack would cause the base and the oxidation film which is on the base flake off together, and finally cause more wear. The small size carbonitride particles precipitated on the surface of hadfacing alloy under high temperature could reduce the amount of wear caused by abrasive wear.
     Effect of rare earth Ce on the fracture toughness and abrasive wear behaviour of hardfacing alloy was studied. Nb and RE oxide could refine the microstructure, thus the hardness of hardfacing alloy could also be improved. The hardfacing alloys microstructure in this research were composed of lath martensite, residual austenite and dotted carbides. With the addition of RE oxide, the size of columnar crystal was refined and carbides were distributed more homogeneously in the matrix. The addition of Nb has a certain effect on improving the toughness of hardfacing alloy, but not as effective as RE oxide. The addition of RE oxide not only could refine the microstructure, but also could purify the grain boundary and spheroidize the carbide, and all of these could contribute to improving the toughness of deposit. The wear resistance of hardfacing alloys with RE oxide was improved. Micro-cutting and micro-ploughing are the main abrasive micro-mechanisms.The improvement of hardness can decrease the depth of groove caused by micro-cutting, meanwhile, the improvement of fracture toughness can increase the resistance to plastic deformation and scratch, so that the amount of spalling lips and prows caused by microplugging is decreased. Thus the wear resistance of hardfacing alloys is improved.
引文
[1]林剑东,何藩,李强.热轧支撑辊堆焊技术研究.焊接技术,2003,32(5):23-24.
    [2]A. Wang, P.F. Thomson, P.D. Hodgson. A study of pore closure and welding in hot rolling process. Journal of Materials Processing Technology.1996,60:95-102.
    [3]陈祺,管艳飞,米萍萍等.0520 mm 9Cr2Mo钢主动支承辊热处理工艺研究.热处理技术与装备,2010,31(2):42-44.
    [4]R.I. Carroll, J.H. Beynon. Rolling contact fatigue of white etching layer:Part 1 Crack morphology. Wear,2007,262:1253-1266.
    [5]张志军,刘治山.70Cr3 Mo锻钢支承辊断裂原因分析.金属热处理,2009,34(11):111-112.
    [6]李久慧,赖应无,张德臣.1780热连轧机轧辊的动力学分析.辽宁科技大学学报,2010,33(2):158-160
    [7]文庆明.轧钢机械.北京:化学工业出版社,2004.
    [8]H. Zhenga,X.N. Yeb, J.D. Li, et al. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel. Materials Science and Engineering A,2010,527:7407-7412.
    [9]Hamid Reza Bakhsheshi Rad, Ahmad Monshi, Mohd Hasbullah Idris, et al. Premature failure analysis of forged cold back-up roll in a continuous tandem mill. Materials and Design,2011,32:4376-4384.
    [10]朱红.中厚板大型锻钢支撑辊堆焊修复实践.轧钢,2008,25(3):66-68.
    [11]Rafael Colas, Jorge Ramirez, Ignacio Sandoval, et al. Damage in hot rolling work rolls. Wear,1999,230:56-60.
    [12]R.D. Mercado-Solis a, J. Talamantes-Silva,J.H. Beynon, et al. Modelling surface thermal damage to hot mill rolls. Wear,2007,263:1560-1567.
    [13]黄华贵,杜凤山,张芳,等.大型支承辊锻件内部夹杂性缺陷形成机理的FEM分析.中国机械工程,2009,20(4):477-480.
    [14]张勇勇,金晓宏,李金平,等.工作辊与支承辊接触面内应力分布探讨.冶金丛刊,2011,(2):1-5.
    [15]江志华,李志,佟小军,等.深氮化硬化钢的接触疲劳试验研究.航空材料学报,2006,26(3):303-304.
    [16]赵建国,孙大乐.辊系三维接触问题的有限元分析.机械制造.2009,47(540):16-18.
    [17]杜晗婷.堆焊轧辊失效分析:[硕士学位论文].武汉:武汉理工大学图书馆,2007.
    [18]董晓,王兆毅,隋晓红,等.70Cr3Mo精轧辊剥落原因探讨.鞍钢技术,1998,(5):4-9.
    [19]杜凤山,黄华贵,许志强.大型非均质轧辊辊间接触应力分布规律的研究.工程力学,2006,(23)7:176-179.
    [20]曹建国,王燕萍,孔宁,等.不锈钢热连轧机粗轧支持辊剥落影响因素的有限元分析.工程力学,2011,(28)4:194-199.
    [21]A.K. Raya, K.K. Mishrac, G Dasb. Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture. Engineering Failure Analysis,2000,7,55-67.
    [22]Hongchun Li, Zhengyi Jiang, Kiet A. Tieu,etal. Analysis of premature failure of work rolls in a cold strip plant. Wear.2007,263:1442-1446.
    [23]窦鹏,李友国,梁开明,等.CVC热轧机支承辊接触应力有限元分析.清华大学学报.2005,45(12):1668-1671
    [24]朱法义,姚枚.关于接触疲劳破坏分类的讨论.金属科学与工艺.1983,2(2):21-30
    [25]季世军,马茂元.片状剥落损伤的力学条件..齿轮,1991,15(3):37-40.
    [26]武传松,焊接热过程与熔池形态.北京:机械工业出版社,2007.
    [27]Kou S and D K. Fluid flow and weld penetration in stationary arc welds. Metall Trans A,1985,16(2):203-213.
    [28]杨庆祥,李艳丽,赵言辉,等.堆焊金属残余应力场的计算机模拟.焊接学报,2001,22(3):44-46.
    [29]Oreper G M, Szekely J, T.W.Eagar. The role of transient convection in the melting and solidification in arc weld pools. Metall Trans B,1986,17(12):735-744.
    [30]Zacharia T, David S, Westhoff R C. Modeling of interfacial phenomena in welding. Metall Trans B,1990,21(6):600-603.
    [31]Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal,1990,69(9):346s-361s.
    [32]李超,沈灿铎,赵继勋,等.焊接工艺对GMAW堆焊焊缝区温度场影响的数值模拟.装甲兵工程学院学报,2009,23(2):84-87.
    [33]董晓强,段宏艳.基于ANSYS的异种材料堆焊温度场动态模拟.沈阳工业大学学报,2008,30(5)551-554.
    [34]Wu C S, W.Zheng W, Wu L. Modeling the transient behavior of pulsed current tungsten-inert-gas weldpools. Modeling and Simulation in Materials Science and Engineering,1999,7:15-23.
    [35]Zhao P C,Wu C S, Zhang Y M. Numerical simulation of dynamic characteristics of weld pool geometry with step changes of welding parameters. Modeling and Simulation in Materials Science and Engineering,2004,12:765-780.
    [36]陈虎,巩建鸣,涂善东.典型封闭环焊缝多道焊焊接残余应力的模拟分析.焊接学报,2006,27(10):73-76.
    [37]杨庆祥,高军,李达,等.移去热源前后中高碳钢堆焊温度场和应力场的数值模拟.焊接学报,2006,27(5):52-56.
    [38]Tanaka M, Ushio M, Wu C S. One-dimensional analysis of the anode boundary layer in free-burning argon arcs. J.Phys.D:Appl.Phys.,1999,32(5):605-611.
    [39]Bose T K. One-dimensional analysis of the wall region for a mmultiple-temperature argon. Plasma Chem. Plasma Proc.,1990,10:189-206.
    [40]Zacharia T, Vitek J M, Goldak J A, et al. Modeling of fundamental phenomena in welds. Modeling and simulation in Materials Science and Engineering,1995,3:265-288.
    [41]Dowden J, Kapadia P. Plasma arc welding:a mathematical model of the arc. J.Phys D: Appl. Phys.,1994,27:911-913.
    [42]Choo R T C, Szekely J, Westhoff R C. On the Calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part I. modeling the welding arc. Metall Trans B,1992,23(12):357-369.
    [43]张光明,李志宏,彭显平.基于ANSYS APDL的堆焊热过程数值模拟.机械,2005,32(9):45-47.
    [44]莫春立,钱百年,国旭明,等.焊接热源计算模式的研究进展.焊接学报,2001,6:93-96.
    [45]李毅磊,白庆华,马跃进.基于ANSYS的堆焊过程应力场动态模拟.焊接技术,2010,39(8):13-15.
    [46]董洪刚,高洪明,吴林.固定电弧等离子弧焊焊接热传导的数值计算.焊接学报,2002,23:24-26.
    [47]孙俊生,武传松.等离子与钨极双面电弧焊接热过程的数值模拟.金属学报,2003,39(5):499-504
    [48]陶文铨.数值传热学[M].西安:西安交通大学出版社,1987.
    [49]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社,1985
    [50]Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation and stability in stationary laser welding. J.Phys.D:Appl.Phys.,2002,35:1570-1576.
    [51]梁晓燕,罗金华,杜汉斌,等.基于ANSYS平台焊接模拟中不同焊接热源的比较.2003,3(33):29-32.
    [52]吉巧杰.封闭焊缝焊接温度场和应力场的数值模拟:[硕士学位论文].武汉:华中科技大学,2007.
    [53]李毅磊,白庆华,马跃进.基于ANSYS的堆焊过程应力场动态模拟.焊接技术,2010,39(8):13-15.
    [54]华鹏,胡小建.采用SYSWELD对平板堆焊温度场的有限元分析.现代焊接,2008,(1)28-29.
    [55]杨庆祥,蔡大勇,姚枚.中高碳钢试样堆焊冷却过程应力场数值模拟.焊接,2003,(6):9-13.
    [56]杨庆祥,高军,李达,等.移去热源前后中高碳钢堆焊温度场和应力场的数值模拟.焊接学报,2006,27(5):52-56.
    [57]石宝山,何宽芳,何和智.埋弧平板堆焊温度场的三维动态模拟.焊接技术,2009,38(3):13-15.
    [58]黄智泉,魏建军,潘健.堆焊用药芯焊丝的发展及其应用前景.机械工人,2004,(8):38-44.
    [59]Q.Y. Hou, Z.Y. Huang, N. Shi, J.S. Gao. Effects of molybdenum on the microstructure and wearresistance of nickel-based hardfacing alloys investigated using Rietveld method. Journal of materials processing technology, 2009,209:2767-2772.
    [60]H. BERNS, A. FISCHER. Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb, Ti and, B. METALLOGRAPHY,1987,20:401-429.
    [61]Xinhong Wang, Fang Han, Xuemei Liu, et al. Microstructure and wear properties of the Fe-Ti-V-Mo-C hardfacing alloy. Wear,2008,265:583-589.
    [62]John J.Coronado, HolmanF.Caicedo, AdolfoL.Go'mez. The effects of welding processes on abrasive wear resistance for hardfacing deposits. Tribology International.2009,42:745-749.
    [63]M. KirchgaBner, E. Badisch, F. Franek. Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear,2008,265:772-779.
    [64]Chang Kyu Kim, Sunghak Lee, Jae-Young Jung, et al. Effects of complex carbide fraction on high-temperature wear properties of hardfacing alloys reinforced with complex carbides. Materials Science and Engineering A,2003,349:1-11.
    [65]M.F. Buchely, J.C. Gutierrez, L.M. Le'on, et al. The effect of microstructure on abrasive wear of hardfacing alloys. Wear,2005,259:52-61.
    [66]WANG Xin-hong, ZOU Zeng-da, QU Shi-yao, et al. Microstructure of Fe-Based Alloy Hardfacing Reinforced by Tic-VC Particles. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL,2006,13(4):51-55.
    [67]周永强,李午申,冯灵芝.超高硬度堆焊材料强韧化分析.天津大学学报,2004,(7)37:575-579.
    [68]王宝森.超高硬度耐磨抗裂堆焊材料的强韧化研究:[博士学位论文].天津:天津大学,2003.
    [69]Li Da, Yang Yulin, Liu Ligang, Zhang Jiazhen. Effects of RE oxide on the microstructure of hardfacing metal of the large gear. Materials Science and Engineering A,2009,509 (1-2):94.
    [70]Yang Ke, Yu Shengfu, Li Yingbin, Li Chenglin. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy. Applied Surface Science,2008,254(16):5023.
    [71]杨可,余圣甫,陶潘峰,等.硬面合金中碳氮析出物的研究.郑州大学学报(工学版).2009,30(1):57-60
    [72]杨可,余圣甫,李迎斌,等.新型碳氮合金化自保护硬面药芯焊丝.华中科技大学学报,2008,36(7):112-115.
    [73]Yang Ke, Yu Shengfu, Deng yu, et al. Mierostructure and wear property of hardfacing alloy with nitrogen strengthening. China welding,2009,18(3):51-54.
    [74]杨可,余圣甫,李延娜,等.自保护硬面药芯焊丝药芯成分对焊接飞溅的影响.机械工程材料,2007,31(6):19-21.
    [75]龚曙光.ANSYS工程应用实例分析.北京:机械工业出版社,2003.
    [76]张波,盛太和.ANSYS有限元数值分析原理与工程应用.北京:清华大学出版社,2005.
    [77]D.拉达伊著,熊第京,郑朝云,史耀武译.焊接热效应温度场、残余应力、变形.北京:机械工业出版社,1997.
    [78]齐俊杰,黄运华,张跃等.微合金化钢.北京:冶金工业出版社,2006.
    [79]王福明,黄正琨,郭笑傲等.铈对重轨钢中珠光体相变及组织的影响.中国稀土学报,2000,(3):239-242.
    [80]马耀东,刘景凤,沈风刚等.大型热轧支撑辊堆焊修复制造技术.第十一次全国焊接会议论文集.
    [81]上海第八钢铁厂.钢轧辊自动埋弧堆焊.北京:冶金工业出版社,1986.
    [82]Hen-rik Sieurin,Rolf Sandstrom.Austenite reformation in the heat-affected zone of duplex stainless steel 2205.Materials Science and Engineering A.2006,418, 250-256.
    [83]程久欢,陈俐,于有生.焊接热源模型的研究进展.焊接技术,2004,33(1):11-13.
    [84]吴祥兴,胡伦骥,杜汉斌等.ANSYS在激光焊接温度场数值模拟中的应用.电焊机,2002,32(9):1—3.
    [85]Dowden J, Davis M, Kapadia P. Molten-region Temperature Distribution in Laser Welding.J.Phys,D:Appl.Phys.1985,18(9-10):1987-1993.
    [86]Chande T, Mazumder J. Estimating Effects of Processing Conditions and Variable Properties upon Pool Shape. Cooling Rates and Absorption Coefficient in Laser Welding. Appl.Phys.l984,56(7):1981-1986.
    [87]张文钺.焊接冶金学.北京:机械工业出版社,1993.
    [88]U.卡曼奇.曼德里.高氮钢和不锈钢——生产、性能与应用.北京:化学工业出版社,2006.
    [89]陈康敏,王树奇,杨子润等.钢的高温氧化磨损及氧化物膜的研究.摩擦学学报.2008,28(5):475-479.
    [90]赵学增,邢建东,周庆德.碳对Fe-Cr-Mn合金高温氧化及磨损的影响.金属学报.1992,29(6):253-258.
    [91]杨可,余圣甫,杨华.氮合金化堆焊硬面合金组织与耐高温磨损性能.焊接学报,2011,32(1):5-8.
    [92]Soner Buytoz. Microstructural properties of SiC based hardfacing on low alloy steel. Surface& Coatings Technology,2006,200:3734-3742.
    [93]S. Chatterjee, T.K. Pal. Weld procedural effect on the performance of iron basedhardfacing deposits on cast iron substrate. Journal of Materials Processing Technology.2006,173:61-69.
    [94]Yu Shengfu, Jiao Guishan, Xie Mingli, Wang Ning. New type of hardfacing flux cored wire for open arc welding. J. Huazhong Univ. of Sci. & Tech,2004,32(7):18.
    [95]X.J.Ren, R.D.James, E.J.Brookes, et al. Machining of high chromium hardfacing materials. Journal of Materials Processing Technology.2001,115:423-429.
    [96]刘晓,杨吉春,高学中.稀土对2Crl3不锈钢夹杂物的变质及对冲击韧性的影响.北京科技大学学报.2010,,32(5):605-609.
    [97]Hao Feifei, Li Da, Dan Ting, Ren Xuejun, Liao Bo,Yang Qingxiang. Effect of rare earth oxides on the morphology of carbides in hardfacing metal of high chromium cast iron. Journal of Rare Earths,2011,29(2):168.
    [98]Yang Qingxiang, Zhao Yakun, Liao Bo, Yao Mei. Rare-earth high-chromium cast iron carbide morphology and kinetics of phase transformation. Journal of Rare Earths, 1998,16(2):166.
    [99]Yang Qingxiang, Liao Bo, Liu Jianhua, Yao Mei. Effect of rare earth elements on carbide morphology and phase transformation dynamics of high Ni-Cr alloy cast iron. Journal of Rare Earths,1998,16(1):36.
    [100]Xie Jingpei, Wang Aiqin, Wang Wenyan, Li Jiwen, Li Luoli. Effects of rare earths on toughness of 31Mn2SiRE wear-resistance cast steel. Journal of Rare Earths, 2006,24(7):401.
    [101]Hao Feifei, Liao Bo, Li Da, Liu Ligang, Dan Ting,Ren Xuejun, Yang Qingxiang. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism. Journal of Rare Earths,2011,29(6):609.
    [102]Tian Linhai, Zhu Xiaodong, Tang Bin, Pan Junde, He Jiawen. Fracture Toughness and Repeated Impact Fatigue Properties of Cr-N Hard Coatings. Rare Metal Materials and Engineering,2010,39(Suppl 1):35.
    [103]Sun Jiashu, Wear of Metals. Beijing:Metallurgical Industry Press,1992.381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700