用户名: 密码: 验证码:
超音速等离子—感应复合技术制备高铝青铜合金表面涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al含量超过Cu-Al合金共析点w(A1)=11.8%的高铝青铜合金材料具有较高的硬度、很好的减摩性能。课题组研究开发的Al质量分数达到14%的高铝铜合金材料具有很好的减摩耐磨性能和抗腐蚀性能,已成功应用于拉伸、冲压模具当中。但该材料性能较脆,作为整体材料应用,在使用的过程中容易发生崩裂等缺陷,并且作为整体材料使用成本较高。将该材料研制成粉体材料,并通过先进的涂层制备技术将其制备成表面保护涂层,对拓宽该材料的使用范围,实现工件表面保护和修复具有重要意义。另外,所研制的高铝铜合金粉体材料属于非自熔、易氧化的合金材料,对其的开发研究将对表面工程领域的深入发展产生重要影响。
     本文配置了一种w(Al)=14%的多元高铝铜合金材料,采用共装法一次熔炼、氯化物法化学精炼、预脱氧与终脱氧工艺方案联合使用的方法熔炼了合金熔体,通过双级耦合快凝低真空雾化制粉技术制备了该合金粉体材料。制备的粉体材料主要成分为w(Cu)=70%~80%,w(Al)=12%~16%,w(Fe)=2.0%~4.0%,其余为可调整的Mn,Ni, Co等微量元素。在3~8MPa雾化压力下得到中小粒度的粉体能够到达70%以上,制备的粉体具有23.9/s·(50g)-1的较高流动性和3.56/g·cm-3的较低松装密度,粉体的维氏显微硬度平均值达到384HV。所制备的合金粉体的熔点为1048℃,材料属于软磁性材料,初始磁导率约为μi=1.24。
     提出了一种超音速等离子-感应重熔复合技术在45#钢基体表面制备优良高铝青铜合金材料涂层的方法。
     首先,通过超音速等离子喷涂技术制备了不同粒度的纯高铝青铜合金粉体涂层。借助X射线衍射仪(XRD)、电子探针(EPMA).场发射扫描电子显微镜(FEGSEM)及能谱仪(EDS)、Image-pro plus图像分析软件、Jade5.0软件等分析研究了制备的纯高铝青铜合金粉体涂层的组织结构、物相组成及相结构分布、缺陷率、以及涂层的相关力学性能,得出了最佳的喷涂粉体粒度。研究发现,采用400目以上的超细粉体材料制备的涂层组织结构致密、元素偏析程度较低、成分分布均匀、界面结合状况良好。涂层中存在的缺陷率和缺陷平均面积随着喷涂粉体粒度的增大而降低,400目以上粉体喷涂层组织微观缺陷率已降低到1.27%的相当低水平,缺陷平均面积0.40μ m2。400目以上的超细高铝青铜合金粉体具有更好地适应超音速等离子喷涂制备涂层的能力。
     其次,在得出的最佳粉体粒度中(400目以上)加入不同含量的稀土粉体元素Ce,经过混合后制备稀土改性的高铝青铜合金粉体材料涂层。通过相关组织结构和性能研究后,得出了最佳的稀土加入量。研究发现:微量稀土元素加入对喷涂层组织结构产生重要影响,随着稀土元素加入量的增加,晶粒表现得越来越细化、组织结构表现得更加细密均匀、界面结合状态明显改善。微量元素稀土的加入具有抑制合金成份偏析的作用,改变了涂层组织相的分布形式,涂层组织由原来的非平衡凝固转变为平衡凝固方式。在稀土加入量超过0.4%后,涂层的缺陷率明显减小,低于未加入稀土前的涂层缺陷率。微量稀土元素的加入使涂层硬度降低、综合力学性能得到提高、涂层硬度性能分散性减小。当其含量达到0.55%时,对性能分散度影响不大。得出最佳的稀土加入量为0.4%-0.55%之间。
     最后,对稀土加入量为0.55%的高铝青铜合金粉体涂层采用感应重熔处理技术进行涂层优化再制备。研究发现,经过稀土改性、感应重熔处理后的涂层组织结构致密度明显提高、缺陷率明显降低,结合状况得到大大改善。经过感应重熔后的涂层在界面处出现了一条约为10~15μm的白亮结合带,说明涂层与基体经过感应重熔后形成了冶金结合,这大大提高了涂层与基体的结合强度,使涂层相对于感应前剪切强度提高了12.7倍。感应重熔能使涂层中大面积的缺陷转化为以分散的小尺寸形式存在。减小了缺陷的局部集中对涂层性能产生的不利影响。感应重熔处理后,使涂层硬度值略有回升,并使硬度性能分散性进一步降低。
     在MMW-1万能摩擦磨损试验机上分别对纯高铝青铜合金喷涂层、稀土改性喷涂层和感应重熔后涂层的耐磨性能进行测试。结果表明:三种涂层在干摩擦条件下的摩擦系数都处在一个相对较低的水平,摩擦系数均小于0.20。540N高载荷时,摩擦系数均只有100N低载荷时的1/10左右,说明涂层具有承受高载荷摩擦磨损的能力。感应重熔后涂层摩擦系数明显低于感应前的涂层,感应重熔处理后的涂层具有更好地承受高载荷耐磨损能力。三种涂层的磨损机理基本相似,主要以磨粒磨损和粘着磨损为主,但不同载荷下的磨损形式略有不同。超音速等离子喷涂的纯高铝青铜合金粉体涂层在低载下以轻微的刮擦为主,高载荷下呈现明显的磨粒磨损特征,局部有明显的黏着及塑性变形痕迹。稀土改性的涂层在低载荷情况下已经发生了塑性变形,但磨痕形貌均匀,表现为磨粒磨损特征,高载荷下涂层表面的磨痕排列非常规整,出现较深较窄的犁沟,犁沟边缘也看不到舌状的、隆起的特征,主要表现为磨粒磨损形式。感应重熔处理后的涂层,在低载荷下为刮擦磨损和磨粒磨损为主,随着载荷的增加主要表现为磨粒磨损的形式,磨痕清晰、规整,显示出了更好的耐磨性能以及摩擦性能随载荷变化的稳定性。
High aluminum bronze alloy material of Al content more than11.8%which is Cu-Al alloy eutectoid point possess high hardness, good antifriction performance. A kind of high aluminum bronze of w (Al)=14%has been developed successfully by our research group, which has very good antifrictionability, wear resistance and corrosion resistance performance, and has been successfully applied to stretch die and stamping die.But the material performance is brittle, and it has the defects such as cracking and high cost as a whole material application. Should this material be developed to powders, and be prepared to surface protection coating of the matrix by advanced coating preparation technologies, it has the important meaning to broaden the scope of the use of material and to realize the surface protection and repair of workpiece. In addition, because the high aluminum bronze alloy powders not belong to the self-fluxing and is easy oxidation materials, the development research will have an important impact on the surface engineering development further.
     In this paper,a multiple high aluminum copper alloy materials of w(Al)=14%was configured and smelted by the combined scheme use of common pack a smelting, chemical refining by chloride, preliminary deoxidizing and final deoxygenation process. The alloy powders materials was prepared by the double-stage coupled and fast-setting of low vacuum atomized powder preparation technology. The main composition of the material is w(Cu)=70%~80%,w(Al)=12%~16%,w(Fe)=2.0%~4.0%,and the other trace elements such as Mn, Ni, Co, which is adjustable.The medium and small size of the powders more than70%can been achieved in the atomization pressure of3~8Mpa, and the liquidity of the powders is high to23.9/s.(50g)-1, the apparent density is low to3.56/g.cm-3and the average vickers microhardness reached384HV. The melting point of the alloy powders is1048℃, and the material belong to the soft magnetic materials, its initial permeability about μi=1.24.
     A kind coating preparation method of supersonic plasma-induction remelting composite technology was put forward to prepare high aluminum bronze alloy material coating in45#steel matrix surface.
     First of all,the powders coating of different particle size of high pure aluminum copper alloy was prepared through the supersonic plasma spraying technique.The X-ray diffraction (XRD), electron probe (EPMA), field emission scanning electron microscopy (FEGSEM) and spectrometer (EDS),image-proplus analysis software, Jade5.0software were used to analysis structure, physical phase composition,phase structure distribution, defect rate, and related mechanical properties of pure high aluminum bronze alloy powder coatings. At last,the best spraying powders particle size was achieved.The study found that the coating structure compact, the element segregation degree is low, and the component distribution uniformity, and the interface bonding is good prepared by super fine powders of surpassing400mesh.The defect rate and defect average area existed in the coating decreased with spraying powders granularity increase, and the defect rate has been reduced to the quite low level about1.27%using the more than400mesh powders, at the same time, the defect average area is0.40μm2. It is thus clear that the super fine aluminium bronze alloy powders of more than400mesh has better adapt ability to prepare the supersonic plasma spraying coating.
     Secondly, the different content of rare earth element Ce powders was joined to the best particle size powders(more than400meshes)of high aluminum bronze alloy, and the modified high aluminum bronze alloy powders coating was preparated after mixed rare earth Ce.The best addition amount of rare earth was achieved through the related organization structure and performance research.The results showed that the joined trace rare earth elements has a significant influence to the spraying coating organization structure,whose grain size is more refined, the organization structure is more fine uniform,and interface bonding status is markedly improved with the increase of the addition amount of rare earth elements. The trace rare earth elements can inhibit composition segregation of alloy, change the phase distribution form of coating, making the organization structure of the coating form from the non-equilibrium mode into equilibrium mode in the process of solidification.The defect rate of the coating reduced significantly when the rare earth was added to more than0.4%,which is less than the coating before adding rare earth. The coating hardness is reduced after added rare earth elements, accordingly, the comprehensive mechanics performance is improved, and the dispersion performance of the coating hardness is decreased. When the content of Ce is0.55%, it is not obvious to the hardness dispersion performance of the coating. So,the result can be concluded that the best addition amount of rare earth is between0.4%and0.55%.
     Finally, the high aluminum bronze alloy powders coating added the rare earth0.55%was remelted using induction remelting treatment technique for the coating optimization.The result showed that the density of the coating structure is obviously improved and the defect rate of the coating is decreased by rare earth modification and induction remelting process,and the combining state is greatly improved, forming a metallurgical bonding appeared white light about10~15μm in the interface place, which improve greatly the bonding strength of the coating and substrate, making the shear strength is improved12.7times relative to the coating before induction. The induction remelting can make coating defect change from large size into the small size, reducing the bad effect of the defect of local concentration on the coating performance.The induction remelting treatment make the coating hardness value slightly rebounded, and hardness dispersion performance reduce further.
     The wear-resisting performance was tested about the pure high aluminum bronze alloy coating, rare earth modification coating and induction remelting coating by the MMW-1universal friction and wear test machine.The results showed that the friction coefficient of the three kinds of coatings are all in a relatively low level in the dry friction condition, which is less than0.20.The coefficient of friction under high load540N is only1/10of low load100N, indicating the coating has the ability to bear friction and wear under high load. The friction coefficient of the coating after induction remelting is significantly lower than the coating before induction remelting, indicating the coating by induction remelting process has better wear resistance ability under high load.The wear mechanism are basic similar about the three kinds of coatings, which is mainly abrasive wear and adhesive wear, but has slightly different form under different load. The pure high aluminum bronze alloy powders coating made supersonic plasma spraying show the minor scratches in low load,but the abrasive wear characteristics is obvious under the high load, and have obvious adhesion and plastic deformation trace in the local. The coating through rare earth modification have occurred plastic deformation in low load, but the grinding crack morphology is uniform, having the abrasive wear characteristics.Under high load, the arrangement of surface grinding crack is very neat, appearing more deeply and more narrow furrow, and furrow edge can't see lorate and hunched characteristics, indicating abrasive wear form mainly. The coating after induction remelting is given priority to scart wear and abrasive wear in low load, but the form show abrasive wear mainly along with the load increase, whose grinding mark is clear and neat, showing a better wear resistance and the stability of friction performance with the load change.
引文
[1]田丰,赵程,彭红瑞,谢广文.金属材料表面熔覆方法的研究进展[J].青岛化工学院学报,2002,23(3):50-53.
    [2]高志,潘红良.表面科学与工程[M].上海:华东理工大学出版社,2006.
    [3]董允,张庭森,林晓娉.现代表面工程技术[M].北京:机械工业出版社,2003.
    [4]吴涛,朱流,郦剑,王幼文.热喷涂技术现状与发展[J].国外金属热处理,2005,26(4):2-6.
    [5]Hemandez J, Vannes A.Laser surface cladding and residual stress [C].Paris France:Proc 3rd inter. conf.on laser in manufactureing,3-5 June.1986.181-186.
    [6]马岳,段祝平,杨治星,等.表面等离子喷涂材料研究的现状和发展[J].表面技术,1999,28(4):1-4.
    [7]陈志刚,朱小蓉,汤小丽,等.火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究[J].物理学报,2007,56(12):7320-7329.
    [8]汪合朋.金属粉体-火焰热喷涂技术及应用[J].安徽冶金科技职业学院学报,2006,16(4):25-27.
    [9]Sehweissen, Sehneiden.Innovations in welding technology in 2000 [J].Welding Research Abroad,2001,47(7-8):8-9.
    [10]付瑞东,马丽心.免喷涂涂层的感应重熔工艺[J].焊接,2000(11):26-29.
    [11]张增志,韩桂泉,付跃文,等.高中频感应熔涂Ni60涂层组织分析[J].材料工程,2003(4):3-5.
    [12]陈大鹏.镍基自熔合金复合材料界面微观结构研究[D].青岛:中国海洋大学.2007.
    [13]张大伟,雷霆权.激光熔覆金属表面改性研究进展(上)[J].中国表面工程,1999(3):1-6.
    [14]程国东,王引真,王宝阳,等.抽油杆用钢高频感应熔覆NiCrBSi2RE涂层组织与性能研究[J].表面技术,2009,38(2):42-45.
    [15]K. Landes. Diagnosticsin plasmaspraying techniques[J]. Surf. Coat. Technol.,2006, 201(5):1948-1954.
    [16]Tao Shunyan,Yin Zhijian,Zhou Xiaming,et al. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions[J].Tribol Int,2010,43:69-75.
    [17]Ouyang J H, Sasaki S. Effects of different additives on micro-structure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings [J] Wear,2001,249:56-67.
    [18]Bianchi L, Denoirjean A, Blein F, et al. Microstructural investi-gation of plasma-sprayed ceramic splats [J].Thin Solid Films,1997,299:125-135.
    [19]林晓燕,谢国治,王泽华,吴玉萍,林萍华.等离子喷涂Ni包WC陶瓷涂层激光重熔研究[J].陶瓷学报,2005,26(4):257-260.
    [20]Jianshsomboon S,Robelts S QGrant P S.Low pressure plasma spraying of S01-Gel Al2O3/Si nano-composite coatings[C].Proceedings of ITSC 2001,Singapore,2001,389-397.
    [21]黎文献,张刚,赖延清,等.梯度功能材料的研究现状与展望[J].材料导报,2003(17):222-232.
    [22]林文松.功能梯度材料涂层制备技术的研究进展[J].表面技术,2004,33(4):7-9.
    [23]杨洪伟,栾伟玲,涂善东.等离子喷涂技术的新进展[J].表面技术,2005,32(6):7-10.
    [24]张平,王海军,朱胜,等.高效能超音速等离子喷涂系统的研制[J].中国表面工程,2003(3):12-16.
    [25]王海军,刘向平,张平,等.高效能超声速等离子弧喷涂技术研究[J].机械工人,2004,(9):24-27.
    [26]韩志海,王海军,王斌利,郭永明.超音速等离子喷涂制备先进陶瓷涂层的特点[J].有色金属:冶炼部分,2008(Z1):61-66,73.
    [27]张平,王海军,朱胜,等.高效能超音速等离子喷涂系统的研制[J].表面工程,2003(3):12-16.
    [28]杨晖,王良.等离子喷涂的电弧伏安特性[J].焊接学报,2007,28(12):77-80.
    [29]Hirokazu Tahara,Yasutaka Ando.Study of titanium nitride deposition by supersonic plasma spraying[J]. Vacuum,2008,83:98-101.
    [30]S. Zhu, B. S. Xu, J. K.Yao. High quality ceramic coatings sprayed by higll efficiency hypersonic plasma spraying gun[J]. Mater. Sci. Forum,2005,475-479:3981-3984.
    [31]Hirokazu Tahara,Yasutaka Ando. Study of titanium nitride deposition by supersonic plasma spraying[J]. Vacuum,2009,83:98-101.
    [32]Olivier B.Postel,Joachim V.R. Heberlein. Boron carbide thin film deposition using supersonic plasma jet with substrate biasing[J]. Diamond and Related Materials,1999,8: 1878-1884.
    [33]J.Laimer,H.Pauser,H.Stori,etal.Diamond growth in a direct-current low-pressure supersonic[J]. Diamond and Related materials,1997,6:406-410.
    [34]翟长生,巫瑞智,王海军,等.HEPJet等离子喷涂A1203性能试验研究[J].材料工程,2004(12):47-50.
    [35]陆欢,王海军,郭永明,刘明,傅耀宇.超音速等离子喷涂参数对粒子速度温度的影响[J]. 中国表面工程,2008,21(1):19-23.
    [36]杨晖,潘少明.超音速等离子喷涂WC-12Co涂层的结合机理[J].材料热处理学报,2009,30(3):187-191.
    [37].张建,杨军,朱浪涛.超音速等离子喷涂Cr203陶瓷涂层的微观组织及其耐磨性能[J].兵器材料科学与工程,2012,35(2):1-6.
    [38]王海军,谢兆钱,郭永明,等.高效能超音速等离子喷涂粒子特性及涂层特点[J].中国表面工程,2010,23(3):84-88.
    [39]韩志海,王海军,周世魁,等.超音速等离子喷涂制备WC-12Co涂层的性能特点[J].铸造技术,2005,26(12):1157-1159.
    [40]王海军,韩志海,王建,蔡江.超音速等离子喷涂WC-Co涂层性能研究[J].装甲兵工程学院学报,2006,20(1):85-89
    [41]谢兆钱,王海军,郭永明,刘晓亭,李绪强.超音速等离子喷涂超细WC-12Co涂层的性能[J].中国表面工程,2010,23(5):54-58.
    [42]郭永明,王海军,谢兆钱,等.超音速等离子制备Al/Ni涂层的性能特点[J].装甲兵工程学院学报,2010,24(4):69-72.
    [43]鲍君峰,崔颖,侯玉柏,张康.超音速热喷涂技术的发展与现状[J].热喷涂技术,2011,3(4):18-27.
    [44]N C SI, S C SUN. Effects of heat treatment on the microstructure of Cu-Zn-Al(RE) shape memory alloys [J]. Acta metallurgica Sinica,2001,14(4):257-262.
    [45]YINGBO ZHANQSIRONG YU,XIANYONG ZHU,YANRU LUO.Study on as-cast microstructures and solidification process of Mg-Zn-Y Alloys[J] Journal of Non-Crystalline Solids,2008,354:1564-1568.
    [46]STANFORD N,ATWELL D,BEER A,etal.Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys[J].Scripta Materialia, 2008,59(7):772-775.
    [47]ZHANG JJ, ZHAI JW,CHOU XJ,et al. Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics[J].Materials Chemistry and Physics,2008,111(2-3):409-413.
    [48]HUNG FY, LUI TS, CHEN LH, et al. Microstructures and fusing electrical current of microelectronic Sn-9Zn-(0.25RE) solders [J]. Materials Transctions,2008,49(7): 1491-1495
    [49]赵广顺,侯清宇,高甲生.等离子弧喷焊纳米Y2O3/Co50复合涂层的研究[J].安徽工业大学学报(自然科学版),2005,,(3):222-225.
    [50]韦永德,刘志如,王春义,等.用化学方法对20钢、纯Fe表面扩散稀土元素的研究[J] 金属学报,1983,19(5):B197.
    [51]韦永德,陈钢,刘金香等.用热重法研究稀土对20钢碳氮共渗过程的催渗作用[J]金属学报,1986:126.
    [52]陈惠国.CS型低温低电耗低浓度高效率镀铬添加剂的研究[J].材料保护,1991,(5):30-33.
    [53]李士嘉,何建平,孙立.稀土对电沉积锌层耐蚀性的影响[J].材料保护,1991(3):4-6.
    [54]Wang Xinhong, Zhang Min, Zou Zengda, etal.Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings[J].Surfaceand Coatings Technology.2002, 161:195-199.
    [55]冯正,刘德浚,王少刚.稀土钇提高TiN膜与基体结合力的研究[J].金属热处理,1995,20(3):380-383.
    [56]冯正,刘德浚Ti(Y)N镀覆刀具及膜基界面状态的研究[J].航空学报,1996,1:64-69.
    [57]许樵府.离子镀在航空发动机中的应用[J].新工艺新技术新设备,2002,7:71-72.
    [58]黄拿灿,胡社军.稀土表面改性及其应用[M]北京:国防工业出版社,2007.
    [59]孙永兴,王引真,等.稀土氧化物添加剂对A1203等离子喷涂层的影响[J].材料保护.2001(6):8-9.
    [60]MISHRA SB,CHANDRA K,PRAKASH S. Characterisation and erosion behaviour of NiCrAlY coating produced by plasma spray method on two different Ni-based superalloys [J]. Materials letters,2008,62(12-13):1999-2002.
    [61]LI MH,SUN XF,HU WY,et al. Microstructural changes and elemental diffusion of sputtered NiCrAlY coating on a Ni-base SC superalloy subjected to high temperature [J].Materials letters,2007,61:5169-5172.
    [62]LIANG Bun,ZHANG Zhenyu.Rare earth effect on the microstructure and tribological properties of FeNiCr coatings[J].Rare Metals,2010,29(3):271-275.
    [63]李淑华,沈长林,等.激光表面重熔对等离子喷涂氧化铝陶瓷涂层耐磨性的影响.材料科学与工艺.1994,2(3):72-76.
    [64]黄拿灿.稀土元素在表面工程技术中的应用[J].金属热处理.2003,28(4):7-11.
    [65)沈以赴,佟百远,冯钟湖,等.稀土在激光熔覆涂层中的分布及其对腐蚀性能的影响[J].材料研究学报,1998,12(5):434-436.
    [66]沈以赴,陈继志,冯钟湖,等.稀土在激光熔覆涂层中的分布和行为[J].中国稀土学报,1997,15(4):344-349.
    [67]黄拿灿,胡社军.稀土化学热处理与稀土材料表面改性[J].稀土,2003,23(4):59-63.
    [68]杨勇,王铀,闫牧夫.提高材料摩擦学性热能之稀土表面工程[J].热处理技术与装备.2006,27(6):1-4.
    [69]Y. Wang,M. Su,X. M. Dai, C. N. Chen. The Influence of Corrosion Resistance of Laser-Alloyed B Alloy Coatings[J]. Laser Technology,1994,18(1):6-16.
    [70]许伯藩,李安敏,潘应君,张细菊.CeO2对激光熔覆TiCp/Ni基复合涂层的影响[J].热加工工艺.2002(6):10-12.
    [71]潘应君,许伯藩,张细菊,吴新杰.稀土在激光熔覆金属陶瓷复合层中的行为[J].武汉科技大学学报:自然科学版,2003,26(1):8-10.
    [72]Huang N C,Hu S J,Xie G R,et a.l Effect of Rare Earth Element Cerium on Mechanical Properties and Morphology of TiN Coating Preparedby Arc Ion Plating[J]. Journal of Rare Earths,2003,21(3):380-383.
    [73]Xu Xiangrong,Huang Nacan,Yang Shaomin,Wu Qibai.Effect of ceriumon structureand properties of tin and (t, i cr)n coatings prepared by arc ion plating[J] Journal of Rare Earths,2006,24 (S1):170-174.
    [74]尚丽娟.我国应用稀土改性金属表面的现状[J].稀有金属,1995,19(2):132-135.
    [75]沈以赴,咚百运,冯钟潮,等.稀土在激光熔覆涂层中的分布及其对腐蚀性能的影响[J].材料研究学报.1998,12(5):434-436.
    [76]徐向荣,黄拿灿,杨少敏.表面改性中稀土提高材料抗高温氧化及耐蚀性能的作用[J].材料保护,2005,38(8):35-38.
    [77]徐向荣,黄拿灿,杨少敏.稀土表面改性在改善高温抗氧化和耐蚀性方面的应用[J].热处理技术与装备.2006,27(3):8-12.
    [78]束德林.金属力学性能[M].北京,机械工业出版社,2002:16-60.
    [79]JI Wei. Effect of RE on Cast Structure and Properties of High Manganese Aluminium Bronze[J] Journal of Rare Earths,1996,14(1):36-40.
    [80]MAO Xiangyang,FANG Feng,JIANG Jianqing, TAN Rongsheng.Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater [J].Journal of Rare Earths, 2009,27(6):1037-1041.
    [81]Utigard T A,Friesen K,Roy R R,et al.The properties and uses of fluxes in molten aluminium processing [J].JOM,1998(11):38-41.
    [82]Osorio W R,Spinelli J E,Boeira A P,Freire C M,Garcia A.The influences of macro-segregation,intermetallic particles,and dendritic spacing on the electrochemical behavior of hypoeutectic Al-Cu alloys[J].Microscopy Research and Technique.2007,70:928.
    [83]LI Wensheng,LU Yang,YUAN Kexiang,etel.Effects of cerium on microstructure and bonding strength of Cu-14Al-4.5Fe bronze plasma sprayed coating[J] Journal of Rare Earths,2011,29 (4):363-369.
    [84]赵卫民,王勇,吴开源,等.NiCrBSi-RE粉体制备新工艺及其对喷熔层组织性能影响 [J].焊接学报,2004,25(6):93-96.
    [85]Wang Xinhong, Zhang Min. Zou Zengda. etal.Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings[J].Surfaceand Coatings Technology,2002, 161:195-199.
    [86]Wang Kunlin,Zhang Qingbo,Wei Xingguo,etal.Rare-earth La2O3 modification of laser-clad coatings [J].Journal of Materials Science,1998,33(14):3573-3577.
    [87]Mikio Kobayashi,Yoshihiro Nishisu,Kazuya Koyama,et al.Synthesis of multicomponent powders containing rare earths using aqueous processing [J].TMS Annual Meeting. Sponsored by TMS Minerials,Metals & Materials Soc(TMS),1998:349-360.
    [88]遂允龙,谷丰,戴洪斌,等.感应熔涂工艺的研究[J].哈尔滨理工大学学报,2003,8(1):82-84.
    [89]张增志,韩桂泉,付跃文,等.高频感应熔涂、激光熔覆与氧乙炔喷焊GNi-WC25涂层的性能研究[J].材料工程,2003(2):3-6.
    [90]马伯江,赵程,侯俊英.45钢表面真空炉中和高频感应熔覆Ni-Cr合金的研究[J].金属热处理,2006,31(7):21,44,54,64.
    [91]K.antleon,O.Kessler,F.Hoffann, et al Induction surface hardening of hard coated steels [J].Surface and Coatings Technology,1999(120-121):495-501.
    [92]蔚晓嘉,郭治安,薛锦.铜基类涂层的感应重熔特性研究[J].西安交通大学学报,1997,31(6):69-73,79.
    [93]张增志,牛俊杰,付跃文.感应熔覆镍基合金粉体涂层工艺和性能研究[J].材料热处理学报,2004,25(4):22-23,33,43.
    [94]H.J.Eisenpardt.喷涂自熔合金的感应重熔[C].第九届国际热喷涂年会论文集.1984.
    [95]贺定勇,许静,马然,等.高频感应熔覆WC增强Ni60合金涂层性能研究[J].材料热处理学报,2008,29(3):138-141.
    [96]KIM Hwan-cheol,OH Dong-young,SHON In-jin.Synthesis of WC and dense WC-xvol%Co hard materials by high-frequency induction heated combustion method [J].International Journal of Refractory Metals&Hard Materials,2004,22(1):41-49.
    [97]郝虎在,蔚晓嘉,郭治安.Co基涂层的感应重熔特性[J].山西矿业学院学报,1995,13(3):249-154.
    [98]刘俊玲,郝虎在,郭治安.感应重熔铁基自熔合金熔敷层显微组织[J].山西矿业学院学报,1995,13(1):47-52.
    [99]张新子,牛显明,闫峰云,等.感应熔涂新工艺研究[J].特种铸造及有色合金,2008,28(4):265-267.
    [100]徐越兰,余进,王建平,等.铜钢熔敷焊工艺方法分析研究[J].南京理工大学学报, 2002,26(4):401-405.
    [101]张增志,韩桂泉,付跃文,等.高频感应熔覆Ni60合金粉体涂层的研究[J].金属热处理,2003,28(3):43-46.
    [102]Zhang Zeng-zhi,Han Gui-quan. Study on Microstructure of Ni60coating by HF Induction Heating[C].Proceedings of InternationalThermal Spraying Seminar'02,Anshan,China,2002:73-77.
    [103]Han-Young Lee. Akira Ikenaga, Sung-Hoon Kim, et al.The effects of induction heating rate on properties of Ni-Al based intermetallic compound layer coated on ductile cast iron by combustion synthesis [J].Intermetallics,2007,15(8):1050-1056.
    [104]Takasal N,Sochi Y. Fusing of sprayed Ni-base coatings by induction heating[A]. Proceeding of the international thermal spray conference and exposition [C].1992: 273-278.
    [105]Matsubara Y,Kumaguwa M.Application of self-fused alloy coating by HF induction heating[A].Proceeding of ITSV'95 [C]. Kobe,Japan,1995:1001-1004.
    [106]Matsubara Y,Tomiguchi A. Post trentment of plasma sprayed WC-Co-Ni coatings by High frequency induction heating [A].Proceeding of ITSV'95 [C].Kobe,Japan,1995: 1415-1418.
    [107]Matejka D,Benko B. Plasma spraying of metallic and ceramic maferical [M].John& Wliey SonsLtd,1989:273.
    [108]王振廷,陈华辉,孙俭峰.原位自生TiC颗粒增强金属基复合材料涂层的组织与性能[J].金属热处理,2006,31(6):57-60.
    [109]王振廷,王永东,陈华辉.感应熔覆原位自生TiC/Ni基复合涂层的组织与耐磨性研究[J].材料保护,2006,39(5):10-12.
    [110]韩桂泉,张增志,付跃文.高频感应熔涂NiCrBSi合金涂层的组织与性能研究[J].润滑与密封,2006(6):95-97,101.
    [111]赵程,刘伟,宫明.铸铁表面感应加热熔覆Zn的研究[J].焊接,2007(10):27-29.
    [112]Junling liu, Huzai Hao, Zhian Guo. Interface morphology of Iron-Base self fusing alloy coating with induction-refusing [A].Proceeding of ITSC'95 [C].1995:537-541.
    [113]朱润生.自熔合金涂层高频感应重熔工艺技术研究[J].粉体冶金工业,2001,11(4):12-17.
    [114]张增志,韩桂泉,付跃文.感应熔覆涂层涡流分布的控制方法[J].金属热处理,2003,28(7):58-61.
    [115]张增志.高效快速感应熔涂技术[M].北京:冶金工业出版社,2001.
    [116]沙成斌,汤文博,孙玉福,等.熔剂对高频熔覆耐磨覆层工艺性能的影响[J].热加工工 艺,2006,35(15):56-58.
    [117]汤文博,孙玉福,汪喜和,等.熔剂对高频熔敷Crl3Ni2B耐磨层工艺性能的影响[J].机械工程材料,2006,30(10):96-98.
    [118]HyungJun Kim,ByoungHyun Yoon,ChangHee Lee,et al.Wear performance of the Fe-based alloy coatings produced by high-frequency induction heating deposit [J]. Wear,2002 (249):846-852.
    [119]李刚,杨莉,张娜.高频感应熔覆铁基合金涂层组织及性能研究[J].材料热处理技术,2009,38(18):96-98.
    [120]Ji HuiKim,Jong Chul Yoon,Seon Jin Kim.The effect of Boron on the thermal fatigue behavior of Iron-chromium-carbon-silicon alloy [J].surface & coatings technology,2007, 106(4):10-16.
    [121]刘俊玲,郭治安.涂层的感应重熔工艺[J].焊接学报,1994,15(1):1-4.
    [122]王克鸿,徐越兰,王建平,等.弹带熔敷扩散焊接技术研究[J].兵器材料科学与工程,2002,25(2):34-36.
    [123]马幼平,陆旭忠,徐可为.镁合金ZM5高频感应表面合金化改性层的腐蚀行为[J].稀有金属材料与工程,2003,32(3):191-193.
    [124]蔚晓嘉,郝虎在,郭治安.非自熔性铜粉与铸铁喷焊结合的界面研究[J].太原理工大学学报,2007,38(5):408-411.
    [125]刘应虎,郑建能,郑强.铸铜ZCuA10Fe3与Q235B钢气体保护焊焊接工艺研究[J].大型铸锻件,2008(2):11-14,31.
    [126]苏在静,李福刚.紫铜与低碳钢的熔化极氩弧焊[J].焊接,2002(1):28-30.
    [127]蔚晓嘉,赫虎在,薛锦.涂层感应重熔的电磁场与温度分布[J].西安交通大学学报,1996,30(7):11-115,122.
    [128]机械工业职业技术鉴定指导中心.电焊工技术[M].北京:机械工业出版社,2004.
    [129]陈俐,潘春旭,胡贞英.TIG堆焊铝青铜接头组织分析[J].武汉造船,1998(4):33-35.
    [130]S.Alam,S.Sasaki, H.Shimura. Friction and wear characteristics of aluminum bronze coating on steel substrates sprayed by a low pressure plasma technique[J]. Wear,2001, 248(1-2):75-81.
    [131]H.A.Sundquist,A.Matthews,D.G.Teer. Ion-plated aluminum bronze coating for sheet metal forming dies[J]. Thin Solid Film,1980,73(2):309-314.
    [132]任振安,郭作兴,吴山力.工艺参数对铜基激光熔覆层组织及耐磨性的影响[J].焊接学报,2002,23(1):69-72.
    [133]支龙,王耀华,谭业发,等.铝青铜热喷涂层/GCrl 5钢干摩擦磨损性能[J].机械工程材料,2005,29(5):52-53.
    [134]丁惠麟,辛智华.实用铝、铜及其合金金相热处理和失效分析[M].北京:机械工业出版社,2008.
    [135]徐建林,喇培清,陈超,路阳,王智平,李海兰,刘明朗.铸造铝青铜合金Cu-14Al-4Fe-Mn的摩擦磨损性能[J].摩擦学学报,2004,24(5):438-442.
    [136]韦建军,唐永建,王朝阳,吴卫东,雷海乐,杨向东.纳米CuAl2-Al复合微粉热稳定性的研究[J].四川大学学报:自然科学版,2006,43(3):610-613.
    [137]徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000.
    [138]黄继武.MDI Jade使用手册[J].长沙:中南大学材料科学与工程实验教学中心,2006.
    [139]M. Vardelle, A. Vardelle, P. Fauchais. Spray parameters and particle behavior relation shipsduring plasmaspraying. J. Thermal[J]. SprayTechnOl.,1993,2(1):79-91.
    [140]A. Kulkarni,A. Vaidya,A. Goland, etal.Processing effects on porosity-property correlationsin plasma sprayed yttria-stabilized zirconia coatings[J]. Mate. Sci. Eng, 2003,A359(1-2):100-111.
    [141]Fauchais P. Understanding plasma spraying[J] Journal of Physica D:Applied Physics, 2004,7:86-108.
    [142]Fauchais P, Fukumoto M,Vardelle A,etal.Knowledge concerning splat formation: aninvited review [J].Journal of Thermal Spray Technology,2004,13(3):337-360.
    [143]Escure C,Vardelle M,Fauchais P. Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates [J].Plasma Chemistry and Plasma Processing,2003,23 (2):185-221.
    [144]M. P. Planche, H. Liao, B. Normand, etal.. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes[J].Surf. Coat. Technol.,2005,200(7):2465-2473.
    [145]C. J. Li, K. Sonoya, F. H. Li. Study of influence of plasma spray conditionson the Mechanical properties of Ni-50% Cr coatings by orthogonal experimental design [J]. Welding in the world,2000,44(3):22-28.
    [146]M. Gell, E. H. Jordan, YH. Sohn, etal. Development and implementation of plasma sprayed nanostructured ceramic coatings[J]. Surf. Coat. Technol.,2001,146-147(9): 48-54.
    [147]季玮.稀土对高锰铝青铜铸态组织和性能的影响[J].中国稀土学报,1995,13(1):54-59.
    [148]谈荣生,孙连超.稀土在铜及铜合金中的应用和研究现状[J].1995,13(专辑):445-449.
    [149]赵文珍.自熔合金覆层工艺研究[J].机械工程材料,1996,20(4):13-15,22.
    [150]王吉会,姜晓霞,李诗卓.微硼对钢组织和性能的影响[J].材料研究学报,1995,9(5):489-493.
    [151]张胜华,周永丽,林高用,覃业霞.稀土对合金组织和耐蚀性的影响[J].中南工业大学学报:自然科学版,2000(2):170-172.
    [152]曾秋莲,章爱生,魏秀琴,周浪.微量稀土和硼在铜及铜合金中的作用[J].特种铸造及有色合金,2002(3):55-57.
    [153]范世平.稀土元素La在铸造纯铜中的行为及对其性能的影响[D].沈阳:辽宁工程技术大学,2003.
    [154]宋世漠,王正烈,李文斌,修订.物理化学[M].北京:北京高等教育出版社,1993.
    [155]王执福,李河清,等.稀土元素提高耐热合金抗氧化性的机理[J].铸造,1997(7):46-49.
    [156]余宗森.稀土在钢铁中的应用[M].北京:冶金工业出版社,1987.
    [157]铃木寿,陈汝团,译.添加微量元素对纯铜加工材退火软化行为的影响[J].铜加工,1986(2):34-42.
    [158]T.C. Hanson,G.S. Settles. Particle Temperature and velocity effects on the porosity and oxidation of an hvof corrosion-control coating[J].Journal of Thermal Spray Technology,2003,12(3):403-415.
    [159]Chang-Jiu Li,Yu-Yue Wang. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating[J]. Journal of Thermal Spray Technology,2002,11(4):523-529.
    [160]高荣发.热喷涂[M].北京:化学工业出版社,1991.
    [161]纪刚昌.超音速火焰喷涂Cr3C2-NiCr涂层组织结构与性能的研究[D].西安:西安交通大学,2000.
    [162]Lech Pawlowski. The Science and Engineer ing of Thermal Spray Coating [M]. UK, John Wiley & Sons (Asia) Pte. Ltd,1995.
    [163]Young-ming Yang,Hanlin Liao,Christian Coddet.Simulation and application of a HVOF process for MCrAlY thermal spraying[J]. Journal of Thermal Spray Technology,2002, 11(1):36-43.
    [164]章小峰.HVOF喷涂自润滑复合涂层的形成机理及特性研究[D].武汉:华中科技大学,2008.
    [165][英]John Davies, Peter Simpson.感应加热手册[M].张淑芳,等译.北京:国防工业出版社,1985.
    [166]吴博文.铜-钢异种金属双丝焊工艺研究[D].南京:南京理工大学,2009.
    [167]王克鸿,徐越兰,余进.无熔深熔覆铜工艺[J].焊接学报,2001,22(6):69-72.
    [168]<<金相图谱>>编写组.金相图谱[M].北京:电力工业出版社,1980.
    [169]崔学军,程平,张海涛,等.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林 大学学报:工学版,2007,37(2):357-361.
    [170]韩彩霞,张柯柯,杨蕴林,等.钢与铜及钢合金的焊接研究现状[J].热加工工艺,2003(6):53-55.
    [171]姜晓飞,何鹏,冯吉才,等.CMT法30CrMnSi钢板表面熔敷CuSi3接头组织结构特征[J].焊接学报,2007,28(2):47-49.
    [172]李文生.高铝青铜的研制及腐蚀磨损机理研究[D].兰州:兰州理工大学,2006.
    [173]高彩桥.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [174]孙家枢.金属的磨损[M].北京:冶金工业出版社,1990.
    [175]JIA J H, CHEN J M,ZHOU H D,et al. Friction and wear properties of bron ze-graphite composite under water lubrication[J].Tribology International,2004,37(5):423-429.
    [176]周晶晶.超音速等离子喷涂Cu-14A1-X涂层摩擦磨损性能研究[D].兰州:兰州理工大学,2011.
    [177]徐建林,杨波,龙大伟,等.铝青铜表面激光熔覆层的润滑摩擦性能[J].有色金属,2010,62(2):24-27.
    [178]Xinlin Wang,Shihong Shi,Qiguang Zheng. Wear resistance of laser cladding and plasma spray welding layer on stainless steel surface[J].Chinese optics letters,2004,2(3): 151-153.
    [179]路阳,周晶晶,杨效田,等.滑动干摩擦条件下HVOF高铝青铜涂层的摩擦磨损性能[J].特种铸造及有色合金,2011,31(6):583-586.
    [180]Ji Wei.Effect of RE on cast structure and properties of hing manganese aluminium bronze[J].Journal of Rare Earths,1996,14(1):36-40.
    [181]ROHATGI A,VECCHIO K S,GRAY G T. The influence of stacking fault energy on the mechanical behavior of Cu-Al alloys:deformation twinning,work hardning and dynamic recovery [J]. Metal Mater Trans A,2001,32(1):135-145.
    [182]LI W S,WANG Z P,LU Y,et al. Friction and wearing behaviors of a novel aluminum bronze material for stainless steel utensils[J]. Wear,2006,259(2):155-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700