用户名: 密码: 验证码:
钴团簇,金团簇和硅纳米线的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用第一性原理计算的方法研究了钴团簇、Au团簇的结构和硅纳米线的掺杂,探讨了纳米结构和电子行为的关系。具体内容包括以下部分:
     第一章介绍了第一性原理计算方法。包括密度泛函的理论基础、赝势方法以及VASP程序中求解Kohn-Sham方程使用的平面波方法和变分使用的两种优化方法。
     第二章研究了Co13-Co23的结构。我们提出一种具有块体堆积方式的层状结构类型。相比以前被广泛接受的基于正二十面体的结构,层状结构具有更高的稳定性,也由于较低的密堆程度而有更强的自发磁化。层状结构的结构转变和绝热离化能都与光电子谱实验的信息吻合。这表明Co团簇在尺寸很小的时候就已经形成了块体结构。计算表明,磁性是层状结构获得较高稳定性的原因。
     第三章研究了含有50多个原子的Au团簇的结构。我们发现,较大尺寸Au团簇的结构依然受到相对论效应的强烈影响,表现为sd杂化引起的表面键长的收缩。这一效应导致了Au55及更大尺寸的团簇不能保持对称性较高的结构,而变为无序结构。其中Au58的近球形无序结构是一个特别稳定的结构,成为后续结构生长的基础。这得到了光电子谱实验和第一性原理计算的证实。利用相对论效应引起的表面收缩,我们改变团簇内部和表面的原子数量,发现了Au58的更加稳定的双空心壳层结构。基于这种结构我们讨论了Au团簇结构向块体的演化。
     第四章研究了Li原子在Si纳米线中的掺杂,表明了尺寸效应对掺杂趋势的影响并探讨了其机理。我们发现较大尺寸的Si纳米线可以稳定的容纳Li原子,而较小尺寸的纳米线不利于掺杂。在Si纳米线中,Li引入的电子基本上落在导带底附近,小尺寸纳米线限制了其空间分布是其能量上不利的来源,其本质为能隙的变宽提高了Li的施主态的能量。掺杂的临界尺寸与Li引入的施主态的扩展半径基本一致。
This thesis is devoted to the study of atomic structure of cobalt cluster and gold cluster, as well as the doping of silicon nanowire, with a emphasis on the interplay between the structure energetics and electronic behavior. The research works addressed herein include:
     Chapter One:The method of first principles electronic structure calculation. We give a brief introduction of the framework of density functional theory, followed by the pseudo potential method. We further interpret the plane wave scheme and the two variation optimization methods used in VASP code.
     Chapter Two:The structures of Co13-Co23. We propose a layer-like structure with fcc or hcp stacking for these small Co clusters. Compared with the widely recognized icosahedral-type structures, the layer-like structures are more favorable in energy with also enhanced magnetization due to the low coordina-tion. The structural transition in this size range and the adiabatic detachment energy of layer-like structures are in good coincidence with the variation of pho-toelectron spectrum. This confirms the existence of present structures, which in-dicates that the Co clusters with only a few dozens of atoms have already shown bulk-like structures. Our calculations indicate that the enhanced magnetization plays a key role in stabilization of layer-like structures.
     Chapter Three:The structures of Au55-Au64. The structures of clus-ters in this size range are still strongly modified by the relativistic effect, which manifests itself as the surface contraction. Driven by the surface contraction, the Au55 and larger clusters fail to maintain the closely-packed structure and trans-form into amorphous core-shell configuration. The combination of photoelectron spectrum and density functional calculation demonstrate that the amorphous Au58 is uniquely stable and can be seen as the base of Au59-Au64. Due to the relativistic effect induced surface contraction, the stability of core-shell Au clus-ter depends dramatically on the relative size of inner core and outer shell. By altering the relative core-shell size we find a highly robust double shell structure of Au58 with hollow center. Based on this novel structure type we discussed the growth pathway of gold cluster into bulk structure.
     Chapter Four:The size effect on Li-doping in silicon nanowire and the underlying mechanism. We demonstrate that doping Li into silicon nanowire tends to be energetically unfavorable when the size of wire is reduced. When the Li atom is inside the nanowire, basically its outer electron falls to the conduction band minimum. This donor state is confined by the small diameter of wire, resulting a high energy cost to enter the nanowire because essentially the widen energy gap of smaller nanowire uplift the donor state to a higher energy. The critical size of doping is in coincidence with the expansion scope of the donor state in the cross section.
引文
[1]M.Born, J. R. Oppenheimer, Quantum theory of molecules. Ann. Phys.84, 457 (1927).
    [2]D. R. Hartree, The wave mechanics of an atom with a non-Coulomb central field Part I theory and methods. Proc. Camb. Phil. Soc.24,111 (1928).
    [3]V. Fock, Naherungsmethode zur Losung des quantenmechanischen Mehrko-rperproblems. Z. Phys.61,126 (1930); V. Fock, ibid.62,795 (1930); V. Fock and M. J. Petrashen, Phys. Z. Sowjetunion 6,368 (1934).
    [4]M. Schliiter, L.J. Sham, Density Functional Theory Phys. Today 35,36 (1982).
    [5]龚新高,中国科学院固体物理研究所博士论文(1993).
    [6]段海明,中国科学院固体物理研究所博士论文(2001).
    [7]陈刚,中国科学院固体物理研究所博士论文(2002).
    [8]谢希德,陆栋,固体能带理论(复旦大学出版社,上海,1998).
    [9]肖慎修,王崇愚,陈天朗,密度泛函理论的离散变分方法在化学和材料物理中的应用(科学出版社,北京,1998).
    [10]L. S. Thomas, The calculation of atomic fields. Proc. Cambridge Philos. Soc. 23,542 (1927).
    [11]E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys.48,73 (1928).
    [12]P. Hohenberg, W. Kohn, Inhomogenous Electron Gas. Phys. Rev. B 136, 864 (1964).
    [13]J. Callaway and N. H. March, Density Functional Methods-Theory and Applications. Solid State Physics,38,135, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York,1984); R. M. Dreizler and E. K. V. Gross, Density Functional Theory (Springer-Verlay,1990)
    [14]W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev.140, A1133 (1965).
    [15]U. Von Barth, L. Hedin, Local exchange-correlation potential for spin po-larized case 1. J. Phys. C 5,1629 (1972).
    [16]B. I. Lundqvist, J. W. Wilkins, Contribution to cohesive energy of simple metals-spin dependent effect. Phys. Rev. B 10,1319 (1974).
    [17]J. C. Stoddart, Density functional theory of magneitic instabilities in metals. Annals of Physics 64,174 (1971).
    [18]A. K. Rajagopal, J. Callaway, Inhomogeneous Electron Gas. Phys. Rev. B 7,1912 (1973).
    [19]J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23,5048 (1981).
    [20]O. Gunnarsson, O. M. Jonson, and B. I. Lundqvist, Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys. Rev. B 20, 3136 (1979); O. Gunnarsson, and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13,4274 (1976).
    [21]R. O. Jones and O. Gunnarsson, The density functional formalism, its ap-plications and prospects. Rev. Modern. Phys.61,689 (1989).
    [22]A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. B 38,3098 (1988).
    [23]J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33,8822 (1986).
    [24]J. P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation. Phys. Rev. B 33,8800 (1986).
    [25]J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45,13244 (1992).
    [26]J. P. Perdew and Y. Wang, Application of gradient corrections to density-functional theory for atoms and solids. Phys. Rev. B 48,14944 (1993).
    [27]P. Bagno,O. Jepsen,O. Gunnarsson, Ground-state properties of third-row elements with nonlocal density functionals. Phys. Rev. B 40,1997 (1989).
    [28]D. J. Singh, W. E. Pickett, Gradient-corrected density-functional studies of CaCuO2. Phys. Rev. B 44,7715 (1991).
    [29]P. Dufek, P. Blaha, V. Sliwko, K. Schwarz, Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides. Phys. Rev. B 49,10170 (1994).
    [30]P. Blaha, P. Dufek, V. Sliwko and K. Schwarz, Band splitting in af transition-metal compounds using the generalized gradient approximation. J. Magn. Magn. Mat.140,173 (1995).
    [31]C. Herring, A new method for calculating wave functions in crystals. Phys. Rev.57,119 (1940); C. Herring and A. G. Hill, The theoretical constitution of metallic beryllium. Phys. Rev.58,152 (1940).
    [32]D. R. Hamann, M. Schliiter, and C. Chiang, Norm-Conserving Pseudopo-tentials. Phys. Rev. Lett.43,1494 (1979). G. B. Bachelet, M. Schuter, and C. Chiang, Pseudopotentials that work:From H to Pu. Phys. Rev. B 26, 4199 (1982)
    [33]L. Kleinman, D. M. Bylander, Efficacious Form for Model Pseudopotentials. Phys. Rev. Lett.48,1425 (1982).
    [34]D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigen-value formalism. Phys. Rev. B 41,7892 (1990).
    [35]X. Gonze, P. Kackell, M. Scheffler,Ghost states for separable, norm-conserving, lab initioP pseudopotentials. Phys. Rev. B 41,12264 (1990). X. Gonze, R. Stumpf, M. Scheffler, Analysis of separable potentials. Phys. Rev. B 44,8503 (1991).
    [36]P. E. Blochl, Generalized separable potentials for electronic-structure calcu-lations. Phys. Rev. B 41,5414 (1990).
    [37]K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47,10142 (1993).
    [38]P. E. Blochl, Projector augmented-wave method. Phys. Rev. B 50,17953 (1994).
    [39]G. Kresse, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59,1758 (1999).
    [40]M. P. Teter, M. C. Payne, and D. C. Allan, Solution of Schr?dinger's equation for large systems. Phsy. Rev. B 40,12255 (1989).
    [41]W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numeri-cal Recipes. The art of scientific Computing. (Cambridge University Press, Cambridge,1992).
    [42]E. Polak, Computational Methods in Optimization (Academic Press, New York,1971).
    [43]B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice Hall, Engle-wood Cliffs, NJ,1980).
    [44]P. Pulay, Convergency acceleration of iterative sequences. Chem. Phys. Lett. 73,393 (1980).
    [45]D. M. Wood, A. Zunger, A new method for diagonalizing large matrices. J. Phys. A 18,1343 (1985).
    [46]C. G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput.19,577 (1965); D. D. Johnson, Modified Broy-den's method for accelerating convergence in self-consistent calculations. Phys. Rev. B 38,12087 (1988); G. P. Srivastava, Broyden method for self-consistent field convergency accerleratoin. J. Phys. A 17, L317 (1984); D. Vanderbilt, S.G. Louie, Total energies of diamond (111) surface reconstruc-tions by a linear combination of atomic orbitals method. Phys. Rev. B 30, 6118 (1984).
    [47]R. P. Feynman, Forces in Molecules. Phys. Rev.56,340 (1939).
    [48]P. Pulay, in:Modern Theoretical Chemistry, edited by H. F. Schaefer (Plenum, New York,1977); Mol. Phys.17,197 (1969).
    [49]K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47,10142 (1992).
    [50]G. Kresse, J. Furthmuller, The Guide of Vienna Ab-initio Simulation Pack-age (2000).
    [51]A. Y. Liu and D. J. Singh, Elastic instability of BCC Cobalt. Phys. Rev. B 47,8515 (1993)
    [1]F. W. Payne et al., Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments. Phys. Rev. B 75,094431 (2007), and references therein.
    [2]D.C. Douglass et al., Magnetic properties of free cobalt and gadolinium clusters. Phys. Rev. B 47,12874 (1993).
    [3]F. Baletto and R.Ferrando, Structural properties of nanoclusters:Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys,77,371 (2005), and references therein.
    [4]J. L. Wang, Structural, electronic, and magnetic properties of Sc(N) (N=2 18)clusters from density functional calculations. Phys. Rev. B 75,155422 (2007).
    [5]S. Y. Wang et al., First-principles study of the electronic structures of icosa-hedral Ti(N)(N=13,19,43,55) clusters. J. Chem. Phys.120,8643 (2004).
    [6]H. Hakkinen et al., Symmetry and Electronic Structure of Noble-Metal Nanoparticles and the Role of Relativity. Phys. Rev. Lett.93,094401 (2004).
    [7]N. Watari and S. Ohnishi, Atomic and electronic structures of Pd13 and Pt13 clusters. Phys. Rev. B 58,1665 (1998).
    [8]J. L. Rodriguez-Lopez et al., Structure and magnetism of cobalt clusters. Phys. Rev. B 67,174413 (2003).
    [9]Y. Xiang et al., Generalized Simulated Annealing Studies on Structures and Properties of Nin (n=2-55) Clusters J. Phys. Chem. A 104,2746 (2000).
    [10]S. E. Apsel et al., Surface-Enhanced Magnetism in Nickel Clusters. Phys. Rev. Lett.76,1441 (1996).
    [11]H. Y. Yao et al., Structures and magnetic moments of Nin (n=10-60) clus-ters. Phys. Lett. A 360,629 (2007).
    [12]P. Bobadova-Parvanova, Structure, bonding, and magnetism in manganese clusters. J. Chem. Phys.122,014310 (2005).
    [13]F. Aguilera-Granja et al., Structure and magnetism of small rhodium clus-ters. Phys. Rev. B 66,224410 (2002).
    [14]V. Kumarand Y. Kawazoe, Icosahedral growth, magnetic behavior, and adsorbate-induced metal-nonmetal transition in palladium clusters. Phys. Rev. B 66,144413 (2002).
    [15]C. M. Chang and M. Y. Chou, Alternative Low-Symmetry Structure for 13-Atom Metal Clusters. Phys. Rev. Lett.93,133401 (2004).
    [16]Y. C. Bae et al., Cubic magic clusters of rhodium stabilized with eight-center bonding:Magnetism and growth. Phys. Rev. B 72,125427 (2005).
    [17]F. Aguilera-Granja et al., Magnetic properties of small 3d and 4d transition metal clusters:The role of a noncompact growth. Phys. Rev. B 73,115422 (2006).
    [18]L.-L. Wang and D. D. Johnson, Density functional study of structural trends for late-transition-metal 13-atom clusters. Phys. Rev. B 75,235405 (2007).
    [19]S. R. Liu et al., s-d hybridization and evolution of the electronic and mag-netic properties in small Co and Ni clusters. Phys. Rev. B,113401 (2002).
    [20]X. G. Wan et al., Orbital polarization, surface enhancement and quantum confinement in nanocluster magnetism. Phys. Rev. B 69,174414 (2004).
    [21]F. Aguilera-Granja and A. Vega, Stability, magnetic behavior, and chemical order of (CoxFel-x)N(N=5,13) nanoalloys. Phys. Rev. B 79,144423(2009).
    [1]M. Haruta, Size-and support-dependency in the catalysis of gold. Catalysis Today 36,153 (1997).
    [2]M. Valden et al., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic. Science 281,1467 (1998).
    [3]A. Sanchez et al., When Gold Is Not Noble:Nanoscale Gold Catalysts. J. Chem. Phys. A 103,9573 (1999).
    [4]H. Hakkinen et al., Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry:Supported Gold Nanoclusters. Angew. Chem. Int. Ed.42,1297 (2003).
    [5]Bokwon Yoon, Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science 307,403 (2005).
    [6]Z. P. Liu et al., Catalytic Role of Metal Oxides in Gold-Based Catalysts:A First Principles Study of CO Oxidation on TiO2 Supported Au. Phys. Rev. Lett.91,266102 (2003).
    [7]D. Matthey et al., Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110). Science 315,1692 (2007).
    [8]M. S. Chen et al., The Structure of Catalytically Active Gold on Titania. Science 305,252 (2004).
    [9]A. A. Herzing et al., Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science 321,1331 (2008).
    [10]M. D. Hughes et al., Tunable gold catalysts for selective hydrocarbon oxi-dation under mild conditions. Nature 437,1132 (2005).
    [11]P. Pyykko, Relativistic Effects in Structural Chemistry. Chem. Rev.88,563 (1988).
    [12]H. Hakkinen et al., Bonding in Cu, Ag, and Au Clusters:Relativistic Effects, Trends, and Surprises. Phys. Rev. lett.89,033401 (2002).
    [13]H. Hakkinen et al., On the Electronic and Atomic Structures of Small Au(4-14)-Clusters:A Photoelectron Spectroscopy and Density-Functional Study. J. Phys. Chem. A 107,6168 (2003).
    [14]J. Li et al., Au20:A Tetrahedral Cluster. Science 299,864 (2003).
    [15]X. Gu et al., AuN clusters (N=32,33,34,35):Cagelike structures of pure metal atoms. Phys. Rev. B 70,205401 (2004).
    [16]M. P. Johansson et al., Au32:A 24-Carat Golden Fullerene. Angew. Chem. Int. Ed.43,2678 (2004).
    [17]W. J. Yin et al., Magic Number 32 and 90 in metal clusters:A shell jellium model study. Sol. Stat. Comm.147,323 (2008)
    [18]M. Ji et al., Experimental and Theoretical Investigation of the Electronic and Geometrical Structures of the Au32 Cluster. Angew. Chem. Int. Ed.44, 7119 (2005).
    [19]S. Bulusu et al., Evidence of hollow golden cages. Proc. Natl. Acad. Sci. U.S.A.103,8326 (2006).
    [20]W. Fa et al., Possible ground-state structure of Au26:A highly symmetric tubelike cage. J. Chem. Phys.124,114310 (2006).
    [21]Y. Gao and X. C. Zeng, Au42:An Alternative Icosahedral Golden Fullerene Cage. J. Am. Chem. Soc.127,3698 (2005).
    [22]D. X. Tian et al., Dual Relationship between Large Gold Clusters (Anti-fullerenes) and Carbon Fullerenes:A New Lowest-Energy Cage Structure for Au50. J. Phys. Chem. A 111,411 (2007)
    [23]A. J. Karttunen, Icosahedral Au72:a predicted chiral and spherically aro-matic golden fullerene. Chem. Commun.465, (2008)
    [24]S. Bulusu et al., Structures and relative stability of neutral gold clusters: Aun (n=15-19). J. Chem. Phys.125,154303 (2006).
    [25]W. Huang et al., Structural Transition of Gold Nanoclusters:From the Golden Cage to the Golden Pyramid. ACS NANO 3,1225 (2009).
    [26]S. Bulusu et al., Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters:Aun-(n=21-25) J. Phys. Chem. C 111,4190 (2007).
    [27]X. Gu et al., Au34-:A Fluxional Core-Shell Cluster. J. Phys. Chem. C 111, 8228 (2007).
    [28]A. Lechtken et al., Au34-:A Chiral Gold Cluster? Angew. Chem. Int. Ed. 46,2944 (2007).
    [29]H. Hakkinen et al., Symmetry and Electronic Structure of Noble-Metal Nanoparticles and the Role of Relativity. Phys. Rev. Lett.93,093401 (2004).
    [30]J. Tao et al., Climbing the Density Functional Ladder:Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett.91,146401 (2003).
    [1]A. M. Morales et al., A Laser Ablation Method for the Synthesis of Crys-talline Semiconductor Nanowires. Science 279,208 (1998).
    [2]M. S. Gudiksen and C. M. Lieber, Diameter-Selective Synthesis of Semicon-ductor Nanowires. J. Am. Chem. Soc.122 8801 (2000)
    [3]X. F. Duan and C. M. Lieber, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires. J. Am. Chem. Soc.122,188 (2000)
    [4]J. D. Holmes et al., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science 287,1471 (2000)
    [5]Y. Cui et al., Doping and Electrical Transport in Silicon Nanowires. J. Phys. Chem. B 104,5213 (2000)
    [6]D. D. D. Ma et al., Small-Diameter Silicon Nanowire Surfaces. Science 299, 1874 (2003)
    [7]Y. Wu et al., Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nano Letters 4,433 (2004)
    [8]Y. Cui et al., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 291,851 (2001)
    [9]Y. Huang et al., Logic Gates and Computation from Assembled Nanowire Building Blocks. Science 294,1313 (2001)
    [10]Y. Cui et al., High Performance Silicon Nanowire Field Effect Transistors. Nano Letters 3,149 (2003)
    [11]Z. H. Zhong et al., Nanowire Crossbar Arrays as Address Decoders for In-tegrated Nanosystems. Science 302,1377 (2003)
    [12]R. S. Friedman et al., High-speed integrated nanowire circuits. Nature 434, 1085 (2005)
    [13]Y. Cui et al., Nanowire Nanosensors for Highly Sensitive and Selective De-tection of Biological and Chemical Species. Science 293,1289 (2001)
    [14]X. T. Zhou et al., Silicon nanowires as chemical sensors. Chemi. Phys. Lett. 369,220 (2003)
    [15]J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters 4,51 (2004)
    [16]L. J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire het-erostructures. Nature 420,57 (2002)
    [17]M. S. Gudiksen et al., Growth of nanowire superlattice structures for nanoscale photonics andelectronics. Nature 415,617 (2002)
    [18]Y. Wu et al., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430,61 (2004)
    [19]B. Z. Tian et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449,885 (2007)
    [20]C. Yang et al., Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires. Science 310,1304 (2005)
    [21]Z. H. Zhong et al., Coherent Single Charge Transport in Molecular-Scale Silicon Nanowires. Nano Letters 5,1143 (2005)
    [22]P. Xie et al., Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci.106,15254 (2009)
    [23]D. E. Perea et al., Direct measurement of dopant distribution in an individ-ual vapour-liquid-solid nanowire. Nature Nanotechnology 4,315 (2009)
    [24]M. Diarra et al., Ionization energy of donor and acceptor impurities in semi-conductor nanowires:Importance of dielectric confinement. Phys. Rev. B 75,045301 (2007)
    [25]M. T. Bjork et al., Donor deactivation in silicon nanostructures. Nature Nanotechnology 4,103 (2009)
    [26]E. Durgun et al., Half-Metallic Silicon Nanowires:First-Principles Calcula-tions. Phys. Rev. Lett.99,256806 (2007)
    [27]E. Durgun et al., Functionalization of silicon nanowires with transition metal atoms. Phys. Rev. B 78,195116 (2008)
    [28]H. W. Wu et al. Room Temperature Ferromagnetism in Mn+-implanted Si nanowires. App. Phys. Lett.90,043121 (2007)
    [29]S. Sirichantaropass et al., Electronic properties of alkali-and alkaline-earth-intercalated silicon nanowires. Phys. Rev. B 75,075328 (2007)
    [30]C. K. Chan et al., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 3,31 (2008).
    [31]L. T. Canham, Silicon quantum wire fabrication by electrochemical and chemical dissolution of wafers. App. Phys. Lett.57,1046 (1990)
    [32]M. Bruno et al., From Si Nanowires to Porous Silicon:The Role of Excitonic Effects. Phys. Rev. Lett.98,036807 (2007)
    [33]J. A. Yan et al., Size and orientation dependence in the electronic properties of silicon nanowires. Phys. Rev. B 76,115319 (2007)
    [34]C. Delerue et al., Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48,11024 (1993)
    [35]X. Y. Zhao et al., Quantum Confinement and Electronic Properties of Silicon Nanowires. Phys. Rev. Lett.92,236805 (2004)
    [36]T. Vo et al., First principles simulations of the structural and electronic properties of silicon nanowires. Phys. Rev. B 74,045116 (2006)
    [37]R. Rurali et al., Accurate single-particle determination of the band gap in silicon nanowires. Phys. Rev. B 76,113303 (2007)
    [38]H. Scheel et al., Electronic band structure of high-index silicon nanowires. Physica Status Solidi(B) 242 2474 (2005).
    [39]B. Aradi et al., Theoretical study of the chemical gap tuning in silicon nanowires. Phys. Rev. B 76,035305 (2007)
    [40]M. F. Ng et al., Theoretical investigation of silicon nanowires:Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach. Phys. Rev. B 76,155435 (2007)
    [41]L. Huang et al., Size-and Strain-Dependent Electronic Structures in H-Passivated Si [112] Nanowires. J. Phys. Chem. C 112,15680 (2008)
    [42]A. J. Lu et al., Tunable electronic band structure of hydrogen-terminated [112] silicon nanowires. App. Phys. Lett.92,203109 (2008)
    [43]D. L. Yao et al.,A universal Expression of Band Gap for Silicon Nanowires of Different Cross-Section Geometries. Nano Lett.8,4557 (2008)
    [44]F. Aryasetiawan and O. Gunnarsson, The GW method. Reports on Progress in Physics 61,237 (1998)
    [45]R. Rurali, Structural, electronic, and transport properties of silicon nanowires. Review of Modern Physics 82,472 (2010)
    [46]L. D. Marks, Experimental studies of small particle structures. Reports on Progress in Physics 57,603 (1994)
    [47]Y. F. Zhao et al What is the Ground-State Structure of the Thinnest Si Nanowires? Phys. Rev. Lett.91,035501 (2003)
    [48]R. Rurali, A. Poissier and N. Lorente, Size effects in surface-reconstructed (100) and (110) silicon nanowires. Phys. Rev. B 74,165324 (2006)
    [49]W. G. Zhu et al., Dopant-Assisted Concentration Enhancement of Substi-tutional Mn in Si and Ge. Phys. Rev. Lett.100,027205 (2008)
    [50]V. Schmidt, Silicon Nanowires:A Review on Aspects of their Growth and their Electrical Properties. Adv. Mater.21,2681 (2009)
    [51]J. X. Cao et al., Sharp Corners in the Cross Section of Ultrathin Si Nanowires. Phys. Rev. Lett.97,136105 (2006)
    [52]L. F. Cui et al., Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano. Lett.9,491 (2009)
    [53]C. K. Chan et al., Solution-Growm Silicon Nanowires for Lithium-Ion Bat-tery Anodes. ACS NANO 4,1443 (2010)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700