用户名: 密码: 验证码:
扬子地块西缘新元古代镁铁质—超镁铁质岩的地球化学特征及其地质背景——以盐边高家村杂岩体和冷水箐101号杂岩体为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,应用地球动力学研究镁铁质-超镁铁质岩石演化取得了一些重要进展。同时,不少镁铁质-超镁铁质层状侵入体中赋存具有重要经济价值的大型、乃至超大型岩浆硫化物型的铜、镍、铬、钴与铂族元素矿床和钒、钛磁铁矿矿床。
     研究表明,扬子地块西缘新元古代岩浆活动可以与其南缘和东南缘的新元古代岩浆活动进行对比。探讨这些新元古代岩浆岩成因对研究Rodinia超大陆的演化有重要意义。前人对扬子地块西缘的新元古代酸性岩浆活动研究较多,但对基性岩浆活动研究比较薄弱。因此,本论文选择扬子地块西缘最大的、也是最具代表性的高家村似层状镁铁质-超镁铁质杂岩体及其相关的含铜镍硫化物矿床的冷水箐镁铁质-超镁铁质杂岩体群为研究对象,针对已有研究的薄弱环节和不足之处,对岩石学和矿物学、主量元素和微量元素、Sr-Nd-Pb同位素,以及高精度年代学等方面进行深入研究。本研究拟解决的关键问题是:(1)确定川西盐边地区新元古代镁铁质-超镁铁质岩的形成时代和地球化学特征;(2)探讨镁铁质-超镁铁质岩浆演化与Cu-Ni-(PGE)矿床的成因联系,为评价盐边地区镁铁质-超镁铁质杂岩体的Cu-Ni-(PGE)成矿潜力提供可靠的理论依据;(3)了解岩浆源区地幔的特征、形成、演化和构造背景与Rodinia超大陆聚合和裂解的关系,从而进一步认识华南地区新元古代构造演化及其与Rodinia超大陆的关系。现在取得的主要认识有:
     1 高家村杂岩体和含Cu-Ni硫化物矿床的冷水箐杂岩体尽管规模不同,但都是分异良好的镁铁质-超镁铁质侵入体,属于堆晶岩系,均侵位于中元古代盐边群变质火山岩和片岩中。前者总体上呈似层状,根据岩石学特征可以分为两个堆积旋回,表明其形成过程中有两期岩浆侵入。而后者呈同心环状,主要受岩浆结晶分异控制。冷水箐101号杂岩体的底部和边缘产出铜镍硫化物矿体,金属矿物主要有磁黄铁矿、镍黄铁矿和黄铜矿,为典型的岩浆型铜-镍硫化物矿床。
     2 高家村杂岩体主体岩相中角闪辉长岩的单颗粒锆石U-Pb年龄为(840±5)Ma,表明扬子地块西缘在新元古代时期存在较大规模的基性岩浆活动。冷水箐101号杂岩体上部角闪辉长岩的角闪石~(40)Ar/~(39)Ar年龄为(821±1)Ma。因此,两者在形成时代上很可能是一致的。
     3 高家村杂岩体和冷水箐矿床在稀土元素模式和原始地幔标准化的微量元
    
    素分布模式上非常相似,表明它们很可能来自同一地慢源区。两者均具有正的£
    Nd(t)值,表明来源于亏损的地慢源区。但大多数样品显示L既E和LILE富集
    的特征,明显不同于慢源的洋中脊玄武岩(MORB),而与Hawaiian洋岛玄武岩
    (OIB)和Ethi0Pian大陆溢流玄武岩(C FB)很相似,这些特征表明高家村杂岩体
    和冷水管岩体很可能来源于似OIB的地慢源区。
     4高家村杂岩体和冷水餐地区杂岩体的岩浆性质不同。前者的原始岩浆的
    MgO为8%左右,Fe0T为9%左右的亚碱性玄武岩岩浆。而后者的原始岩浆的
    Mgo为10一11%左右,Fe0T为9%左右的碱性一亚碱性的苦橄质岩浆。
     5两者岩浆在上升过程中遭受地壳混染的途径不同。高家村杂岩体的岩浆可
    能主要受到扬子古下地壳和/或扬子地块西缘不成熟古岛弧沉积物(俯冲洋壳)
    再循环作用形成的富集型地慢(E MI)的混染;而冷水管杂岩体的岩浆可能是受
    到扬子地块西缘840Ma以前的物质或者变质核(可能是围岩盐边群)的混染。地
    壳混染作用是导致这两个岩体具Nb一Ta亏损的重要原因。而混染方式的差异是造
    成前者具有低的Th含量和强烈Th负异常的特征,而后者Th含量较高并无明显
    的Th负异常的原·因。因此,高家村和冷水等杂岩体的形成都与地壳混染作用和
    岩浆的结晶分异作用相关,其过程类似于AFC过程。
     6地壳混染的途径不同及由此产生的不同性质岩浆也是造成两者含矿性差
    异的重要因素。
     7本文对“盐边蛇绿岩”的提法提出了质疑,认为盐边地区新元古代镁铁质
    一超镁铁质杂岩体的形成很可能与Rodinia超级大陆下的一个超级地慢柱活动有
    关。
    关键词:镁铁质一超镁铁质岩;地球化学;地质年代学;新元古代;高家村;冷水
    著;扬子地块西缘
Recently, several important progresses have been made in the geodynamics concerning the evolution of mafic and ultramafic rocks. Furthermore, numerous, economically important, large to giant magmatic Cu, Ni, Cr, Co, and platinum group elements (PGEs) sulphide deposits and Fe-V-Ti deposits are associated with mafic and ultramafic layered intrusions.Recent studies indicate that Neoproterozoic magmatic rocks on the western margin of the Yangtze craton correspond to those on the southern and southeastern margins. To understand their origin is potentially important to the study on the evolution of the supercontinent Rodinia. However, previous studies were focused on Neoproterozoic acid magmatic rocks on the western margin of the Yangtze craton, with little attention being paid to basic magmatic rocks. The Gaojiacun intrusive complex is a typical and the biggest Neoproterozoic mafic-ultramafic intrusion on the western margin of the Yangtze craton. The Lengshuiqing intrusive complex hosts magmatic Cu-Ni sulphide deposit. Thus, the Gaojiacun and Lengshuiqing mafic-ultramafic intrusive complexes are chosen for the studying objects in this dissertation. Petrology and mineralogy, major, trace element, Sr-Nd-Pb isotopes, and precise geochronology are presented to provide an insight into geochemistry and tectonic setting of the Gaojiacun and Lengshuiqing complexes. The purposes of this study are as follow: (1) to determine the forming age and geochemical characteristics of the Neoproterozoic mafic-ultramafic rocks on the western margin of the Yangtze craton; (2) to discuss the genetic relationship between basic magma evolution and Cu-Ni - (PGE) deposit, and to provide constraints on assessing the ore-forming potential of the mafic-ultramafic intrusive complexes in the Yanbian area, Sichuan province; (3) to characterize the nature of their mantle sources and processes, and to understand the relation between tectonic setting and the assembly and breakup of the supercontinent Rodinia. Studies on the geochemistry and tectonic setting of the mafic-ultramafic intrusive complexes on the western margin of the Yangtze craton play an important role in understanding the processes of Neoproterozoic tectonic
    
    evolution and clarifying the debates on the assembly and breakup of the supercontinent Rodinia in South China. The present study leads to the following conclusions:(1) The Gaojiacun intrusion and the Lengshuiqing intrusion hosting magmatic Cu-Ni sulphide ore deposit are both well-differentiated mafic-ultramafic intrusive complexes and intrude into the meta-volcanic rocks and schists of the Mesoproterozoic Yanbian Group, although their sizes are different. Both intrusions are composed of mafic-ultramafic accumulating rocks. The former is a layered intrusion characterized by two accumulating cycles, corresponding to two pulses of parental magma. In contrast, the latter is a concentric ring body formed by fractional crystallization. The Cu-Ni sulphide ores, representing a typical magmatic sulphide deposit, occur at the bottom and in the margin of the Lengshuiqing No. 101 complex and consist mainly of pyrrhotite, pentlandite and chalcopyrite.(2) The single zircon U-Pb age of (840 + 5) Ma for intrusion of the hornblende gabbro in the major rock phase of the Gaojiacun complex indicates that there occurred extremely intense Neoproterzoic basic magmatism on the western margin of the Yangtze craton. The 40Ar/39Ar dating of hornblende from the upper hornblende gabbro of the Lengshuiqing No. 101 complex records an age of (821 ± 1) Ma. It is suggested that the formation of the Gaojiacun intrusion is almost contemporaneous with that of the Lengshuiqing intrusion.(3) The chondrite-normalized rare earth element (REE) patterns and the primitive mantle-normalized trace element "spider diagram" of the Gaojiacun complex are similar to that of the Lengshuiqing complex. These data indicate that they are likely derived from the same mantle source. The samples from the two intrusions are characterized by positive ε Nd (t
引文
Abu, El-Ela. 1999. Neoproterozoic tholeiitic arc plutonism: petrology of the gabbroic intrusions in the El-Aradiya area, Eastern Desert, Egypt. J Afri Earth Sci, 28: 721-741
    Amelin, Y V, Neymark, L A, Neymark, L A, Ritsk, E Y, Nemchin, A A. 1996.Enriched Nd-Sr-Pb isotopic signatures in the Dovyren layered intrusion (esstern Siberia, Russia): evidence for source contamination by ancient upper-crustal material. Chem Geol, 129: 39-69
    Arndt, N T, and Christensen, U. 1992. The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constrains. J Geophys Res, 97: 10967-10981
    Arndt, N T, Kerr, A C, Tarney, J. 1997.Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts. Earth Planet Sci Lett, 146: 289-301
    Ashwal, L D, Demaiffe, D, and Torsvik, T H. 2002. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type arc origin. J Petrol, 43(1): 45-83
    Barberi, F, Santacroe, R, Varet, J. 1982. Chemical aspects of rift magmatism. Palmson, G. Continental and Oceanic Rifts. Washinton DC: American Geophysical Union, 223-258
    Barnes, S J, and Picard, C P. 1993. The behaviour of platinum-group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec. Geochim Cosmochim Acta, 57, 79-87
    Barnes, S J, Melezhik, V A, Sokolov, S V. 2001. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. The Canadian Mineralogist, 39, 447-471
    Barth, M G, McDonough, W F, Rudnick, R L. 2000.Tracking the budget of Nb and Ta in the continental crust. Chem Geol, 165,197-213
    Beard, J S. 1986. Characteristic mineralogy of arc-related cumulate gabbros: implication for the tectonic setting of grabbroic plutons and for andesite genesis. Geology, 14: 848-851
    Bickle, M J. 1982. The magnesium contents of kamatiitic liquids. In: Arndt, N T, and Nisbet, E G, ed. Komatiites. George Allen and Unwin, London, p.479-494
    Boynton, W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P, ed. Rare Earth Element Geochemistry. Elservier, 63-114
    Cameron, M, Collerson, K D, Compston, W, and Morton, R. 1981. The statistical analysis and interpretation of imperfectly-fitted Rb-Sr isochrones from polymetamorphic terrains. Geochim Cosmochim Acta, 45, 1087-1097
    Casquet, C, Galindo, C, Tornos, F, Velasco, Velasco, F, Canales, A. 2001. The Aguablanca Cu-Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S). Ore Geol Rev, 18: 237-250
    Chen, J-F, Foland, K A, Xing, F M, et al. 1991. Magmatism along the southeastern margin of the Yangze Block: Precambrian collison of the Yangtze and Cathaysia blocks of China. Geology, 19, 815-818
    Chen, J-F, Jahn, B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284: 101-133
    Coish, R A, and Taylor, L A. 1979. The effect of cooling rate on texture and pyroxene chemistry in DSDP leg 34 basalt: a microprobe study. Earth Planet Sci Lett, 42: 389-398
    
    Ernst, R E and Depaolo, D J. 1997. Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney, J J, and Coffin M F, ed. Large Igneous Provinces: Continental, Oceanic and Planetary, Am Geophy Union Monogr, 100: 45-94
    Ernst, R E, Grosfils, E B, and mege, D. 2001. Giant dyke swarms: Earth, Venus, and Mars. Annu Rev Earth Planet Sci, 29: 489-543
    Ernst, R E, Head, J W, Parfitt, E, Grosfils, E, and Wilson, L. 1995. Giant radiation dyke swarms on Earth and Venus. Earth Sci Rev, 39: 1-58
    Fahrig, W F. 1987. The tectonic settings of continental mafic dyke swarms: failed arm and early passive margin. In: Halls, H C, and Fahrig, W F, ed. Mafic dyke Swarms. Geol Assoc Can Spec Pap, 34: 101-121
    Faure, G. 1986. Principles of isotope geology (second edition). New York: John Wiley and Sons Faure, G. 1998. Isotope geochronology and its applications to geology. 地学前缘, 5(1-2): 17-39
    Fetter, A H, Goldberg, S A. 1995. Age and geochemical characteristics of bimodal magmatism in the Neoproterozoic Granfather Mountain Rift Basin. J Geol, 103: 313-326
    Francis, R D. 1990. Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygen abundance in Fe-S-0 liquids on the ability of those liquids to partition metals from MORB and komatiitic magmas. Chem Geol, 85: 199-213
    Frey, F A. 1984. Rare earth elements abundances in upper mantle rocks. In: Henderson, P, ed. Rare Earth Element Geochemistry. 153-203
    Gerstenberger, H. 1989. Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb-Sr isochron intercepts. Earth Planet Sci Lett, 93: 65-75
    Halls, H C, and Fahrog, W F, ed. 1987. Mafic dyke Swarms. Geol Assoc Can Spec Pap, 34: p.503
    Hamlyn, P R, Keays, R R, Cameron, W E, Crawford, A J, Waldron, H M. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochim Cosmochim Acta, 49: 1797-1811
    Hammarstrom, J M, and Zen, E-An. 1986Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71: 1297-1313
    Hart, S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753-757
    Hart, S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273-296
    Haughton, D R, Roeder, P L, and Skinner, B J. 1974. Solubility of sulfur in mafic magmas. Econ Geol, 69, 451-467
    Heaman, L M, LeCheminant, A N, and Rainbird, R H. 1992. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break -up of Laurentia. Earth Planet Sci Lett, 109: 117-131
    Hoek, J D, and Seitz, H M. 1995. Continental mafic dyke swarms as tectonic indicators: an example from the Vestford Hills, east Antarctica. Precamb Res, 75: 121-139
    Hsu, K J, Li, J L. 1990. Chen, H, et al. Tectonics of South China: key to understanding West Pacific geology. Tectonophy, 183: 9-39
    Huppert, H E, and Sparks, R S J. 1985. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet Sci Lett, 74: 371-386
    Ingle, S, Weis, D, Scoates, J S, Frey, F A. 2002. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-eastern Gondwanan margins. Earth Planet Sci Lett, 197,35-50
    
    Jahn, B M, Wu, F-Y, Lo, C-H, Tsai, C-T. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
    Jana, D, and Walker, D. 1997. The influence of sulfur on partitioning of siderophile elements. Geochim Cosmochim Acta, 61: 5255-5277
    Keays, R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34: 1-18
    Krogh, T E. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta, 48: 505-511
    Krogh, T E. 1978. Vapour transfer for these dissolution of zircons in a multi-sample capsule at high-pressure. In: Zartman R E, ed. Short Papers of the Fourth International Conference on Geochronology, Cosmochronology and Isotope Geology. USGS Open-File Rep, 78-701: 233-234
    Lambert, D D, Foster, J G, Frick, L R. 1998.Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system. Econ Geol, 93: 121-136
    Lambert, D D, Morgan, J W, Walker, R J, Shirey, S B, Carlson, R W, Zientek, M L, and Koski,M S. 1989. Rhenium-osmium and samarium-neodymium isotopic systematics of the Stillwater Complex. Science, 224: 1169-1174
    Lambert, D D, Walker, R J, Morgan, J W, Shirey, S B, Carlson, R W, Zientek, M L, Lipin, B R, Koski, M S, and Cooper, R L. 1994. Re-Os and Sm-Nd isotope geochemistry of the Stillwater Complex, Montana: implications for the petrogenesis of the J-M Reef. J Petrol, 35: 1717-1753
    Le Bas, M J. 1962. The role of aluminium in igneous clinopyroxenes with relation to their parentage. American J Sci, 260: 267-288
    Leake, B E. 1965. The relationship between composition of calciferous amphibole and grade of metamorphism. In: Pitcher, W S, and Flynn, G W, ed. Controls of metamorphism.299-318. Oliver and Boyd, London
    Leake, B E. 1978. Nomenclature of amphibole. Mineral Mag, 42: 533-563
    Leterrier, J, Maury, R C, Thonon, P, Girard, D, and Marchal, M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett, 59: 139-154
    Li, C, Naldrett, A J, Ripley, E M. 2001. Critical factors for the formation of a nickel-copper deposit in an evolved magma system: lesson from a comparison of the Pants Lake and Voisey's bay sulfide occurrences in Labrador, Canada. Mineral Deposita, 36: 85-92
    Li, C, Ripley, E M, Maier, W D, Gomwe, T E S. 2002. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: evidence for sulfur contamination and multiple magma emplacements. Chem Geol, 188: 149-159
    Li, X H, and McCulloch, M T. 1996. Selular variations in the Nd isotopic composition of Late Proterozoic sediments from the southern margin of the Yangrtze Block: evidence for a Proterozoic continental collision in SE China. Precamb Res, 76: 67-76
    Li, X H, Li, Z X, Ge, W, et al. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precamb Res, 122:45-83
    
    Li, X H, Li, Z X, Zhou, H, et al. 2002a. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangding Rift of South China: implications for the initial rifting of Rodinia. Precamb Res, 113: 135-155
    Li, X H, Zhao, J X, McCulloch, M T, et al. 1997. Geochemical and Sm-Nd isotopic study of Late Proterozoic ophiolites from southeastern China: petrogenesis and tectonic implications. Precambrian Res, 81, 129-144
    Li, X H, Zhou, G Q, Zhao, J X, et al. 1994. SHRIMP ion mocroprobe zircon age and Sm-Nd isotopic characteristics of the NE Jiangxi Ophiolite and its tectonic implications. Chinese J Geochemistry, 13, 317-325
    Li, X H. 1997. Geochemical and Sm-Nd isotopic study of the Longsheng Ophiolite from the southern margin of Yangtze Craton: implications for Proterozoic tectonic evolution in SE China. Geochem J, 31,323-337
    Li, X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia assembly. Precamb Res, 97, 43-57
    Li, Z X, Li, X H, Kinny, P D, et al. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 173: 171-181
    Li, Z X, Li, X H, Kinny, P D, et al. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precamb Res, 122: 85-109
    Li, Z X, Li, X H, Zhou, H, et al. 2002.Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 163-166
    Li, Z X, Zhang, L, Powell, C M. 1995. South China in Rodinia: part of the missing link between Australia-east Antarctica and Laurentia? Geology, 23: 407-410
    Li, Z X, Zhang, L, Powell, C M. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Aust J Earth Sci, 43: 593-604
    Ling, W, Gao, S, Zhang, B, et al. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precamb Res, 122:111-140
    Lugmair, G W, Haiti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett, 39: 349-357
    McDonough, W F, Sun, S S. 1995. The composition of the Earth. Chem Geol, 1995, 120: 233-253
    McDougall, I. and Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar method. New York: Oxford University, 1-269
    Morgan, J W, Wandless, G A, Petrie, R K, and Irving, A J. 1981. Composition of the earth's upper mantle--I. siderophile trace elements in ultramafic nodules. Tectonophysics 75, 47-67.
    Naldrett, A J. 1989. Magmatic Sulfide Deposits. Oxford Monograph Geology and Geophysis, 14. Claredon Press, p. 186
    Naldrett, A J. 1997. Key factors in the genesis of Noril'sk, Subdury, Jinchuan, Voisey's Bay and other world-class Ni-Cu-PGE deposits: implications for exploration. Aust J Earth Sci, 44: 283-316
    Naldrett, A J. 1999. World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineral Deposita, 34, 227-240
    
    Park, J K, Buchan, K L, Harlan, S S. 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagmatism of ca. 780Ma mafic intrusions in western North America. Earth Planet Sci Lett, 132: 129-139
    Peach, C L, Mathez, E A, and Keays, R R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta, 54: 3379-3389
    Pearce, J A, Norry, M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol, 69: 33-47
    Pitcher, W S, and Bussell, W A. 1985. Andean dyke swarms: andesite in synplutonic relationship with tonalite. In: Pitcher, W S, Altherton, M P, Cobbing, I J, and Beckinsale, R D, ed. Magmatism at a Plate Edge: the Peruvian Andes. Blackie, 102-107
    Puchtel, I S and Humayun, M. 2000. Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta, 64: 4227-4242.
    Qi, L, Hu J, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507-513
    Rehkamper, M, Halliday, A N, Fitton, J G, Lee, D C, Wieneke, M, Arndt, N T. 1999. Ir, Ru, Pt, and Pd basalts and komtiites: new constrains for the geochemical behavior of the platinum-group elements in the mantle. Geochim Cosmochim Acta, 63: 3915-3934
    Revillon, S, Arndt, N T, Hallot, E, Kerr, A C, Tarney, J. 1999. Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 49: 1-21
    Ripley, E M, Park, Y R, Li, C, Naldrett, A J. 1999. Sulfur and oxygen isotopic evidence of county rock contamination in the Vbisey's Bay Ni-Cu-Co deposits, Labrador, Canada. Lithos, 47, 53-68
    Roeder, P L, and Emslie, R F. 1970. Olivine-liquid equilibrium. Contrib Mineral Petrol, 29: 275-289
    Roger, F, Calassou, S. 1997. U-Pb geochronology on zircon and isotopic geochemistry (Pb, Sr and Nd) of the basement in the Songpan-Ganzi fold belt (China). C.R. Acad. Sci. Ser. II, 324: 819-826
    Rudnick, R L, and Fountain, D M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophy, 33: 267-309
    Sinclair, J A. 2001.A re-examination of the "Yanbian Ophiolite Suite": evidence for western extension of the Mesoproterozoic Sibao Orogen in South China. Geol Soc Aust Abst, 65: 99-100
    Steiger, R H, Jager, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett, 36: 359-362
    Sun, C M, Vuagnat, M. 1992. Proterozoic ophiolites from Yanbian and Shimian (Sichuan province, China): petrography, geochemistry, petrogenesis, and geotectonic environment. Schweiz mineral petrogr mitt, 72: 389-413
    Sun, S-S, and McDonough, W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A D, and Norry, M J, ed. Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313-345
    Taylor, S R, and McLennan, S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, p.312
    Troger, W E. 1971. Optische bestimmung der gesteinsbildenden minerale. 参见:北京大学地质 学系岩矿教研室编.1979,光性矿物学
    Wa
    
    Wang, J and Li, Z X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precamb Res, 2003, 122: 141-158
    Wendlandt, R F. 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures. American Mineralogist, 67: 877-885
    White, W M, Hofmann A W, Puchel, H. 1987. Isotopic geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res, 92: 4881-4893
    Wilson, A H, and Prendergast, M D. 1989. The Great Dyke of Zimbabwe-Ⅰ: tectonic setting, stratigraphy, petrology, structure, emplacement and crystallization. In: Prendergast, M D, and Jones, M J, ed. Magmatic sulphides-the Zimbabwe volume. Institute of Mining and Metallurgy, 1-20
    Wilson, M. 1989.Ingeous Petrogenesis. London: Unwin Hyman, 1~466
    Winchester, J A, Floyd, P A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed igneous rocks. Earth Planet Sci Lett, 28: 459-469
    Wingate, M T D, Campbell, I H, Compston, W, et al. 1998. lon microprobe U-Pb ages for Neoproterozoic-basaltic magmatism in south-central Australia and implications for the breakup ofRodinia. Precamb Res, 87: 135-159
    Yale, L B, and Carpenter, S J. 1998. Large igneous provinces and giant dike swarms: proxies for supercontinent cyclicity and mantle convection. Earth Planet Sci Lett, 163: 109-122
    Zhao, J X, Malcolm, M T, Korsch, R J. 1994. Characterisation of a plume-related~800Ma magmatics event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett, 121: 349-367
    Zhou, M F, Kennedy, A K, Sun, M, et al. 2002. Neoproterozoic arc-related mafic intrusions along the Northern margin of South China: implications for the accretion of Rodinia. J Geol, 110: 611-618
    Zhou, M F, Yan, D P, Kennedy, A K, et al. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China, Earth Planet Sci Lett, 2002, 196: 51-67
    Zou, H B, Zindler, A, Xu, X S, Qi, Q. 2000. Major, trace element, and Nd, St, and Pb isotopic studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33-47
    陈根文,陈德荣,余孝伟.1992.四川拉拉铜矿黄铁矿标型特征研究.矿物岩石,12(3):85-91
    陈民扬,庞春勇.1994.煎茶岭镍矿床成矿作用同位素地球化学.见:陈好寿主编.同位素地球化学研究.杭州:浙江大学出版社,p.56-81
    成都理工学院同德区调队.1999.1/5万同德幅、猛粮坝幅、攀枝花市幅、金江幅区域地质调查报告
    从柏林.1988.攀西古裂谷的形成与演化.北京:科学出版社
    甘晓春,李献华,赵风春,等.1996.广西龙胜丹洲群细碧岩U-Pb及Sm-Nd等时线年龄.地球化学,25(3):270-276
    葛文春,李献华,李正祥,王剑,周汉文,李寄嵎.2000.宝坛地区透闪石化镁铁质岩石成因的地质地球化学证据.地球化学,29:253-258
    葛文春,李献华,梁细荣,等.2001.桂北元宝山宝坛地区约825Ma镁铁-超镁铁岩的地球化学及其地质意义.地球化学,30(2):123-129
    郭建强,游再平,杨军,等.1998.川西石棉地区田湾与扁路岗岩体的锆石U-Pb定年.矿物 岩石,18(1):91-94
    解
    
    解广轰,汪云亮,范彩云,张成江,郑榕.2000.与镁铁-超镁铁岩有关的超大型铜镍(铂)硫化物矿床研究.见:涂光炽,等著.中国超大型矿床(Ⅰ):250-270
    李继亮,张凤秋,王守信.1983.四川盐边元古代蛇绿岩的稀土元素分配的特点.见“岩石学研究(第三辑)”,北京:地质出版社,37-44
    李继亮.1984.川西盐边群的优地槽岩石组合.中国地质科学院院报,第9号21-34
    李建林,董榕生,刘鸿允.1990.扬子地区晋宁期板块构造的探讨.地质科学,(3):215-223
    李献华,李正祥,周汉文,等.2002b.川西关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义.中国科学(D辑),32(增刊):60-68
    李献华,李正祥,周汉文,等.2002c.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,9(4):329-338
    李献华,周汉文,丁式江,等.2000.海南岛“邦溪-晨星蛇绿岩片”的时代及其构造意义——Sm-Nd同位素制约.岩石学报,16(3):425-432
    李献华,周汉文,李正祥,等.2001.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学,30:315-322
    李献华,周汉文,李正祥,等.2002d.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义.地质科学,37(3):264-276
    李献华.1999a.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,28(1):1-9
    李献华.1999b.元古宙地壳增长和演化的地球化学制约——以华南为例.见郑永飞主编:“地球化学动力学”,北京:科学出版社,288-316
    李行,白文吉,陈方伦,等著.1995.扬子地块北缘和西缘前寒武纪镁铁层状杂岩及含铂性.西安:西北大学出版社,1-120
    廖文.1990.拉拉铜矿成因的稳定同位素及流体包裹体证据.西南矿产地质,4(1):36-40
    凌文黎,高山,欧阳建平,等.2002.西乡群的时代与构造背景:同位素年代学及地球化学制约.中国科学(D辑),32(2):101-112
    刘朝基,曾绪纬,金久堂.1988.康滇地区基性.超基性岩.重庆:重庆出版社
    刘月星.1997.铜镍硫化物矿床成矿作用及成矿模式研究.矿产与地质,11(4),225-231
    骆耀南.1983.康滇构造带的古板块历史演化.地球科学,1983(3),93-102
    骆耀南.1985.中国攀枝花.西昌裂谷带.见《中国攀西裂谷文集》(1),北京:地质出版社
    马国干,张自超,李华芹,等.1989.扬子地台震旦系同位素年代地层学的研究.宜昌地质矿产研究所所刊,14:83-124
    倪志耀,王仁民.1998.蛇绿岩鉴定的关键问题探讨.火山地质与矿产,1998,19(3):242-248
    潘杏南,赵济湘,张选阳,等.1987.康滇构造与裂谷作用.重庆:重庆出版社
    桑海清,王松山,裘冀.1996.冀东太平寨麻粒岩中辉石、角闪石、斜长石的氩亚年龄及其地质意义.岩石学报,12(3):390-400
    沈上越,张保民,潘兆橹.1989.一个典型环状分带基性-超基性杂岩体.科学通报,34(1):47-50
    沈上越,张保民,袁晏明.1986.四川盐边基性-超基性杂岩体的岩石学研究.地球科学,11(6):561-569
    沈渭洲,高剑峰,徐士进,等.2002a.扬子板块两缘泸定桥头基性杂岩体的地球化学特征和成因.高校地质学报,8(4):380-389
    沈渭洲,高剑锋,徐士进,等.2003a.四川石棉蛇绿岩的地球化学特征及其构造意义.地质论评,49(1):17-27
    
    沈渭洲,高剑锋,徐士进,等.2003b.四川盐边冷水箐岩体的形成时代和地球化学特征.岩石学报,19(1):27-37
    沈渭洲,李惠民,徐士进,等.2000.扬子地块两缘黄草山和下索子花岗岩体锆石U-Pb年代学研究.高校地质学报,6(3):412-416
    沈渭洲,徐士进,高剑锋,等.2002b.四川石棉蛇绿岩套的Sm-Nd年龄及Nd-Sr同位素特征.科学通报,47(20):1592-1595
    沈渭洲,徐士进,王汝成,等.1997.丹巴地区变玄武岩年代学的初步研究及其地质意义.地球学报,18(增刊):62-64
    四川地矿局106地质队四分队.1975康滇地轴中段前震旦纪地质特征及其板块构造的关系.地质科学,(2):107-113
    四川省地矿厅106地质队.四川省盐边县高家村基性-超基性大岩体普查找矿报告.1997
    四川省地质矿产局.1991.四川省区域地质志.北京:地质出版社
    四川省地质矿产局攀西地质大队.1999.1/5万7桂榜幅(1991)和1/5万泸沽幅(1995) 区域地质调查报告
    四川冶金地质勘探公司 603队.1984.四川省盐边县硫化铜镍矿区普查找矿(岩体评价)地质报告
    四川冶金地质勘探公司603队.1986四川省盐边县硫化铜镍矿区101号隐伏岩体评价地质报告
    孙传敏.1994a.川西元古代蛇绿岩与扬子板块西缘元古代造山带.成都理工学院学报,21(4):11-16
    孙传敏.1994b.四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义.矿物岩石,14(3):1-15
    汤中立,李文渊.1996.中国与基性-超基性有关的Cu-Ni(Pt)矿床成矿系列类型.甘肃地质学报,5(1):50-64
    王康明,阚泽忠.2001.扬子地块西缘对 Rodinia 形成期地质响应.华南地质与矿产,(4):22-27
    王松山,桑海清,胡世玲,等.1985.应用49-2反应堆进行~(40)Ar-~(39)Ar定年及迁安曹庄群斜长角闪岩年龄谱的地质意义.岩石学报,1(3):35-44
    邢凤鸣,徐祥,陈江峰,等.1992.江南古陆东南缘晚元古代大陆增生史.地质学报,66(1):59-72
    徐备,乔广生.1989.赣东北晚元古代蛇绿岩的Sm-Nd同位素年龄及原始构造环境.南京大学学报(地球科学),(3):108-114
    徐士进,沈渭洲,王汝成,等.1998.大水沟碲矿含矿斜长角闪岩的锆石U-Pb定年.科学通报,43(8):883-885
    徐士进,王汝成,沈渭洲,等.1996.松潘-甘孜造山带中晋宁期花岗岩的U-Pb和Rb-Sr同位素定年及其大地构造意义.中国科学(D辑),26(1):52-58
    颜丹平,宋鸿林,傅昭仁,等.1997.扬子地块西缘变质核杂岩带.地质出版社
    颜丹平,周美夫,宋鸿林,等.2002.华南在Rodinia古陆中的位置的讨论——扬子地块西缘变质-岩浆杂岩的证据及其与Seychelles地块的对比.地学前缘,9(4):49-50
    杨星,李行,杨钟堂,等著.1993.中国含铂基性超基性岩体与铂(族)矿床.西安:西安交通大学出版社,16-21
    杨学明,杨晓勇,陈双喜,译.2000.岩石地球化学.合肥:中国科学技术大学出版社,167-205
    曾良鍷.1999.川西南地区前震旦系群、组纪地层单位的命名与沿革.四川地质学报,17(4): 253-255.
    曾
    
    曾宪教,徐先哲,杨七文,等.1982.四川石棉镁铁质-超镁铁质岩体是一个被肢解了的蛇绿岩.攀西地质,(1):24-37
    张成江,李晓林,汪云亮,修淑芝,黄永健.1999。冷水箐铜镍硫化物矿床的铂族元素地球化学特征.地质地球化学,27:73-78
    张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社
    张云湘,骆耀南,杨崇喜,等.1988.攀西裂谷.北京:地质出版社
    张宗清.1997.同位素年代学方法的应用和限制.见:张炳熹,洪大卫,吴宣志编.岩石圈研究的现代方法.北京:原子能出版社,186-200
    周国庆,赵建新.1990.华南扬子克拉通东南缘赣东北蛇绿岩的Sm-Nd同位素研究.科学通报,35(2):129-132
    周金城,王孝磊,邱检生,等.2003.桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学.岩石学报,19(1):9-18
    周名魁,刘俨然.1988.西昌-滇中地质构造特征及地史演化.重庆:重庆出版社
    周新民,邹海波,杨杰东,等.1989.安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义.科学通报,34(16):1243-1245
    朱维光,邓海琳,刘秉光,等.2004.四川盐边高家村镁铁-超镁铁质杂岩体的形成时代:单颗粒锆石U-Pb、角闪石~(40)Ar/~(39)Ar年代学制约.科学通报,49(10):985-990
    朱宗祥.1983.四川前寒武纪盐边群火山岩系的特征及构造环境.矿物岩石,3(3):42-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700