用户名: 密码: 验证码:
甲基膦酸二甲酯质量敏感型气体传感器的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪化学恐怖事件的屡次发生,引起了世界各国的广泛关注,这也表明对能够快速检测化学战剂的传感器具有迫切需求,以保障民众的安全。本文研究了“质量敏感型压电化学传感器”这一广泛应用于化学战剂检测领域的热点问题。重点研究了聚合物薄膜作为敏感材料的该类传感器,深入研究了不同聚合物敏感材料的敏感特性,并进一步将不同聚合物材料应用于传感器阵列,以改善单一传感器在选择性和稳定性方面的性能,其主要内容包括以下几个方面:
     1.首次采用了聚偏氟乙烯(PVDF)材料作为石英晶体微天平(QCM)传感器敏感材料,用于检测化学战剂模拟剂甲基膦酸二甲酯(DMMP),并详细研究了该敏感材料在各种条件下的气敏特性。在DMMP浓度为5~60ppm范围内,PVDF-QCM传感器具有良好的线性相关性(相关系数高于0.997);且传感器响应值与环境温度符合阿累尼乌斯(Arrhenius)方程负的温度依赖关系;而环境湿度的变化不会影响PVDF-QCM传感器的使用。同时对干扰气体的检测结果表明PVDF对DMMP有良好的选择性。将高度有序的LB成膜技术引入使用,成功制备了PVDF-QCM传感器并研究了其对DMMP的敏感特性。
     2.根据需要检测的对象的不同性质选取传感器敏感薄膜,获得了良好的敏感特性:(1)对甲基-3,3,3-三氟丙基聚硅氧烷(PMTFPS)进行低温氧等离子体改性,并通过缔合酸性小分子化合物磺基水杨酸(SSA)获得了对DMMP具有较好响应特性的敏感薄膜,传感器的灵敏度从9.91 Hz/ppm提高到11.96Hz/ppm,响应时间从141s降低到112s。(2)对环境湿度的监测则采用在具碱性特性的聚吡咯烷酮(PVP)中加入SSA,在降低PVP和水蒸气之间氢键作用强度的同时提高了聚合物的稳定性,使传感器在性能上表现为响应速度快、可逆性能良好。
     3.研究了实验室自行设计合成的聚硅氧烷类材料的敏感特性。在不同的膜厚下,将聚甲基[3-(2-羟基)苯基]丙基硅氧烷(PMPS)薄膜应用于QCM和声表面波(SAW)传感器,两者均表现出响应频率与DMMP气体浓度呈线性关系,且响应快速,具有非常好的重复性、一致性及选择性。PMPS-SAW对DMMP的响应幅度和BSP3-SAW相当,但稳定性相对稍差。将含不同氟原子数目的PMPS,聚甲基[3-(2-羟基-3-氟)苯基]丙基硅氧烷(PMFPS),聚甲基[3-(2-羟基-3,4-二氟)苯基]丙基硅氧烷(PMDFPS)三种聚硅氧烷材料应用于QCM和SAW传感器,实验得出一致结论:含单个氟原子的PMFPS对DMMP的敏感性能最差,而PMPS和PMDFPS则需要在响应时间和响应幅度之间综合考虑选择。
     4.通过使用模式识别中的主成分分析以及聚类分析,从15种不同性质的聚合物材料中挑选出所需最少数目的敏感薄膜,用于构成检测化学战剂的QCM传感器阵列。根据主成份分析结果,结合聚类分析结果,由PVP、PVDF、聚异丁烯(PIB)和聚-2-甲氧基-5-辛氧基-对苯乙炔(PMOCOPV)作为敏感薄膜的传感器阵列能够最大程度保留信息。选用了DMMP、N,N-二甲基乙酰胺(DMA)、二氯乙烷(DCE)和二氯戊烷(DCP)分别作为有机磷神经性毒剂以及糜烂性毒剂的模拟剂进行验证实验,主成分分析结果清楚地显示了4种气体在主成分图上的不同位置,2个主成分之和就可以代表95.46%的信息,说明该传感器阵列能够完全地分辨上述4种气体。
     5.分析了聚合物薄膜对DMMP的敏感机理。对实验中聚合物材料与不同DMMP气体浓度的关系进行了数据分析,结果表明QCM传感器的作用规律符合BET吸附模型,并由此计算出三种聚硅氧烷材料的吸附比表面积大小顺序为PMPS>PMDFPS>PMFPS,也与实验得到的传感器灵敏度相符。另外把化学传感器看成一个线性定常(linear time-invariant,LTI)系统,建立方程模拟其在单位浓度脉冲信号作用下的响应曲线,模拟结果与实际响应曲线有较好的一致性。结合气体响应的动力学过程以及线性溶剂化能关系,阐述气体分子对聚合物敏感膜的响应结果综合了其中的各作用力影响因素。
The frequently chemical terrorism cases in 20~(th) Century arose great attentions in the world, and these demonstrate that there is a critical need for detectors and sensors that are able to warn about imminent chemical warfare agents (CWA) danger, to enable people to safely leave a contaminated zone or to protect themselves. The dissertation focused on the mass-sensitive piezoelectric sensors, which have been widely used as detections of CWA. Especially, a great deal investigations have been done on the polymers as sensitive materials and sensitivity characteristics towards CWA. Furthermore, the application of kinds of polymers in a sensor array to improve the selective performance of single sensor was also described. The main research results were as follows:
     1. Quartz crystal microbalance (QCM) sensors coated with poly (vinylidene fluoride) (PVDF) were fabricated for the first time, and the sensitive characteristics were investigated in detail. It was found that the frequency shifts were linear to the concentrations of dimethyl methyl phosphonate (DMMP), a simulant of nerve agents, in the range of 5-60 ppm with a correlation coefficient of above 0.997, and the absolute frequency responses of the sensor all exhibited negative Arrhenius temperature dependencies at different concentrations. The results also showed that the sensitivity to DMMP vapor was almost identical in various humidity circumstances, and the sensitivity to DMMP was absolutely greater than to the interferences. Lanmuir-Blodgett (LB) method was introduced to prepare the PVDF film, and besides successfully preparation of the QCM sensor with PVDF LB film, the sensing properties to DMMP were also studied.
     2. Different kinds of polymers were choosed due to various analyte compounds, and thus good sensitivities were reached. (1) Poly (methyl-3, 3, 3- trifluoropropyl-siloxane) (PMTFPS) was oxygen plasma treated and then grafted with sulfosalicylic acid (SSA). After that, the sensitivity of this material to DMMP was found to be enhanced from 9.91 Hz/ppm to 11.96 Hz/ppm, and the response time was reduced from 141s to 112s. (2) Poly (vinyl pyrrolidone) (PVP) with hydrogen-bond basicity was used as humidity sensitive coating. PVP complexed with SSA depressed the hydrogen-bond ability between PVP and water, and so that both the reversibility and response time of this sensor were improved.
     3. A series of polysiloxane materials synthesized in our group were analysed. The frequency shifts behaved linear to the concentrations of analyte in various film thicknesses, whether the poly methyl [3-(2-hydroxyl)phenyl] propyl siloxane (PMPS) film fabricated on QCM or surface acoustic wave (SAW) sensors, and they showed rapid response, good repeatability, and favorable selectivity. The capability of PMPS-SAW was corresponded with BSP3-SAW, although the stability was a little worse. Compared three polysiloxane materials with different amount of fluorin atom in QCM and SAW sensors, which were PMPS, poly methyl [3-(2-hydroxyl-3-fluoro) phenyl] propyl siloxane (PMFPS) and poly methyl [3-(2-hydroxyl-3, 4-difluoro) phenyl] propyl siloxane (PMDFPS), the results both indicated that PMPS, which only had single fluorin atom, had the least sensitivity to DMMP vapor, and the selection of PMPS and PMDFPS needed compromising between response time and magnitude.
     4. Pattern recognition techniques, both principal component analysis (PCA) and hierarchical cluster, were applied to frequency shift data obtained from 15 piezoelectric sensors, to obtain the least number of sensors composed an array for CWA detection. Combined with hierarchical cluster method, the results of PCA indicated that the four-sensor array providing the greatest degree of discrimination would consist of sensors coated with PVP, PVDF, poly(isobutylene) (PIB) and poly (2-methoxy-5-octyloxy)-1, 4-phenylene vinylene (PMOCOPV). DMMP, N, N- dimethylacetamide (DMA), 1, 5-dichloropentane (DCP) and dichloroethane (DCE), used as the simulants of organophosphorus nerve agents and vesicant agents, were tested by the above sensor array. It can be observed that DMMP, DMA, DCP and DCE can be clearly distinguished, and 95.46% information can be preserved with only two principal components, which indicated the successful distinguishability of the four vapors with this sensor array.
     5. The gas-sensing mechanism of polymers to DMMP was investigated. The response of each QCM sensor to different DMMP concentration was modeled with BET adsorption isotherms, and results showed that the affinities of different sensors to vapor can be described well with the BET parameters. The ordinal magnitudes of the adsorbent specific surface areaes of the three polysiloxane materials were calculated out as PMPS>PMDFPS>PMFPS, which were consistent with the experimental results. We treated the chemical sensor as a linear time-invariant (LTI) system, and equations were established to simulate the response curves caused by an impulse signal of analyte concentration. The model was validated by comparing its predictions to experimental data. Both the kinetic process and the linear salvation energy relationship (LSER) were regarded to explain that the responses between analytes and sensing materials were integrated all the ingredients of interaction.
引文
[1]陈冀胜.反化学恐怖对策与技术.北京:科学出版社,2005.89-126
    [2]方厚华,丁日高.化学恐怖及其医学防护研究.解放军医学杂志,2005,30(1):12-14
    [3]黄春旺.毒魔:就在我们身边.北京:中央编译出版社,2005.97-100
    [4]D.Noort,H.P.Benschop,R.M.Black.Biomonitoring of Exposure to Chemical Warfare Agents:A Review.Toxicology and Applied Pharmacology,2002,184(2):116-126
    [5]S.P.Proctor,K.J.Heaton,T.Heeren,et al.Effects of sarin and cyclosarin exposure during the 1991 Gulf War on neurobehavioral functioning in US army veterans.NeuroToxicology,2006,27(6):931-939
    [6]T.-M.Shih,S.W.Hulet,J.H.McDonough.The effects of repeated low-dose sarin exposure.Toxicology and Applied Pharmacology,2006,215(2):119- 134
    [7]F.Worek,M.Koller,H.Thiermann et al.Diagnostic aspects of organophosphate poisoning.Toxicology,2005,214(3):182-189
    [8]Y.Seto,M.Kanamori-Kataoka,K.Tsuge,et al.Sensing technology for chemical-warfare agents and its evaluation using authentic agents.Sens.Actuators B:Chem.,2005,108(1-2):193-197
    [9]L.Szinicz.History of chemical and biological warfare agents.Toxicology,2005,214(3):167-181
    [10]D.J.Porche.Biological and Chemical Bioterrorism Agents.Journal of the Association of Nurses in AIDS care,2002,13(5):57-64
    [11]S.H.Lillie,E.Hanlon,J.M.Kelly,eds.Potential Military Chemical/Biological Agents and Compounds(FM3-11.9).2005.
    [12]K.D.Cadwell,N.A.Lockwood,B.A.Nellis,et al.Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces.Sens.Actuators B:Chem.,2007,128(1):91-98
    [13]Y.Sun,K.Y.Ong.Detection Technologies for Chemical Warfare Agents and Toxic Vapors.CRC Press,2005.10-33
    [14]M.Pumera.Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology.Journal of Chromatography A,2006,1113(1-2):5-13
    [15]D.Noon,H.P.Benschop,R.M.Black.Biomonitoring of Exposure to Chemical Warfare Agents:A Review.Toxicology and Applied Pharmacology,2002,184(2):116- 126
    [16]王华.QCM和SAW传感器对DMMP气敏特性的研究:[硕士学位论文].成都:电子科技大学,2007
    [17]D.E.Ray,P.G.Richards.The potential for toxic effects of chronic,low-dose exposure to organophosphates.Toxicology Letters,2001,120(1-3):343-351
    [18]A.W.Abu-Qarel,M.B.Abou-Donia.Satin:health effects,metabolism,and methods of analysis.Food and Chemical Toxicology,2002,40(10):1327-1333
    [19]L.G.Costa.Current issues in organophosphate toxicology.Clinica Chimica Acta,2006,366(1-2):1-13
    [20]游炎富,史波波,来永芳.有毒化学物的探测与识别.现代军事,2007,5:36-39
    [21]D.A.Shea.High-Threat Chemical Agents:Characteristics,Effects,and Policy Implications.Congressional Research Service Report RL31861,2003
    [22]C.D.Thoraval,K.J.W.Bovenkarnp.Chemical agent detectors for chemical nerve agents.United States Patent.5009845,1991
    [23]A.A.Fatah,J.A.Barrett,R.D.Arcilesi,Jr.et al.Guide for the Selection of Chemical Agent and Toxic Industrial Material Detection Equipment for Emergency First Responders.Law Enforcement and Corrections Standards and Testing Program,2000,1:13-26
    [24]边归国.化学战剂的分析测试进展.分析测试技术与仪器,2004,10(2):87-92
    [25]E.W.J.Hooijschuur,C.E.Kientz,U.A.Th.Brinkman.Analytical separation techniques for the determination of chemical warfare agents.Journal of Chromatography A,2002,982(2)..177-200
    [26]钟近艺,刘景全.高效液相色谱-质谱甄别七种化学战剂相关化合物.分析测试学报,2004,23(3):90-92
    [27]武波涛,刘清山.离子迁移谱技术在化学战剂监测仪器上的应用研究.舰船科学技术,2001,3:40-43
    [28]许峰,王海龙,关亚风。离子迁移谱研究进展.化学进展,2005,17(3):514-522
    [29]G.A.Eieeman.Ion-mobility spectrometry as a fast monitor of chemical composition.Trends in analytical chemistry,2002,21,(4):259-275
    [30]K.Tuovinen,H.Paakkanen,O.Hanninen.Determination of soman and VX degradation products by an aspiration ion mobility spectrometry.Analytica Chimica Acta,2001,440:151-159
    [31]A.Wasik,B.Radke,J.Bolalek,et al.Optimisation of pressurised liquid extraction for elimination of sulphur interferences during determination of organotin compounds in sulphur-rich sediments by gas chromatography with flame photometric detection.Chemosphere,2007,68(1):1-9
    [32]J.-P.L.Harle,B.Bellier.Optimisation of the selectivity of a pulsed flame photometric detector for unknown compound screening.Journal of Chromatography A,2005,1087(1-2):124-130
    [33]A.A.Tomchenko,G.P.Harmer,B.T.Marquis.Detection of chemical warfare agents using nanostructured metal oxide sensors.Sensors and Actuators B,2005,108(1):41-55
    [34]L.Viveros,S.Paliwal,D.McCraec et al.A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents.Sensors and Actuators B,2006,115:150-157
    [35]E.Greenbaum,C.A.Ssnders.Tissue-based standoff biosensors for detecting chemical warfare agents.United States Patent,US 6649417 B2,2003
    [36]G.Zuo,X.Li,P.Li et al.Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor.Analytica Chimica Acta,2006,580(2):123-127
    [37]C.Zimmermann,D.Rebiere,C.Dejous et al.A love-wave gas sensor coated with functionalized polysiloxane for sensing organophosphorus compounds.Sensors and Actuators B:Chemical,2001,76(1-3):86-94
    [38]刘卫卫,余建华,潘勇,等.声表面波技术检测糜烂性毒剂芥子气的研究.分析测试学报,2006,25(5):80-82
    [39]J.W.Grate,S.L.Rose-Pehrsson,D.L.Venezky.Smart Sensor System for Trace Organophosphorus and Organosulfur Vapor Detection Employing a Temperature-Controlled Array of Surface Acoustic Wave Sensors,Automated Sample Preconcentration,and Pattern Recognition.Anal.Chem.,1993,65(14):1868-1881
    [40]E.W.J.Hooijschuur,C.E.Kientz,U.A.Th.Brinkman.Application of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for the screening of degradation products of chemical warfare agents in water and soil.Journal of Chromatography A,2001,928(2):187-199
    [41]Q.Liu,X.Hu,J.Xie.Determination of nerve agent degradation products in environmental samples by liquid chromatography-time-of-flight mass spectrometry with electrospray ionization.Analytica Chimica Acta,2004,512(1):93-101
    [42]B.-S.Joo,J.-S.Huh,D.-D.Lee.Fabrication of polymer SAW sensor array to classify chemical warfare agents.Sensors and Actuators B:Chemical,2007,121(1):47-53
    [43]刘雪梅,邢婉丽,梁军.聚合物在化学传感器中的应用.化学传感器,1999,19(3):1-lO
    [44]程根水,胡继文,章明秋,等.聚合物膜基信息传感材料.高分子材料科学与工程,2005,21(2):11-14
    [45]B.Adhikad,S.Majumdar.Polymers in sensor applications.Progress in Polymer Science,2004,29(7):699-766
    [46]J.M.Ingrain,M.Greb,J.A.Nicholson,et al.Polymeric humidity sensor based on laser carbonized polyimide substrate.Sensors and Actuators B:Chemical,2003,96(1-2):283-289
    [47]H.Nanto,Y.Yokoi,T.Mukai,et al.Novel gas sensor using polymer-film-coated quartz resonator for environmental monitoring.Materials Science and Engineering:C,2000,12(1-2):43-48
    [48]B.Kondratowicz,R.Narayanaswamy,K.C.Persaud.An investigation into the use of electrochromic polymers in optical fibre gas sensors.Sensors and Actuators B:Chemical,2001,74(1-3):138-144
    [49]Y.Sakai,Y.Sadaoka and M.Matsuguchi.Humidity sensors based on polymer thin films.Sensors and Actuators B:Chemical,1996,35(1-3):85-90
    [50]白韶红.新一代高分子(聚合物)传感器.电子仪器仪表用户,1996,(5):5-7
    [51]R.A.McGill,M.H.Abraham,J.W.Grate.Choosing polymer coatings for chemical sensors.CHEMTECH,1994,24(9):27-37
    [52]N.Levit,D.Pestov,G.Tepper.High surface area polymer coatings for SAW-based chemical sensor applications.Sensors and Actuators B:Chemical,2002,82(2-3):241-249
    [53]E.Sarantopoulou,Z.Kollia,A.C.Cefalas,et al.Surface nano/micro functionalization of PMMA thin films by 157 nm irradiation for sensing applications.Applied Surface Science,2008,254(6):1710-1719
    [54]W.M.Shaekelford,G.G.Guilbault.A piezoelectric detector for organophosphorus pesticides in the air.Analytica Chimica Acta,1974,73(2):383-389
    [55]E.P.Seheide,G.G.Guilbault.Piezoelectric Detectors for Organophosphorus Compounds and Pesticides.Anal.Chem.,1972,44(11):1764-1768
    [56]Y.Tomita,G.G.Guilbault.Coating for a Piezoelectric Crystal Sensitive to Organophosphorus Pesticides.Anal.Chem.,1980,52(9):1484-1489
    [57] G. G. Guilbault, B. Hock, R. Schimid. A piezoelectric immunobiosensor for atrazine in drinking water. Biosensors arid Bioelectronics, 1992, 7(6): 411-419
    [58] H. Wholtjen, R. Dessy. Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal. Chem., 1979, 51 (9): 1458-1464
    [59] H. Wholtjen, R. Dessy. Surface acoustic wave probes for chemical analysis. II. Gas chromatography detector. Anal. Chem., 1979, 51(9): 1465-1470
    [60] A. Venema, E. Nieuwkoop, M. J. Vellekoop, et al. Design aspects of saw gas sensors. Sensors and Actuators, 1986, 10(1-2): 47-64
    [61] S.-M. Chang, E. Tamiya, I. Karube. Chemical vapour sensor using a SAW resonator. Biosensors and Bioelectronics, 1991,6(1): 9-14
    [62] E. Milella, M. Penza. SAW gas detection using Langmuir-Blodgett polypyrrole films. Thin Solid Films, 1998, 327-329:694-697
    [63] D. S. Ballantine, Jr., S. L. Rose, J. W. Grate. Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition.Anal. Chem., 1986, 58(14): 3058-3066
    [64] S. L. Rose-Pehrsson, J. W. Grate, D. S. Ballantine, Jr., et al. Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices. Anal. Chem., 1988,60(24): 2801-2811.
    [65] J. W. Grate, S. J. Patrash, M. H. Abraham. Method for Estimating Polymer-Coated Acoustic Wave Vapor Sensor Responses. Anal. Chem., 1995, 67(13): 2162-2169
    [66] J. W. Grate, S. N. Kaganove, S. J. Patrash, et al. Hybrid Organic/Inorganic Copolymers with Strongly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors. Chem.Mater., 1997,9(5): 1201-1207
    [67] J. W. Grate, S. J. Patrash, S. N. Kaganove. Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays. Anal. Chem., 1999,71(5): 1033-1040
    [68] C. Dejous, D. Rebiere, J. Pistre, et al. A surface acoustic wave gas sensor: detection of organophosphorus compounds. Sensors and Actuators B: Chemical, 1995,24(1-3): 58-61
    [69] D. Rebiere, C. Dejous, J. Pistre, et al. Surface acoustic wave detection of organophosphorus compounds with fluoropolyol coatings. Sensors and Actuators B: Chemical, 1997, 43(1-3):34-39
    [70] D. Rebiere, C. Dejous, J. Pistre, et al. Synthesis and evaluation of fluoropolyol isomers as saw microsensor coatings: role of humidity and temperature. Sensors and Actuators B:Chemical, 1998,49(1-2): 139-145
    [71] P. Mazein, C. Zimmermann, D. Rebiere, et al. Dynamic analysis of Love waves sensors responses: application to organophosphorus compounds in dry and wet air. Sensors and Actuators B: Chemical, 2003, 95(1-3): 51-57
    [72] L. J. Kepley, R. M. Crooks, A. J. Ricco. Sensitive surface acoustic wave-based organophosphonate chemical sensor employing self-assembled composite monolayer: a new paradigm for sensor design. Anal. Chem., 1992,64 (24): 3191-3194
    [73] A. Hierlemann, A. J. Ricco, K. Bodenhofer, et al. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and in Situ FT-IR Measurements. Anal. Chem., 1999,71(15): 3022-3035
    [74] R. C. Thomas, A. Hierlemann, A. W. Staton, et al. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors during Exposure to Gas-Phase Analytes.Anal. Chem., 1999, 71(16): 3615-3621
    [75] M. S. Nieuwenhuizen, J. L. N. Harteveld. Development of a surface acoustic wave gas sensor for organophosphorus nerve agents employing lanthanide compounds as the chemical interface.Talanta, 1994,41(3): 461-472
    
    [76] M. S. Nieuwenhuizen, J. L. N. Harteveld. A surface acoustic wave gas sensor for organophosphorus compounds. Sensors and Actuators B: Chemical, 1994,19(1-3): 502-505
    [77] M. S. Nieuwenhuizen, J. L. N. Harteveld. Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents. Sensors and Actuators B: Chemical, 1997,40(2-3):167-173
    [78] L. Bertilsson, K. Potje-Kamloth, H.-D. Liess. Molecular interaction of DMMP and water vapor with mixed self-assembled monolayers studied by IR spectroscopy and SAW devices. Thin Solid Films, 1996, 284-285: 882-887.
    [79] L. Bertilsson, K. Potje-Kamloth, H.-D. Liess, et al. Adsorption of dimethyl methyl-phosphonate on self-assembled alkanethiolate monolayers. J. Phys. Chem. B, 1998, 102 (7):1260-1269
    [80] L. Bertilsson, K. Potje-Kamloth, H.-D. Liess, et al. On the Adsorption of Dimethyl Methylphosphonate on Self-Assembled Alkanethiolate Monolayers: Influence of Humidity.Langmuir, 1999, 15(4): 1128-1135
    [81]左伯莉,陈传治,岳丽君,等.甲基磷酸二甲酯气体的石英晶体微天平流动检测方法研究分析测试学报,2005,24(5):26-29
    [82]李伟,左伯莉,张天,等.QCM传感器法定量检测空气中芥子气.环境污染与防治,2006,28(10):796-798
    [83]左伯莉,李伟,陈传治.压电晶体微天平阵列传感器识别毒剂的研究.分析化学,2007,35(8):1171-1174
    [84]谢海芬,孙晓翔,纪新明,等.基于纳米分子筛敏感膜类神经毒气传感器.传感器技术,2005,24(3):80-83
    [85]杨秋冬,谢海芬,孙晓翔,等.基于分子筛薄膜探测神经类毒气的传感器研究.传感器与微系统,2006,25(1):10-12
    [86]杨涓涓,任楠,周嘉,等.沸石分子筛修饰的QCM类神经毒气传感器.传感技术学报,2006,19(5):2111-2114
    [87]左言军,余建华,黄启斌,等.分子印迹纳米膜的制备及其在检测神经性毒剂沙林中的应用.分析化学,2003,31(7):769-773
    [88]左言军,余建华,黄启斌,等.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征.物理化学学报,2003,19(6):528-532
    [89]史瑞雪,郭成海,张东江,等.运用电化学方法制备分子印迹聚合物膜.高分子材料科学与工程,2003,19(6):213-215
    [90]潘勇,王艳武,伍智仲,等.声表面波分子印迹技术检测甲基膦酸二甲酯的研究.分析测试学报,2005,24(4):42-44
    [91]刘卫卫,余建华,潘勇,等.SAW-PECH传感器检测HD响应特性的研究.化学传感器,2005,25(4):52-54
    [92]刘卫卫,余建华,潘勇,等.声表面波技术检测糜烂性毒剂芥子气的研究.分析测试学报,2006,25(5):80-82
    [93]王艳武,赵建军,伍智仲,等.SXFA-SAW传感器的稳定性研究.化学传感器,2006,26(1):37-40
    [94]Wang Wen,He Shitang,Li Shunzhou,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator.Sensors and Actuators B:Chemical,2007,125(2):422-427
    [95]U.Stahl a,M.Rappa,T.Wessa.Adhesives:a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications.Analytica Chimica Acta 2001,450:27-36
    [96]J.W.Grate,M.Klusty.Surface Acoustic Wave Vapor Sensors Based on Resonator Devices.Anal.Chem.1991,63:1719-1727
    [97]T.Nomura,A.Saitoh,S.Furukawa.Surface Acoustic Wave Gas Phase Sensor Using Self-Assembled Monolayer Film.IEEE ULTRASONICS SYMPOSIUM-1998:525-528
    [98]J.Zhanga,J.Q.Hua,F.R.Zhu,et al.ITO thin films coated quartz crystal microbalance as gas sensor for NO detection.Sensors and Actuators B,2002,87:159-167
    [99]史瑞雪,郭成海,张东江,等.运用电化学方法制备分子印迹聚合物膜.高分子材料科学与工程,2003,19(6):213-215
    [100]徐科军.传感器与检测技术.北京:电子工业出版社,2004
    [101]中华人民共和国国家标准.GB/T7665-2005,传感器通用术语.中国标准出版社
    [102]左伯莉,刘国宏.化学传感器原理及应用.北京:清华大学出版社,2007
    [103]J.D.N.Cheeke,Z.Wang.Acoustic wave gas sensors.Sensors and Actuators B,1999,59(2-3):146-153
    [104]Peter Hauptmann,Ralf Lucklum,Jens Schr(o|¨)der.Recent Trends in Bulk Acoustic Wave Resonator Sensors.2003 IEEE ULTRASONICS SYMPOSIUM-56:1-10
    [105]董永贵.传感技术与系统.北京:清华大学出版社,2006
    [106]王昌明,孔德仁,何云峰,等.传感与测试技术.北京:北京航空航天大学出版社,2005
    [107]张福学.现代压电学(上册).北京:科学出版社,2001
    [108]Shaul Katzir.Measuring constants of nature:confirmation and determination in piezoelectricity.Studies In History and Philosophy of Science Part B:Studies In History and Philosophy of Modern Physics,2003,34(4):579-606
    [109]G.Sauerbrey.Use of quartz vibration for weighing thin films on a microbalance.Zeitschrift f(u|¨)r Physik,1959,155:206-222
    [110]Z.Ali.Acoustic wave mass sensors.Journal of thermal analysis and calorimetry,1999,55:397-412
    [111]R.P.BUCK,E.LINDNER,W.KUTNER,et al.PIEZOELECTRIC CHEMICAL SENSORS (IUPAC Technical Report).Pure Appl.Chem.,2004,76(6):1139-1160
    [112]A.F.Holloway,A.Nabok,M.Thompson,et al.Impedance analysis of the thickness shear mode resonator for organic vapour sensing.Sensors and Actuators B,2004,99(2-3):355-360
    [113]R.C.Holt,G.J.Gouws,J.Z.Zhen.Measurement of polymer shear modulus using thickness shear acoustic waves.Current Applied Physics,2006,6(3):334-339
    [114]L.Rayleigh.On wave propagation along the plane surface of an elastic solid.Proc London Math Soc,1885,17:4-11
    [115]R.M.White,F.W.Voitmer.Direct piezoelectric coupling to surface elastic waves.Appl Phys Lett,1965,7(12):314-316
    [116]陈明,范东远,李岁劳.声表面波传感器.西安:西北工业大学出版社,1997
    [117]Ken-ya Hashimoto.声表面波器件模拟与仿真,王景山,刘天飞,孙伟,译.北京:国防工业出版社,2002
    [118]M.J.Vellekoop.Acoustic wave sensors and their technology.Ultrasonics,1998,36(1-5):7-14
    [119]郝俊杰,徐廷献.声表面波用基片材料.硅酸盐通报,2000,6:32-36
    [120]赵博.基于SAW原理的传感器技术研究:[硕士学位论文],哈尔滨:哈尔滨工业大学,2006
    [121]陈荣忠,陈莉.声表面波气体传感器的理论分析.传感器技术,1997,16(3):27-30
    [122]胡文平,刘云圻,朱道本.有机/聚合物薄膜声表面波气体传感器的设计简介.传感技术学报,1998,9(3):65-71
    [123]H.Wohltjen.Mechanism of operation and design considerations for surface acoustic wave device vapour sensor.Sens.Aetuat,1984,5(4):307-325
    [124]Z.C.Feng,C.Chicone.A delay differential equation model for surface acoustic wave sensors.Sensors and Actuators A:Physical,2003,104(2):171-178
    [125]A.B.Kanua,P.E.Haigh,H.H.Hill.Surface detection of chemical warfare agent simulants and degradation products.Analytica Chimica Acta,2005,553:148-159
    [126]www.sigma-aldrich.com,MATERIAL SAFETY DATA SHEET(MSDS).ALDRICHD169102,2006:1-8
    [127]T.E.Mlsna,S.Cemalovic,M.Warburton,et al.Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection.Sensors and Actuators B,2006,116:192-201
    [128]N.-J.Choi,J.-H.Kwak,Y.-T.Lima,et al.Classification of chemical warfare agents using thick film gas sensor array.Sensors and Actuators B,2005,108:298-304
    [129]R.D.Suenram,F.J.Lovas,D.F.Plusquellic,et al.Fourier Transform Microwave Spectrum and ab Initio Study of Dimethyl Methylphosphonate.Journal of Molecular Spectroscopy,2002,211(1):110-118
    [130]衣守志,王强,马沛生.饱和蒸气压测定方法评述.天津轻工业学院学报,2001,2:1-4
    [131]W.P.Jakubik.Investigations of thin film structures of WO_3 and WO_3 with Pd for hydrogen detection in a surface acoustic wave sensor system.Thin solid films,2007,515(23):8354-8350
    [132]J.D.Galipeau,R.S.Falconer,J.F.Vetelino,et al.Theory,design and operation of a surface acoustic wave hydrogen sulfide microsensor.Sensors and Actuators B:Chemical,1995,24(1-3):49-53
    [133]P.Si,J.Mortensen,A.Komolov,et al.Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.Analytica Chimica Acta,2007,597(2):223-230
    [134]叶芸.聚偏氟乙烯薄膜及超薄膜的制备及特性研究:[博士学位论文],成都:电子科技大学,2007
    [135]Y.Yuan,B.Shi.A cylindrical hydrophone made of PVDF piezoelectric polymer and its performance.Sensors and Actuators A:Physical,1993,35(3):231-234
    [136]P.C.A.Hammes,P.P.L.Regtien.An integrated infrared sensor using the pyroelectric polymer PVDF.Sensors and Actuators A:Physical,1992,32(1-3):396-402
    [137]K.Murata,K.Takahashi,Y.Kato.Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer.Journal of Materials processing Technology,1999,85:39-42
    [138]J.Dargahi.A piezoelectric tactile sensor with three sensing elements for robotic,endoscopic and prosthetic applications.Sensors and Actuators A,2000,80:23-30
    [139]K.Henrioulle,P.Sas.Experimental validation of a collocated PVDF volume velocity sensor/actuator pair.Journal of Sound and Vibration,2003,265:489-506
    [140]J.J.Whiting,C.-J.Lu,E.T.Zellers,et al.A Portable,High-Speed,Vacuum-Outlet GC Vapor Analyzer Employing Air as Carrier Gas and Surface Acoustic Wave Detection.Anal.Chem.2001,73,4665-4675
    [141]E.T.Zellers,M.Han.Effects of Temperature and Humidity on the Performance of Polymer-Coated Surface Acoustic Wave Vapor Sensor Arrays.Anal.Chem.1996,68:2409-2418
    [142]姚允斌.物理化学手册.上海:上海科技出版社,1985
    [143]欧阳健明.LB膜原理与应用.广州:暨南大学出版社,1999
    [144]崔大付.LB膜的物理性能与应用.物理,1996,25(1):54-58
    [145]张明志.铁电聚合物薄膜力电性能与结构特性研究:[硕士学位论文],北京:清华大学,2006
    [146]白海会.原子力显微镜技术及其在分子结构形态学方面的应用研究:[硕士学位论文],重庆:重庆大学,2006
    [147]B.Soresi,E.Quartarone,P.Mustarelli,et al.PVDF and P(VDF-HFP)-based proton exchange membranes.Solid State Ionics,2004,166:383-389
    [148]N.P.Chen,L.Hong.Surface phase morphology and composition of the casting films of PVDF-PVP blend.Polymer,2002,43(4):1429-1436
    [149]J.W.Grate,M.H.Abraham.Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays.Sensors and Actuators B,1991,3:85-111
    [150]A.T.Nimal,M.Singh,U.Mittal,et al.A Comparative Analysis of One-port Coplitt and Two-port Pierce Oscillators for DMMP Vapor Sensing.Sensors and Actuators B,2006,114:316-325
    [151]P.S.Bhadury,V.Dubey,S.Singh,et al.2,2 -Bis(3 -allyl -4 -hydroxyl phenyl)hexafluoropropane and fluorosiloxane as coating materials for nerve agent sensors.J.Fluor.Chem.,2005,126(8):1252-1256
    [152]J.W.Grate,W.Richland,S.N.Kaganove,et al.Strongly hydrogen-bond acidic polymer and methods of making and using.United States Patent,6,105,869,Jan.18,2000
    [153]胡福增,陈国荣,杜永娟.材料表界面.上海:华东理工大学出版社,2007:122-126
    [154]Y.W.Xie,B.N.Popov.Catalyzed decomposition of nerve gases and potentiometric detection of the byproducts.Anal.Chimi.Acta,2001,448(1-2):221-230
    [155]C.J.Gordon.Role of environmental stress in the physiological response to chemical toxicants.Environmental Research,2003,92(1):1-7
    [156]W.P.Carey,K.R.Beebe,B.R.Kowalski,et al,Selection of adsorbates for chemical sensor arrays by pattern recognition.Anal.Chem.1986,58:149-153
    [157]W.P.Carey,K.R.Beebe,B.R.Kowalski,et al.Multicomponent Analysis Using an Array of Piezoelectric Crystal Sensors.Anal.Chem.1987,59:1529-1534
    [158]W.Xing,X.He.Application of artificial neural networks on signal process of piezoelectric crystal sensors.Sensors and Actuators B,2000,66:272-276
    [159]魏广芬,唐祯安,余隽.基于主成分分析和BP神经网络的气体识别方法研究.传感技术学报,2001,4:292-298
    [160]卢纹岱.SPSS for Windows统计分析.北京:电子工业出版社,2002.311-395
    [161]王伟军.化学聚类分析及线性判别分析方法研究:[硕士学位论文],长沙:湖南大学,2003
    [162]冯永.基于计算智能的聚类技术及其应用研究:[博士学位论文],重庆:重庆大学,2006
    [163]张文彤.SPSS11统计分析教程(高级篇).北京:北京希望电子出版社,2002.166-212
    [164]姜兆华,孙德智,邵光杰.应用表面化学与技术.哈尔滨:哈尔滨工业大学出版社,2002.45-81
    [165]G.Fischerauer,F.L.Dickert.An analytic model of the dynamic response of mass-sensitive chemical sensors.Sensors and Actuators B,2007,123:993-1001
    [166]谢丹.NO_2气敏LB膜及其微结构传感器研究:[博士学位论文],成都:电子科技大学,2001
    [167]M.H.Abraham,J.Andonian-Haftvan,C.M.Du,et al.Hydrogen bonding.Part 29.Charaeteration of 14 sorbent coatings for chemical mierosensors using a new salvation equation.J.Chem.Soe.Perkin Trans.,1995,2:369-378
    [168]A.Hierlemann,E.T.Zellers,A.J.Ricco.Use of Linear Solvation Energy Relationships for Modeling Responses from Polymer-Coated Acoustic-Wave Vapor Sensors.Anal.Chem.,2001,73:3458-3466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700