用户名: 密码: 验证码:
肿瘤血管生成的MR分子成像与纳米氧化铁的生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在肿瘤血管生成过程中,活化血管内皮细胞整合素表达明显上调。精氨酸-甘氨酸-天冬氨酸(RGD)三肽序列能够特异性识别整合素α_vβ_3,构建含RGD肽的高特异性MR探针对肿瘤血管生成进行分子成像,可以达到早期诊断,评估治疗效果及预测预后的目的。本项研究制备了RGD肽标记的以聚乳酸(PLA)为包被材料的超小超顺磁性氧化铁(USPIO)(以RGD-PLA-USPIO指代),并在体外和体内实验中考察了其检测肿瘤血管生成的能力。此外,本研究探讨了柠檬酸和右旋糖酐包被的磁性纳米粒子标记脐静脉血管内皮细胞(HUVECs)后,对其增殖、迁移、侵袭、分化等生物学行为的影响。具体研究内容主要包括以下四个部分:
     第一部分采用改良共沉淀法(乙醇水溶液为溶剂的超声共沉淀法)制备PLA-USPIO,以透射电镜(TEM)和傅里叶变换红外光谱(FTIR)表征,显示经PLA包覆的USPIO呈球形结构,且表面富有羧基,为进一步偶联配体或其他靶分子提供了条件。PLA-USPIO具有较好的弛豫效能,在T_2和T_2*图像可以呈现明显的信号改变。将PLA-USPIO静脉注射后,可以有效的减少网状巨噬细胞系统(RES)对USPIO的摄取,延长在血液循环中停留的时间。通过计算USPIO注射前后T_2*和T_2弛豫时间改变,发现T_2*WI和T_2*值的测量对USPIO引起的磁场不均一更为敏感。
     第二部分将RGD与PLA-USPIO经crosslink反应偶联制备RGD-PLA-USPIO探针。RGD-PLA-USPIO与B16F10、SPC-Al和HUVECs的结合实验证明,探针与整合素特异性结合的能力,并且其结合的多少与细胞表达整合素水平高低相关。透射电镜结果进一步证实了细胞内纳米氧化铁颗粒的存在。RGD-PLA-USPIO与HUVECs孵育后行MR扫描显示浓度相关性T2WI信号降低,提示RGD-PLA-USPIO作为对比剂所构建的MR探针具有应用于MR成像的可能性。
     第三部分Vx-2肿瘤恶性度高,病理组织学证实肿瘤内小血管α_vβ_3整合素表达强阳性,是研究肿瘤血管生成的理想模型。将体外实验验证后的RGD-PLA-USPIO探针在VX-2肿瘤进行活体成像,以PLA-USPIO作为对照,结果表明RGD-PLA-USPIO可特异性降低VX-2肿瘤组织T_2*WI和T_2WI信号强度,在肿瘤周边富血管区域呈点片状信号降低。注射RGD-PLA-USPIO前后的T_2和T_2*弛豫时间变化量与PLA-USPIO相比有明显差异,且以T_2*值的变化更为敏感。普鲁士蓝染色证明肿瘤血管内皮细胞见蓝色铁颗粒存在,病理学结果与MR图像得到相互印证。以上结果提示RGD-PLA-USPIO有望成为针对肿瘤血管生成的特异性MR探针。
     第四部分在细胞水平研究了柠檬酸和右旋糖酐包被的氧化铁纳米粒子对HUVEC细胞增殖、迁移、侵袭、分化能力的影响,观察了细胞骨架结构的改变。结果显示两种不同包被包被材料的氧化铁纳米粒子均可以抑制HUVECs增殖、迁移和侵袭,这种抑制能力呈浓度依赖性,且柠檬酸包被的氧化铁纳米粒子较右旋糖酐包被的氧化铁纳米粒子具有更高的细胞毒性。氧化铁纳米粒子可以显著遏制内皮细胞分化成管腔样结构的能力,在荧光显微镜下观察发现细胞骨架重新分布,粘着斑形成减少,细胞粘附能力减弱。由于细胞的粘附是贴壁细胞存活、生长、迁移、侵袭、分化等其他一切细胞生物活动的基础,经氧化铁纳米粒子处理后细胞出现的去粘附造成了其增殖、迁移、侵袭、分化能力的障碍。这种障碍很可能与铁催化的自由基损伤反应相关。
     总结以上实验,本研究成功构建以整合素α_vβ_3为分子靶的特异性MR探针RGD-PLA-USPIO,结果表明RGD-PLA-USPIO可以有效在MR图像上显示活化肿瘤血管内皮整合素α_vβ_3的表达。HUVECs与柠檬酸或右旋糖酐包被的氧化铁纳米粒子孵育后,细胞的增殖、迁移、侵袭和分化能力等均受到不同程度的抑制。
Integrin is often significantly up-regulated in activated endothelial cells during tumor angiogenesis. The arginine-glycine-aspartic acid (RGD) peptide sequence is a specific recognition motif toαvβ3 integrin. Development of RGD peptide labeled, high specific MR probe for molecular imaging of tumor angiogenesis is capable to facilitate early dectection and may help monitor tumor vascular change during anti-angiogenesis therapy. In this study, a RGD labeled, Poly lactic acid (PLA) coated ultrasmall paramagnetic iron oxide (USPIO) (referred to as RGD-PLA-USPIO) were developed and the ability to detect tumor angiogenesis was investigated in vitro and in vivo. Pronounced signal decrease in T2*-weighted magnetic resonance image (MRI) and heterogeneous arrangement of neovasculature of tumor tissue were clearly identified in Vx-2 tumor model. The results demonstrate the efficiency of RGD-PLA-USPIO to visualizeαvβ3 integrin in activated tumor endothelial cells. In addition, the influence of dextran and citric acid coated IONPs on the behavior and function of human umbilical vein endothelial cells'(HUVECs) was discussed in concerned of viability, cytoskeleton, migration/invasion and differentiation. The thesis consists of four major sections.
     ⅠPLA-USPIO were prepared in situ by a modified co-precipitation method by sonification in Ethanol-Water solution. Spherical particle shape was determined by TEM and FTIR showed plenty of carboxyl groups on the surface of PLA-USPIO for better binding or conjugation with specific ligands. PLA-USPIO prolonged circulation time through decreased uptake by RES. Furthermore, PLA-USPIO generated significant signal reduction in T2WI and T2*WI and T2* relaxation time measurement was more sensitive to the magnetic field inhomogeneity induced by USPIO.
     II RGD-PLA-USPIO was prepared by crosslink reaction. The specific affinity of RGD-PLA-USPIO to integrin was identified by B16F10, SPC-Aland HUVECs binding tests and it was indicated that binding capacity was dependent with the level of integrin in cells. TEM confirmed the existence of RGD-PLA-USPIO in cytoplasm. MR scan of HUVECs incubated with RGD-PLA-USPIO exhibited a dose-dependent signal decrease in T2WI, which facilitated the utility of RGD-PLA-USPIO as a MR probe.
     III Vx-2 adenocarcinoma is highly malignant and is considered to be an ideal tumor model with significant integrin expressed in tumor endothelial cells. Compared with PLA-USPIO injection, Vx-2 tumor rabbits receiving RGD-PLA-USPIO revealed a marked decrease in T2*WI and T2WI, although not exclusively, asymmetrically located along the tumor periphery. The signal decease was typically seen in a patchy distribution adjacent to blood vessels and along the lateral tumor border as small spots. The T2 and T2* relaxation times of tumor accordingly decreased with the signal change in images and T2* relaxation time was more sensitive due to a susceptibility effect. Prussian blue stain of the Vx-2 tumor visualized blue granule in tumor endothelium and corroborated angiogenesis observed with MR images. Generally, RGD-PLA-USPIO hold promise to be uitilized as novel MR probe for in vivo detection of tumor angiogenesis.
     IV The biological effects of citrate and dextran coated IONP on HUVECs were investigated in terms of cell proliferation, cytoskeleton, migration/invasion and differentiation. Cell proliferation, migration and invasion were inhibited in a dose dependent manner and citrate-IONP had more toxic effects than dextran-IONP. The capacity of HUVECs to form vascular network on Matrigel diminished after exposure to IONPs. Cytoskeletal structures were greatly disrupted, as evidenced by diminished vinculin spots, and disorganized actin fiber and tubulin networks. Cell attachment is necessary to mediate the survival of anchorage-dependent cells and critical for efficient cell growth, migration, invasion and differentiation. The detachment after exposure to IONPs induced the dysfunction of HUVECs and the iron catalyzed free radical damage might attribute to it.
     In general, we have reported the development of RGD-PLA-USPIO as anαvβ3 integrin targeted MR probe and the results demonstrate RGD-PLA-USPIO can efficiently visiualize the expression ofαvβ3 integrin on tumor vascularature. Additionally, HUVECs proliferation, migration/invasion and differentiation is greatly inhibited after incubation with citrate and dextran-coated iron oxide nanoparticles.
引文
[1]FOLKMAN J. Tumor angiogenesis:therapeutic implications [J]. New Engl. J. Med,1971,285(21):1182-1186.
    [2]FUKUMURA D, JAIN R K. Imaging angiogenesis and the microenvironment[J]. APMIS,2008,116(7-8):695-715.
    [3]FOLKMAN J. Tumor angiogenesis. Adv Cancer Res,1974,19(0):331-358.
    [4]FIDLER I J, ELLIS L M. The implications of angiogenesis for the biology and therapy of cancer metastasis [J]. Cell,1994,79(2):185-188.
    [5]FOLKMAN J.The vascularization of tumors[J]. Sci Am,1976,234(5):70-73.
    [6]BROOKS P C. Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev,1996,15(2):187-194.
    [7]COSSE J P, MICHIELS C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression[J]. Anticancer Agents Med Chem,2008,8(7):790-797.
    [8]ZUMSTEG A, CHRISTOFORI G Corrupt policemen:inflammatory cells promote tumor angiogenesis[J]. Curr Opin Oncol,2009,21(1):60-70.
    [9]GRIMM D, BAUER J, SCHOENBERGER J. Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases[J]. Curr Vasc Pharmacol,2009,7(3):347-357.
    [10]FURUYA M, YONEMITSU Y, AOKI I. Angiogenesis:complexity of tumor vasculature and microenvironment[J]. Curr Pharm Des,2009,15(16): 1854-1867.
    [11]JAIN R K, DUDA D G WILLETT C G, et al. Biomarkers of response and resistance to antiangiogenic therapy [J]. Nat Rev Clin Oncol,2009,6(6):327-338.
    [12]PLEGUEZUELO M, MARELLI L, MISSERI M, et al. TACE versus TAE as therapy for hepatocellular carcinoma[J]. Expert Rev Anticancer Ther, 2008,8(10):1623-1641.
    [13]LAIGLE-DONADEY F, DOZ F, DELATTRE J Y. Brainstem gliomas in children and adults[J]. Curr Opin Oncol,2008,20(6):662-627.
    [14]BENSON J R, JATOI I, KEISCH M, et al. Early breast cancer[J]. Lancet,2009,373(9673):1463-1479.
    [15]O'DAY K, GORLICK R. Novel therapeutic agents for osteosarcoma[J]. Expert Rev Anticancer Ther,2009,9(4):511-523
    [16]BAETEN C I,HILLEN F, PAUWELS P, et al. Prognostic role of vasculogenic mimicry in colorectal cancer[J]. Dis Colon Rectum,2009,52(12):2028-2035.
    [17]MANIOTIS A J, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenicmimicry[J]. Am J Pathol,1999,155(3):7392-7521.
    [18].FOLBERG R, MANIOTIS A J. Vasculogenic mimicry [J]. APMIS;2004,112(7-8):5082-5251.
    [19]SUN B, ZHANG S, ZHAO X, et al. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas[J]. Int J Oncol,2004,25(6):1609-1614.
    [20]GEIGER T R, PEEPER D S. Metastasis mechanisms [J]. Biochim Biophy s Acta, 2009,796(2):293-308.
    [21]MAZZOCCA A, CARLONI V. The metastatic process:methodological advances and pharmacological challenges [J]. Curr Med Chem,2009;16(14):1704-1717.
    [22]ZHANG W, CHU Y Q, YE Z Y, et al. Expression of hepatocyte growth factor and basic fibroblast growth factor as prognostic indicators in gastric cancer [J]. Anat Rec (Hoboken),2009,292(8):1114-1121.
    [23]张敏鸣,周华,邹煜,等.肺癌肿瘤血管生成CT及MR灌注成像研究[J].放射 学实践,2005,20(4):286-290.
    [24]XIAO T, TAKAGI J, COLLER B S, et al. Structural basis for allostery in integrins and binding to fibrino gen-mimetic therapeutics [J]. Nature, 2004,432(7013):59-67.
    [25]HYNES R 0. Integrins:versatility, modulation, and signaling in cell adhesion Cell[J].1992,69(1):11-25.
    [26]HUMPHRIES M J. Integrin structure[J]. Biochem Soc Trans,2000, 28(4):311-339.
    [27]HORTON M A. Arg-gly-Asp (RGD) peptides and peptidomimetics as therapeutics:relevance for renal diseases[J]. Exp Nephrol,1999,7(2):178-184.
    [28]RUOSLAHTI E. RGD and other recognition sequences for integrins[J]. Annu Rev Cell Dev Biol,1996,12:697-715.
    [29]BLOCH W, FORSBERG E, LENTINI S, et al. Beta 1 integrin is essential for teratoma growth and angiogenesis[J]. J Cell Biol,1997,139(1):26:5-278.
    [30]COOK S J, AZIZ N, MC MAHON M, et al. The repertoire of fos and jun protein expressed during the G1 phase of the cell cycle is determined by the duration of the mitogen-actived protein kinase activation [J]. Mol Cell Biol,1999,19(1):330-341.
    [31]PIERSCHBACHER M D, RUOLSLAHTI E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of.the molecule[J]. Nature,1984,309(5963):30-33.
    [32]HAYMAN E G, PIERSCHBACHER M D, RUOSLAHTI E. Detachment of cells from culture substrate by soluble fibronectin peptide[J]. J Cell Biol,1985,100(6):1948-1954.
    [33]AUMAILLEY M, GURRATH M, MULLER G, et al. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1[J]. FEBS Lett,1991,291(1):50-54.
    [34]BROOKS P C, CLARK R A, CHERESH D A. Requirement of vascular integrin alpha v beta 3 for angiogenesis[J]. Science,1994,264 (5158):569-571.
    [35]BROOKS P C, MONTGOMERY A M, ROSENFELD M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels[J]. Cell,1994,79(7):1157-1164.
    [36]HAUBNER R, GRATIAS R, DIEFENBACH B, et al. Cyclic RGD Peptides Containing β-Turn Mimetics[J]. J Am Chem Soc,1996,118(34):7881-7891.
    [37]STOLLMAN T H, RUERS T J, OYEN W J, et al. New targeted probes for radioimaging of angiogenesis [J]. Methods,2009,48(2):188-192.
    [38]PARK K, KIM Y S, LEE G Y, et al. Tumor endothelial cell targeted cyclic RGD-modified heparin derivative:inhibition of angiogenesis and tumor growth[J]. Pharm Res,2008,25(12):2786-2798.
    [39]PADHANI A R. Challenges for imaging angiogenesis [J]. Br J Radiol,2001, 74(886):886-890.
    [40]WEISSLEDER R. Molecular imaging:exploring the next frontier[J]. Radiology,1999,212(3):609-614
    [41]HERSCHMAN H R. Molecular imaging:looking at problems, seeing solutions[J].Science,2003,302(5645):605-608.
    [42]BROOKS P C, MONTGOMERY A M, ROSENFELD M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels[J].Cell,1994,79(7):1157-1164.
    [43]KANG H W, JOSEPHSON L, PETROVSKY A, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture[J]. Bioconjug Chem,2002,13(1):122-127.
    [44]DAVIS S, ALDRICH T H, JONES P F, et al. Isolation of angiopoietin-l,a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell,1996,87(7):1161-1169.
    [45]CHEN X, PARK R, SHAHINIAN A H, et al. Pharmacokinetics and tumor retention of 125 I-labeled RGD peptide are improved by PEGylation[J]. Nucl Med Biol,2004,31(1):11-19.
    [46]ANDERSON S A, RADER R K, WESTLIN W F, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles[J]. Magn Reson Med,2000,44(3):433-439..
    [47]CHEN X, PARK R, TOHME M, et al. MicroPET and Autoradiographic Imaging of Breast Cancer alpha v-Integrin Expression Using 18F and 64Cu-Labeled RGD Peptide[J]. Bioconjug Chem;2004,15(1):41-49.
    [48]HAUBNER R, WESTER H J, REUNING U, et al. Radiolabeled alpha (v) beta3 integrin antagonists:a new class of tracers for tumor targeting [J]. J NuclMed,1999,40(6):1061-1071.
    [49]HAUBNER R, WESTER H J, MANG C, et al. Non-invasive imaging of alpha v beta 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography [J]. Cancer Research.2001,61(5):1781-1785.
    [50]ANDERSON S A, RADER R K, WESTLIN W F, et al. Magnetic resonance contrast enhancement of neovasculature with alpha (v) beta (3) targeted nanoparticles. Magn Reson Med,2000,44(3):4332-4439.
    [51]JAYSON G C, ZWEIT J, JACKSON A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody:implications for trial design of antiangiogenic antibodies[J]. J Natl Cancer Inst;2002,94(19):1484-1493.
    [52]PHELPS M E. Positron emission tomography provides molecular imaging of biological processes[J]. PNAS,2000,97(16):9226-9233.
    [53]WEISSLEDER R. Molecular imaging in cancer[J]. Science 2006,312 (5777):1168-1171.
    [54]COLLINGRIDGE D R, CARROLL VA, GLASER M, et al. The development of [(124)1] iodinated-VG76e:a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography[J]. Cancer Res,2002,62(20):5912-5919.
    [55]SIPKINS D A, CHERESH D A, KAZEMI M R, et al. Detection of tumor angiogenesis in vivo by alpha v beta 3 targeted magnetic resonance imaging[J]. NatMed,1998,4:623-626.
    [56]RAO J, ANDRASI A R, YAO H. Fluorescence imaging in vivo:recent advances[J]. Current Opinion in Biotechnology.2007,18(1):17-25.
    [57]SUZUKI R, TAKIZAWA T, NEGISHI Y, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles [J]. Journal of Controlled Release,2008,125(2):137-144.
    [58]LI K C. BEDNARSKI M D. Vascular-targeted molecular imaging using functionalized polymerized vesicles[J]. J Magn Reson Imaging,2002.16(4): 388-393.
    [59]WINTER P M, CARUTHERS S D, KASSNER A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging[J]. Cancer Res,2003, 63(18):5838-5843.
    [60]ZHANG C,JUGOLD M, WOENNE E C. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner[J]. Cancer Res,2007,67(4):1555-1562.
    [61]MATUSZEWSKI L, PERSIGEHL T, WALL A, et al. Cell tagging with clinically approved iron oxides:feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency [J]. Radiology,2005,235(1):155-161.
    [62]MOFFAT B A, REDDY G R, MCCONVILLE P, et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI[J]. Mol Imaging.2003,2(4):324-332.
    [63]MOLDAY R S, MACKENZIE D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells[J]. J Immunol Methods,1982,52(3):353-367.
    [64]MOORE A, BASILION J P, CHIOCCA E A, et al. Measuring transferrin receptor gene expression by NMR imaging[J]. Biochim Biophys Acta, 1998,1402(3):239-249.
    [65]MOORE A, MARECOS E, BOGDANOV A, et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model[J]. Radiology,2000,214:568-574.
    [66]KARLSSON H L, GUSTAFSSON J, CRONHOLM P, et al. Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size[J].Toxicol Lett,2009,188(2):112-118.
    [67]ARBAB A S, BASHAW L A, MILLER B R, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging[J]. Radiology,2003,229(3):838-846.
    [68]TAN C J, TONG Y W. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media[J]. Anal Chem,2007,79(1):299-306.
    [69]JEON B S, CHO E J, YANG H M, et al. Controlled aggregates of magnetite nanoparticles for highly sensitive MR contrast agent[J]. J Nanosci Nanotechnol,2009,9(12):7118-7122.
    [70]LIU S, WEI X, CHU M, et al. Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups[J]. Colloids Surf B Biointerfaces,2006,51(2):101-106.
    [71]JOSEPHSON L, LEWIS J, JACOBS P, et al. The effects of iron oxides on proton relaxivity[J]. Magnetic Resonance Imaging,1988,6(6):647-653.
    [72]WEISSLEDER R, LEE A S,KHA W B A, et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct:MR antibody imaging[J]. Radiology,1992,182(2):381-385.
    [73]WANG Q, SNYDER S, KIM J, et al. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction:synthesis, characterization, and reactivity [J]. Environ Sci Technol,2009,43(9):3292-3299.
    [74]TEO B M, CHEN F, HATTON T A, et al. Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation[J]. Langmuir,2009,25(5):2593-2595.
    [75]姜艳霞,陈卫,廖宏刚.钯纳米粒子及其团聚体特殊红外性能的CO分子探针红外光谱[J].科学通报,2004,49(14):1363-1367.
    [76]MATUANA L M. Solid state microcellular foamed poly(lactic acid): morphology and property characterization[J]. Bioresour Technol,2008,99(9):3643-3650.
    [77]刘铁根,张凡,孟卓.纳米粒子大小及其分布检测方法的研究现状与发展[J].光学技术,2005,31(1):96-100.
    [78]杨粉荣,文洪杰,钟勤.几种粒度测定方法的比较[J].物理测试,,2005,23(5):36-39.
    [79]吴立敏,王晓艳.纳米、亚微米颗粒粒度的测量-光子相关光谱法[J].上海计量测试,2003,30(3):15-18.
    [80]SUN R, DITTRICH J, LE-HUU M, et al. Physical and biological characterization of superparamagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells:a comparison[J]. Invest Radiol,2005,40(8):504-513.
    [81]OUDKERK M, VANDENHEUVEL A G, WIELOPOLSKI P A, et al. Hepatic lesions:detection with ferumoxide enhanced Tlweighted MR imaging[J]. Radiology,1997,203(2):449-456.
    [82]RAYNAL I, PRIGENT P, PEYRAMAURE S, et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles:mechanisms and comparison of ferumoxides and ferumoxtran[J]. Invest Radiol,2004,39(1):56-63.
    [83]O'BRIEN A M, O'FAGAIN C, NIELSEN P F, et al. Location of crosslinks in chemically stabilized horseradish peroxidase:implications for design of crosslinks[J]. Biotechnol Bioeng,2001,76(4):277-284.
    [84]LIU S. Radiolabeled cyclic RGD peptides as integrin alpha(v) beta(3)-targeted radiotracers:maximizing binding affinity via bivalency[J]. Bioconjug Chem,2009,20(12):2199-2213.
    [85]BLAHETA RA, POWERSKI M, HUDAK L, et al. Tumor-endothelium cross talk blocks recruitment of neutrophils to endothelial cells:a novel mechanism of endothelial cell anergy[J]. Neoplasia,2009,11(10):1054-1063.
    [86]KANG I C, KIM D S, JANG Y, et al. Suppressive mechanism of salmosin, a novel disintegrin in B16 melanoma cell metastasis [J]. Biochem Biophys Res Commun,2000,275(1):169-173.
    [87]ALBELDA S M, METTE S A, ELDER D E, et al. Integrin distribution in malignant melanoma:association of the beta 3 subunit with tumor progression[J]. Cancer Res,1990,50(20):6757-6764.
    [88]DARDIK R, LIVNAT T, SELIGSOHN U. Variable effects of alpha v suppression on VEGFR-2 expression in endothelial cells of different vascular beds[J]. Thromb Haemost,2009,102(5):975-982.
    [89]KEBERS F, LEWALLE J M, DESREUX J, et al. Induction of endothelial cell apoptosis by solid tumor cells[J]. Exp. Cell Res.,1998,240(2):197-205.
    [90]CHEN Z, HTAY A, DOS SANTOS W, et al. In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells[J]. J Neurooncol, 2009,92(2):121-128.
    [91]KHODAREV N N, YU J, LABAY E, et al. Tumour-endothelium interactions in co-culture:coordinated changes of gene expression profiles and phenotypic properties of endothelial cells[J]. J. Cell Sci.,2003,116(6):1013-1022.
    [92]向邦德,吕明德,黄洁夫,等.诱导正常血管内皮细胞具备肿瘤血管特性的研究[J].中山大学学报医学科学版,2005,26(3):354-357.
    [93]KLEMKE R L, LENG J, MOLANDER R, et al. CAS/Crk coupling serves as a "molecular switch" for induction of cell migration[J]. J. Cell Biol.,1998,140(4): 961-972.
    [94]BABAEI S, STEWART D J. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model[J]. Cardiovasc Res.,2002,55(1):190-200.
    [95]CONNER S'D, SCHMID S L. Regulated portals of entry into the cell[J]. Nature,2003,422(6927):37-44.
    [96]DANHIER F, VROMAN B, LECOUTURIER N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel[J]. J Control Release,2009,140(2):166-173.
    [97]CHEN K, XIE J, XU H, et al. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting [J]. Biomaterials,2009,30(36):6912-6919.
    [98]HERSCHMAN H R. Molecular imaging:looking at problems, seeing solutions[J]. Science,2003,302(5645):605-608.
    [99]MASSOUD T F, GAMBHIR S S. Molecular imaging in living subjects:seeing fundamental biological processes in a new light[J]. Genes Dev, 2003;17(5):545-580. [100] MCCARTHY J R, WEISSLEDER R. Multifunctional magnetic nanoparticles for targeted imaging and therapy [J]. Adv Drug Deliv Rev,2008,60(11):1241-1251. [101] GUPTA M K, QIN R Y. Mechanism and its regulation of tumor-induced angiogenesis[J]. World J Gastroenterol,2003,9(6):1144-1155. [102] SERINI G, VALDEMBRI D, BUSSOLINO F. Integrins and angiogenesis:a sticky business[J]. Exp Cell Res,2006,312(5):651-658. [103] SUH D Y. Understanding angiogenesis and its clinical applications [J]. Ann Clin Lab Sci,200030(3):227-238. [104] REHMAN S, JAYSON G C. Molecular imaging of antiangiogenic agents[J]. Oncologist,2005,10(2):92-103. [105] WANG W,WU Q,PASUELO M, et al. Probing for integrin alphav beta3 binding of RGD peptides using fluorescence polarization[J]. Bioconjug Chem, 2005,16(3):729-734. [106] RHEE T K, LARSON A C, PRASAD P V, et al. Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits [J]. J Vasc Interv Radiol,2005, 16(11):1523-1528. [107] EIVAZI B, SAPUNDHZIEV N, FOLZ B J, et al Bipolar radiofrequency induced thermotherapeutic volumetric reduction of VX2 metastases in an animalmodel[J]. In Vivo,2005,9(6):1023-1028. [108] HAAGA J R, EXNER A A, WANG Y, et al. Combined tumor therapy by using radiofrequency ablation and 5-FU-laden polymer implants:Evaluation in rats and rabbits[J]. Radiology,2005,237(3):911-918. [109] SAPUNDZHIEV N, DUNNE A A, RAMASWAMY A, et al. The auricularVX2 carcinoma:Feasibility of complete tumor resection[J]. Anti-cancer Res,2005,25(6B):4209-4214.
    [110]MARUYAMA H, MATSUTANI S, SAISHO H, et al. Sonographic shift of hypervascular liver tumor on blood pool harmonic images with definity: Time-related changes of contrast-enhanced appearance in rabbit VX2 tumor under extra-low acoustic power[J]. Eur J Radiol,2005,56(1):60-65.
    [111]DUNNE A A, SCHMIDT A, KUROPKAT C, et al. The auricular VX2 carcinoma—an animal model for sentinel node concept[J]. In Vivo,2003,17:457-461.
    [112]EASTY D M, EASTYG C. Establishment of an in vitro cell line from the rabbit VX2 carcinoma[J]. Virchows Arch B Cell Pathol Incl Mol Patho,1982,39:333-337.
    [113]DUNNE A A, MANDIC R, RAMASWAMY A, et al. Lymphogenic metastatic spread of auricularVX2 carcinoma in New Zealand white rabbits [J]. Anticancer Res,2002;22(6A):3273-3279.
    [114]VAN ES R J, FRANSSEN O, DULLENS H F, et al. The VX2 carcinoma in the rabbit auricle as an experimental model for intra-arterial embolization of head and neck squamous cell carcinomawith dextran microspheres[J]. Lab Anim,1999,33:175-184.
    [115]VAN ES R J, DULLENS H F, VAN DER BILT A, et al. Evaluation of the VX2 rabbit auricle carcinoma as a model for head and neck cancer in humans[J]. J Maxillofac Surg,2000,8:300-307.
    [116]DUNNE A A, PLEHN S, SCHULZ S, et al. Lymph node topography of the head and neck in New Zealand White rabbits[J]. Lab Anim,2003,37:37-43.
    [117]MANDIC R, DUNNE A A, EIKELKAMP N, et al. Expression ofMMP-3,MMP-13, TIMP-2 and TIMP-3 in the VX2 carcinoma of the New Zealand white rabbit [J]. Anticancer Res,2002,22(6A):3281-3284.
    [118]SCHMIEDER A H, WINTER P M, CARUTHERS S D, et al. Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles[J]. Magn Reson Med,2005,53(3):621-627.
    [119]MULDER W J, STRIJKERS G J, HABETS J W, et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle[J]. FASEB J,2005,19(14):2008-2010.
    [120]BULTE J W, KRAITCHMAN D L. Iron oxide MR contrast agents for molecular and cellular imaging[J].N M R Biomed,2004,17(7):484-499.
    [121]TSUSHIMA Y, ENDO K. Hypointensities in the brain on T2*-weighted gradient-echo magnetic resonance imaging [J]. Curr Probl Diagn Radiol, 2006,35(4):140-150.
    [122]THAMBURAJ K, RADHAKRISHNAN V V, THOMAS B, et al. Intratumoral microhemorrhages on T2*-weighted gradient-echo imaging helps differentiate vestibular schwannoma from meningioma[J]. AJNR Am J Neuroradiol, 2008,29(3):552-557.
    [123]TOSAKA M, SATO N, HIRATO J, et al. Assessment of hemorrhage in pituitary macroadenoma by T2*-weighted gradient-echo MR imaging[J]. AJNR Am J Neuroradiol,2007,28910):2023-2029.
    [124]MAEDA H, BHARATE G Y, DARUWALLA J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect[J]. Eur J Pharm Biopharm,2009,71(3):409-419.
    [125]GREISH K. Enhanced permeability and retention of macromolecular drugs in solid tumors:a royal gate for targeted anticancer nanomedicines[J]. J Drug Target,2007,15(7-8):457-464.
    [126]MODI S, PRAKASH JAIN J, DOMB A J, et al. Exploiting EPR in polymer drug conjugate delivery for tumor targeting[J]. Curr Pharm Des., 2006,12(36):4785-4796.
    [127]TSUI Y K, TSAI F Y, HASSO A N, et al. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology:a pictorial review[J]. J Neurol Sci.,2009,287(1-2):7-16.
    [128]CHAVHAN G B, BABYN P S, THOMAS B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications [J]. Radiographics,2009,29(5):1433-1449.
    [129]BARNES S R, HAACKE E M. Susceptibility-weighted imaging:clinical angiographic applications [J]. Magn Reson Imaging Clin N Am., 2009,17(1):47-61.
    [130]MAEHARA N. Experimental microcomputed tomography study of the 3D microangio architecture of tumors [J]. Eur Radiol,2003,13(7):1559-1565.
    [131]JIANG H J, ZHANG Z R, SHEN B Z, et al. Quantification of angiogenesis by CT perfusion imaging in liver tumor of rabbit [J]. Hepatobiliary Pancreat Dis Int, 2009,8(2):168-173.
    [132]LEE K H, LI API E, BUIJS M, et al. Considerations for implantation site of Vx-2 carcinoma into rabbit liver[J]. J Vasc Interv Radiol,2009,20(1):113-117.
    [133]ISLAM T, HARISINGHANI M G. Overview of nanoparticle use in cancer imaging[J]. Cancer Biomark,2009,5(2):61-67.
    [134]XIE J, HUANG J, LI X, et al. Iron oxide nanoparticle platform for biomedical applications[J]. Curr Med Chem.,2009,16(10):1278-1294.
    [135]SAJJA H K, EAST M P, MAO H, et al. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect[J]. Curr Drug Discov Technol.,2009,6(1):43-51.
    [136]GUPTA A K, NAREGALKAR R R, VAIDYA V D, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications[J]. Nanomed.,2007,2(1):23-39.
    [137]BARRY S E. Challenges in the development of magnetic particles for therapeutic applications[J]. Int J Hyperthermia,2008,24(6):451-466.
    [138]HADJIPANAYIS C G, BONDER M J, BALAKRISHNAN S, et al. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia[J]. Small,2008,4(11):1925-1929.
    [139]LE RENARD P E, BUCHEGGER F, PETRI-FINK A, et al. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model[J]. Int J Hyperthermia,2009,25(3):229-239.
    [140]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26(18): 3995-4021.
    [141]ITO A, SHINKAI M, HONDA H, et al. Medical application of functionalized magnetic nanoparticles[J]. J Biosci Bioeng.,2005,100(1):1-11.
    [142]BERRY C C, WELLS S, CHARLES S, et al. Dextran and albumin derivatised iron oxide nanoparticles:influence on fibroblasts in vitro [J]. Biomaterials,2003,24:4551-4557.
    [143]MAHMOUDI M, SIMCHI A, MILANI A S, et al. Cell toxicity of superparamagnetic iron oxide nanoparticles[J]. J Colloid Interface Sci.,2009,336(2):510-518.
    [144]SIMONI A R, GARCIA M P, AZEVEDO R B, et al. Evaluation of the binding properties of maghemite nanoparticle surface-coated with meso-2-3-dimercaptosuccinic acid to serum albumin[J]. J Nanosci Nanotechnol.,2008,8(11):5813-5817.
    [145]JAFFER F A, NAHRENDORF M, SOSNOVIK D, et al. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials[J]. Mol Imaging,2006,5(2):85-92.
    [146]SOSNOVIK D E. Molecular imaging in cardiovascular magnetic resonance imaging:current perspective and future potential[J]. Top Magn Reson Imaging,2008,19(1):59-68.
    [147]PISANIC TR 2ND, BLACKWELL J D, SHUBAYEV V I, et al. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons[J]. Biomaterials,2007,28(16):2572-2581.
    [148]DE FREITAS ER, SOARES PR, SANTOS RDE P, et al. In vitro biological activities of anionic gamma-Fe2O3 nanoparticles on human melanoma cells[J]. J Nanosci Nanotechnol.,2008,8(5):2385-2391.
    [149]PAWELCZYK E, ARBAB A S, CHAUDHRY A, et al. In vitromodel of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells:implications for cellular therapy[J]. Stem Cells,2008,26:1366-1375.
    [150]ARBAB A S, JANIC B, KNIGHT R A, et al. Detection of migration of locally implanted AC 133+ stem cells by cellular magnetic resonance imaging with histological findings[J]. FASEB J.,2008,22(9):3234-3246.
    [151]ROGERS W J, MEYER C H, KRAMER C M. Technology insight:in vivo cell tracking by use of MRI[J]. Nat Clin Pract Cardiovasc Med,2006;3:554-562.
    [152]WILHELM C, BAL L, SMIRNOV P, et al. Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells[J]. Biomaterials,2007,28(26):3797-3806.
    [153]MOORE A, WEISSLEDER R, BOGDANOV A JR. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages [J]. J Magn Reson Imaging,1997,7:1140-1145.
    [154]BERRY C C, WELLS S, CHARLES S, et al. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation[J]. Biomaterials,2004,25(23):5405-5413.
    [155]BRATOSIN D, MITROFAN L, PALII C, et al. Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging[J]. Cytometry A,2005,66(1):78-84.
    [156]AKHTAR N, DICKERSON E B, AUERBACH R. The sponge/Matrigel angiogenesis assay[J]. Angiogenesis,2002,5(1-2):75-80.
    [157]CHUNG C A, CHEN C Y. The effect of cell sedimentation on measuring chondrocyte population migration using a Boyden chamber[J]. J Theor Biol,2009,261(4):610-625.
    [158]FONG C J, SUTKOWSKI D M, KOZLOWSKI J M, et al. Utilization of the Boyden chamber to further characterize in vitro migration and invasion of benign and malignant human prostatic epithelial cells[J]. Invasion Metastasis,1992,12(5-6):264-274.
    [159]TAUPITZ M, WAGNER S, SCHNORR J, et al. Phase Ⅰ clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging [J]. Invest Radiol.,2004,39(7):394-405.
    [160]WAGNER S, SCHNORR J, PILGRIMM H, et al. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging:preclinical in vivo characterization[J]. Invest Radiol., 2002;37(4):167-177.
    [161]SONG M, KIM Y, KIM Y, et al. MRI tracking of intravenously transplanted human neural stem cells in rat focal ischemia model[J]. Neurosci Res.,2009,64(2):235-239.
    [162]PIETERS R, LOONEN A H, HUISMANS D R, et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions[J]. Blood,1990,76(11):2327-2336.
    [163]KEHRER J P. The Haber-Weiss reaction and mechanisms of toxicity[J]. Toxicology,2000,149(1):43-50.
    [164]APOPA P L, QIAN Y, SHAO R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling[J]. Part Fibre Toxicol.,20.09,6:1.
    [165]BENOV L. How superoxide radical damages the cell [J]. Protoplasma,2001,217(1-3):33-36.
    [166]LIOCHEV S I, FRIDOVICH I. The Haber-Weiss cycle-70 years later:an alternative view[J]. Redox Rep.,2002,7(1):55-57.
    [167]SAMUNI A M, AFEWORKI M, STEIN W, et al. Multifunctional antioxidant activity of HBED iron chelator[J]. Free Radic Biol Med.,2001,30(2):170-177.
    [168]VIDELA L A, FERNANDEZ V, TAPIA G, et al. Oxidative stress-mediated hepatotoxicity of iron and copper:role of Kupffer cells[J]. Biometals,2003,16(1):103-111.
    [169]RICHARDSON D R. Iron and gallium increase iron uptake from transferrin by human melanoma cells:further examination of the ferric ammonium citrate-activated iron uptake process[J]. Biochim Biophys Acta.,2001,1536(1):43-54.
    [170]MAYCOTTE P, GUEMEZ-GAMBOA A, MORAN J. Apoptosis and autophagy in rat cerebellar granule neuron death:Role of reactive oxygen species[J]. J Neurosci Res.,2010,88(1):73-85.
    [171]BURSCH W. The autophagosomal-lysosomal compartment in programmed cell death[J]. Cell Death and Differentiation,2001,8(6):545-548
    [172]UCHIYAMA Y. Autophagic cell death and its execution by lysosomal cathepsins[J]. Archives of Histology and Cytology,2001,64(3):233-246.
    [173]GORSKI S M, CHITTARANJAN S, PLEASANCE E D, et al. A SAGE approach to discovery of genes of genesinvolved in autophagic cell death[J]. Current biology:CB,2003,13(4):358-363.
    [174]SUN Y, PENG Z L. Programmed cell death and cancer[J]. Postgrad Med J.,2009,85(1001):134-140.
    [175]DIAMANTIS A, MAGIORKINIS E, SAKORAFAS G H, et al. A brief history of apoptosis:from ancient to modern times [J]. Onkologie, 2008,31(12):702-706.
    [176]KERR R 0, CARDAMONE J, DALMASSO A P, et al. Two mechanisms of erythrocyte destruction in penicillin-induced hemolytic anemia[J]. N Engl J Med.,1972,287(26):1322-1325.
    [177]WYLLIE R, ARASU T S, FITZGERALD J F. Ascites:pathophysiology and management[J]. J Pediatr.,1980,97(2):167-176.
    [178]GOZUACIK D, KIMCHI A. Autophagy as a cell death and tumor suppressor mechanism[J]. Oncogene,2004,23(16):2891-2906.
    [179]BERRY D L, BAEHRECKE E H. Autophagy functions in programmed cell death[J].Autophagy,2008,4(3):359-360.
    [180]BURSCH W. Multiple cell death programs:Charon's lifts to Hades[J]. FEMS Yeast Res.,2004,5(2):101-110.
    [181]BURRIDGE K, NUCKOLLS G, OTEY C, et al. Actin-membrane interaction in focal adhesions[J]. Cell Differ. Dev.,1990,32(3):337-342.
    [182]TURNER C E, BURRIDGE K. Transmembrane molecular assemblies in cell-extracellular matrix interactions[J]. Curr. Opin. Cell Biol.,1991,3 (5):849-853.
    [183]GIANCOTTI F G, RUOSLAHTI E. Integrin signaling[J]. Science,1999, 285(5430):1028-1032.
    [184]DEWAR H, WARREN D T, GARDINER F C, et al. Novel proteins linking the actin cytoskeleton to the endocytic machinery in Saccharomyces cerevisiae[J]. Mol Biol Cell,2002,13(10):3646-3661.
    [185]AKHTAR N, DICKERSON E B, AUERBACH R. The sponge/Matrigel angiogenesis assay[J]. Angiogenesis,2002,5(1-2):75-80.
    [186]AUERBACH R, LEWIS R, SHINNERS B, et al. Angiogenesis assays:a critical overview[J]. Clin Chem.,2003,49(1):32-40.
    [187]NAKATSU M N, SAINSON R C, AOTO J N, et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels:the role of fibroblasts and Angiopoietin-1[J]. Microvasc Res,2003,66(2):102-112.
    [188]AKINO Y, TESHIMA T, KIHARA A, et al. Carbon-ion beam irradiation effectively suppresses migration and invasion of human non-small-cell lung cancer cells[J]. Int J Radiat Oncol Biol Phys.,2009,75(2):475-481.
    [189]RICHES K, MORLEY M E, TURNER N A, et al. Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts[J]. J Mol Cell Cardiol.,2009,47(3):391-399.
    [190]ZHANG W, LU Y, XU B, et al. Acidic mucopolysaccharide from Holothuria Leucospilota has antitumor effect by inhibiting angiogenesis and tumor cell invasion in vivo and in vitro[J]. Cancer Biol Ther.,2009,8(15):1489-1499.
    [191]AFIFY A, PURNELL P, NGUYEN L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol.,2009,86(2):95-100.
    [192]MILES F L, PRUITT F L, VAN GOLEN K L, et al. Stepping out of the flow: capillary extravasation in cancer metastasis [J]. Clin Exp Metastasis, 2008,25(4):305-324.
    [193]OLIVA I B, COELHO R M, BARCELLOS G G, et al. Effect of RGD-disintegrins on melanoma cell growth and metastasis:involvement of the actin cytoskeleton,FAK and c-Fos[J]. Toxicon,2007,50(8):1053-1063.
    [194]ECHARRI A, MURIEL 0, DEL POZO M A. Intracellular trafficking of raft/caveolae domains:insights from integrin signaling[J]. Semin Cell Dev Biol, 2007,18(5):627-537。
    [1]WEISSLEDER R, MAHMOOD U. Molecular imaging[J]. Radiology,2001,21 (9):316-333.
    [2]MASSOUD T F, GAMBHIR S S. Molecular imaging in living subjects:seeing fundamental biological processes in a new light[J].Genes Dev,2003,1,17(5): 545-580.
    [3]RUDIN M, WEISSLEDER R. Molecular imaging in drug discovery and development[J].Nat Rev Drug Discov.2003,2(2):123-131.
    [4]WEISSLEDER R. Molecular imaging:exploring the next frontier[J]. Radiology,1999,212(3):609-614.
    [5]HERSCHMAN H R. Molecular imaging:looking at problems, seeing solutions[J].Science,2003,24,302(5645):605-608.
    [6]JAFFER F A, WEISSLEDER R. Seeing within:molecular imaging of the cardiovascular system[J]. Circ Res,2004,94(4):433-445.
    [7]PHELPS M E. Positron emission tomography provides molecular imaging of biological processes [J]. PNAS,2000,97(16):9226-9233.
    [8]WEISSLEDER R. Molecular imaging in cancer[J]. Science,2006,312(5777): 1168-1171.
    [9]CAI W, CHEN X. Multimodality molecular imaging of tumor angiogenesis[J]. J Nucl Med,2008,49 Suppl 2:113S-28S.
    [10]ISLAM T, JOSEPHSON L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles[J]. Cancer Biomark,2009,5(2):99-107.
    [11]BOULOCHER C, CHEREUL E, ARMENEAN M, et al.3D HR micro-MRI to quantify the medial tibial cartilage thickness progression in a rabbit Model of experimental osteoarthritis[J]. Osteoarthritis and Cartilage,2007,15(12): B146-B146.
    [12]RAO J, ANDRASI A R, YAO H. Fluorescence imaging in vivo:recent advances[J]. Current Opinion in Biotechnology,2007,18(1):17-25.
    [13]CHUDAKOV D M, LUKYANOV S, LUKYANOV K A. Fluorescent proteins as a toolkit for in vivo imaging[J]. Trends in Biotechnology,2005,23,(12): 605-613.
    [16]ALENCAR H, FUNOVICS M A, FIGUEIREDO J, et al. Colonic Adenocarcinomas:Near-Infrared Microcatheter Imaging of Smart Probes for Early Detection-Study in Mice[J], Radiology,2007,244:232-238.
    [17]RAYMOND S B, SKOCH J, HILLS I D, et al. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology[J]. European Journal of Nuclear Medicine and Molecular Imaging,2008 35, Supplement 1:1619-1627.
    [18]SUZUKI R, TAKIZAWA T, NEGISHI Y, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles [J] Journal of Controlled Release,2008,125(2):137-144.
    [19]HOGEMANN D, NTZIACHRISTOS V, JOSEPHSON L, et al. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes[J]. Bioconjug Chem,2002,13(1):116-121.
    [1]STARK D D, WEISSLEDER R, ELIZONDO G, et al. Superparamagnetic iron
    oxide:clinical application as a contrast agent for MR imaging of the liver[J]. Radiology,1988,168(2):297-301.
    [2]NORMAN A B, THOMAS S R, PRATT R G, et al. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent[J]. Brain Res,1992,594(2):279-283.
    [3]MATUSZEWSKI L, PERSIGEHL T, WALL A, et al. Cell tagging with clinically approved iron oxides:feasibility and effect of Iipofection, particle size, and surface coating on labeling efficiency[J]. Radiology,2005,235(1):155-161.
    [4]MOFFAT B A, REDDY G R, MCCONVILLE P, et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI[J]. Mol Imaging.2003,2(4):324-332.
    [5]MOLD AY R S, MACKENZIE D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells [J]. J Immunol Methods,1982,52(3):353-367.
    [6]MOORE A, BASILION J P, CHIOCCA E A, et al. Measuring transferrin receptor gene expression by NMR imaging[J]. Biochim Biophys Acta, 1998,1402(3):239-249.
    [7]MOORE A, MARECOS E, BOGDANOV A, et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model[J]. Radiology,2000,214:568-574.
    [8]WANG Y X,HUSSAIN S M,KRESTIN G P. Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging[J].Eur Radiol,2001,11(11):2319-2331.
    [9]BULTE J W, KRAITCHMAN D L. Iron oxide MR contrast agents for molecular and cellular imaging[J].N M R Biomed,2004,17(7):484-499.
    [10]ISHIYAMA K, MOTOYAMA S, TOMURA N, et al. Visualization of lymphatic basin from the tumor using magnetic resonance lymphography with superparamagnetic iron oxide in patients with thoracic esophageal cancer[J]. J Comput Assist Tomogr,2006,30(2):270-275.
    [11]LIND K, KRESSE M, DEBUS N P, et al. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour[J]. J Drug Target,2002,10(3):221-230.
    [12]MACK M G, BALZER J O, STRAUB R, et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes[J]. Radiology. 2002,222(1):239-244.
    [13]MOGHIMI S M, HUNTER A C, MURRAY J C. Long-circulating and target specific nanoparticles:theory to practice[J]. Pharm Rev,2001,53(2):283-318.
    [14]ENOCHS W S, HARSH G, HOCHBERG F, et al. Improved delineation of human brain tumors on MR images using long-circulating superparamagnetic iron oxide agent[J]. J Magn Reson Imaging,1999,9(2):228-232.
    [15]SHAH A J, PARSONS B, POPE I,et al. The clinical impact of magnetic resonance imaging in diagnosing focal hepatic lesions and suspected cancer[J]. Clin Imaging,2009,33 (3):209-212.
    [16]PARK H S, LEE J M, KIM S H, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla[J]. J Magn Reson Imaging. 2009,29(2):328-335.
    [17]TANABE M, ITO K, SHIMIZU A, et al. Hepatocellular lesions with increased iron uptake on superparamagnetic iron oxide-enhanced magnetic resonance imaging in cirrhosis or chronic hepatitis:comparison of four magnetic resonance sequences for lesion conspicuity[J]. Magn Reson Imaging,2009,27(6):801-806.
    [18]MER GO P, HELMBERGER T, NICOLAS A L,et al. Ring enhancement in ultrasmall superparamagnetic iron oxide MR imaging:a potential new sign for
    characterization of liver lesions[J]. AJR,1996,166(2):379-384.
    [19]SIGOVAN M, BOUSSEL L, SULAIMAN A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque:initial experience in animal model[J]. Radiology,2009,252(2):401-409.
    [20]FAY AD Z A, RAZZOUK L, BRILEY-SAEBO K C, et al. Iron oxide magnetic resonance imaging for atherosclerosis therapeutic evaluation:still "rusty?" [J]. J Am Coll Cardiol,2009,53(22):2051-2052.
    [21]ZHANG Z, MASCHERI N, DHARMAKUMAR R, et al. Cellular magnetic resonance imaging:potential for use in assessing aspects of cardiovascular disease[J].Cytotherapy,2008,10(6):575-586.
    [22]KOROSOGLOU G, WEISS R G, KEDZIOREK D A, et al. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using "positive contrast" magnetic resonance imaging[J]. J Am Coll Cardiol, 2008,52(6):483-491.
    [23]TRIVEDI R A, MALLAWARACHI C, U-KING-IM J M, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages[J]. Arterioscler Thromb Vase Biol,2006,26(7):1601-1606.
    [24]TRIVEDI R A, U-KING-IM J M, GRAVES M J, et al. In vivo detection of macrophages in human carotid atheroma:temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI[J]. Stroke,2004,35(7):1631-1635.
    [25]GUPTA A K, WELLS S. Surface-modified superparamagnetic nanoparticles for drug delivery:preparation, characterization, and cytotoxicity studies[J]. IEEE Trans Nanobioscience,2004,3(1):66-73.
    [26]SCHMITZ S A, COUPLAND S E, GUST R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits[J]. Invest Radiol,2000,35(8):460-471.
    [27]HOGEMANN D, JOSEPHSON L, WEISSLEDER R, et al. Improvement of MRI probes to allow efficient detection of gene expression[J]. Bioconjug Chem,2000,11(6):941-946.
    [28]ICHIKAWA T, HOGEMANN D, SAEKI Y, et al. MRI of transgene expression: correlation to therapeutic gene expression[J]. Neoplasia,2002,4(6):523-530.
    [29]CHOI H, CHOI S R, ZHOU R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery[J]. Acad Radiol,2004,11(9):996-1004.
    [30]ARTEMOV D, MORI N, RAVI R, et al. Magnetic resonance molecular imaging of the HER-2/neu receptor[J]. Cancer Res,2003,63(11):2723-2727.
    [31]REIMER P, WEISSLEDER R, SHEN T, et al. Pancreatic receptors:initial feasibility studies with a targeted contrast agent for MR imaging[J]. Radiology,1994,193(2):527-531.
    [32]ZHAO M, BEAUREGARD D A, LOIZOU L, et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent[J]. Nat Med,2001,7(11):1241-1244.
    [33]SCHELLENBERGER E A, BOGDANOV A JR, HOGEMANN D, et al. Annexin V-CLIO:a nanoparticle for detecting apoptosis by MRI[J]. Mol Imaging,2002,1(2):102-107.
    [34]SCHELLENBERGER E A, SOSNOVIK D, WEISSLEDER R,et al. Magneto/optical annexin V, a multimodal protein[J]. Bioconjug Chem,2004,15(5):1062-1067.
    [35]KELLY K A, ALLPORT J R, TSOURKAS A, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle[J]. Circ Res,2005,96(3):327-336.
    [36]TSOURKAS A, SHINDE-PATIL V R, KELLY K A, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe[J].
    Bioconjug Chem,2005,16(3):576-581.
    [37]KANG H W,JOSEPHSON L,PETROVSKY A, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture[J]. Bioconjug Chem,2002,13(1):122-127.
    [38]LEWIN M, CARLESSO N, TUNG C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nat Biotechnol,2000,18(4):410-414. [39] BULTE J W, DOUGLAS T, WITWER B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J]. Nat Biotechnol,2001,19(12):1141-1147.
    [40]王平,王建华,颜志平,等.超顺磁性氧化铁标记大鼠骨髓基质细胞经门静脉移植MRI活体示踪的研究[J].中华放射学,2006,40(2):133-138.
    [41]BABINCOV M,ALTANEROV V,ALTANER C, et al. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia[J]. IEEE Trans Nanobioscience,2008,7(1):15-19.
    [42]CHUNG S H, HOFFMANN A, BADER S D. Biological sensors based on Brownian relaxation of magnetic nanoparticles [J]. Appl Phys Lett,2004,85(14), 2971-2793.
    [43]BABINCOVA M, ALTANEROVA V, ALTANER C, et al. In vivo heating of magnetic nanoparticles in alternating magnetic field[J]. Med Phys,2004,31 (8):2219-2221.
    [44]SHOREY W D, HANSELMAN R C, GILCHRIST R K, et al. Factors producing intracorporeal hyperthermia in an electromagnetic field[J]. Presbyt St Lukes Hosp Med Bull,1963,2:11-15.
    [45]BARRY J W, BOOKSTEIN J J, ALKSNE J F. Ferromagnetic embolization. Experimental evaluation[J]. Radiology,1981,138(2):341-349.
    [46]MITSUMORI M, HIRAOKA M, SHIBATA T, et al. Development of intra-arterial hyperthermia using a dextran-magnetite complex[J]. Int J Hyperthermia,1994,10(6):785-793.
    [47]HILGER I, ANDRA W, BAHRING R, et al. Evaluation of temperature increase with different amounts of magnetite in liver tissue samples[J]. Invest Radiol,1997,32(11):705-712.
    [48]KARLSSON H L, GUSTAFSSON J, CRONHOLM P, et al. Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size[J].Toxicol Lett,2009,188(2):112-118. [49] NERI M, MADERNA C, CAVAZZIN C, et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking[J]. Stem Cells,2008,26(2):505-516. [50] ARBAB A S, BASHAW L A, MILLER B R, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging[J]. Radiology,2003,229(3):838-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700