用户名: 密码: 验证码:
稀薄预混气体在多孔介质中超绝热燃烧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质具有很大的比表面积、良好的蓄热和换热性能,可以在燃烧技术中发挥重要作用。与自由空间中的传统预混合燃烧相比,多孔介质中的预混合燃烧在降低污染性尾气排放、扩展可燃极限、提高热效率、辐射热输出和节约能量等方面具有显著优越性。预混合气体在多孔介质中往复式流动下的超绝热燃烧(以后简称为RSCP)是一种全新的多孔介质预混合燃烧技术,由于嵌入了往复流动换向装置,RSCP燃烧器不仅具有混合气单向流动多孔介质燃烧器的优点和特点,还有一些更有吸引力的燃烧特性。本文通过理论分析、数值计算和实验观测,对RSCP技术进行了较为全面的研究,主要完成了如下几个方面的工作:
     1.从“容积平均”假设出发,在前人的理论基础上,借助流体力学的基本原理,通过严密的数学分析,推导出一套气体反应流在各向同性多孔介质中的体积平均输运方程。该方程组简洁直观,通用性强,可直接应用于模拟不同条件下的混合气在惰性多孔介质中的流动和反应过程,由于模型中考虑了气、固两相局部非热平衡,因此尤其适用于模拟预混合气在多孔介质中的流动和燃烧反应。
     2.分析了RSCP燃烧器的工作原理,详述了多孔介质和换向装置在其中的作用,从理论上对超绝热火焰产生的依据以及如何实现超绝热度的最大化作了深入分析,研究了强化预热对可燃极限的影响,对RSCP系统的热力学效率进行了探讨,将前人的研究加以系统化,总结出了若干重要结论。
     3.在本项研究的具体条件下,应用多孔介质中气体反应流的通用输运模型,建立了RSCP系统的二维数学模型,运用辐射换热的有限容积法这一新方法求解辐射换热方程,较深入研究了多孔介质燃烧器中的固体辐射换热,成功地实现了光学厚介质的非表面辐射计算与流场及燃烧计算的耦合。
     4.通过数值方法研究了冷、热态环境下多孔介质对气体反应流的压力损失影响,结果发现,热态环境下多孔介质对气流的阻力损失影响比冷态环境下大得多,但孔隙率大的多孔介质对气体反应的阻力损失并不大。
     5.通过大量的数值计算,分析了稀薄甲烷-空气预混合气体在多孔介质中的燃烧特性,根据轴向温度分布阐释了混合气单向流动下的多孔介质预混燃烧系统和RSCP系统中的热结构,研究了多孔介质的几何特征参量、热物性参数、各工况参数对RSCP系统中的温度分布,放热率、燃烧效率和可燃极限等的影响;在相同工况参数条件下,RSCP与常规多孔介质预混燃烧的性能对比表明,前者的各个性能指标都明显优于后者。
     6.利用本课题组自行建造的RSCP实验台,对稀薄预混合气在多孔介质中单向流动和周期性往复流动下的燃烧情况进行了研究,考察了RSCP燃烧室中的气体温度波动规律;研究了达到稳定燃烧状态后,换向半周期内RSCP燃烧过程的瞬态特征及各主要工况参数(混合气的流速、燃-空当量比和往复换向半周期)对燃烧室轴向的温度分布和贫可燃极限等的影响。
s
    With highly developed inner solid surface and excellent property of heat transfer and heat accumulation, porous media can play an important role in combustion. Premixed combustion in inert porous media has so far proven to be an advanced combustion technology in which premixed fuel and air burn within a porous bed. The technology has many obvious advantages over conventional premixed combustion in which the premixed fuel and air burn as a free flame that is stabilized at the burner exit with respect to reduced emissions of combustion-related pollutants, wider domain of flammability, much higher thermal efficiency and radiant heat outputs, saving energy, uniform heat distribution and so on. Reciprocating Superadiabatic Combustion of Premixed gases in porous media (hereafter, referred to as RSCP) is a completely new porous burner technology. With embedded devices for periodically switching the direction of the premixed gases, RSCP burner not only has the advantages of porous media burner with one-way flow, but
     also some more attractive combustion characteristics. The thesis presents intensive investigation on RSCP by theoretical analysis, numerical simulation and experiment measure. The main works are as following:
    1. Applying the principle of fluid dynamics, a set of governing transport equations are derived to describe the reacting flow through an inert and isotropic porous media based on volume averaged hypothesis and previous researchers' investigation. Considering local thermal non-equilibrium between the solid and the gas phases, the equations can be used directly and easily to describe the process of flowing and reacting of mixed gases in inert porous media in different conditions, especially to simulate premixed combustion in porous media.
    2. The working mechanism of RSCP combustor is analyzed and the functions of the porous media and the devices for periodically switching the direction of the flow in RSCP system are described in detail. By mathematical reasoning, a theoretical description how the superadiabatic flame comes into being is given. The effect of preheat enhancing on the flammability limit of premixed gases is investigated. Thermodynamics efficiency of RSCP is discussed and some important conclusions are drawn out on the basis of previous researchers' investigation.
    3. Appling the general transport equations of the reacting flow in porous media in the present researching conditions, a two-dimensional mathematical model describing RSCP system is developed. Finite volume method for radiation heat transfer is used to solve the radiative transfer equation. The thermal of radiation the solid in porous burner is intensively investigated. The results indicate that coupling calculating of flow field, combustion reaction and volume radiation of the optically thick media is successively achieved.
    4. The influence of the porous media on pressure drop of the reacting flow is investigated by numerical method in cold and in hot environment. The results show
    
    
    that the pressure drop is much bigger in hot environment than that in cold environment, but it is not obvious if the porosity is big enough.
    5. Numerical analysis has been performed on premixed combustion of lean gas mixture of methane and air in porous media. The thermal structure, in terms of axial temperature distribution, of the combustion systems with one-way flow and with periodically reciprocating flow of the gas mixture, is compared so as to elucidate the performance of the two systems. The influences of geometric parameters, the thermal-physical parameters of the porous media, wall heat loss coefficient and working parameters (half cycle, flow velocity, equivalence ratio) on temperature distribution, heat release rate, combustion efficiency and combustible limit and etc in RSCP system are examined. By comparison, it is shown that all indexes of combustion behavior in RSCP system are better than those in conventional premixed combustion system in porous media with the same working parameters.
    6. An experimental study of
引文
1. World Energy Assessment, Energy and the Challenge of Sustainability, United Nations Development Program, New York(2000).
    2. Hanamura K, Echigo R. Superadiabatic Combustion in A Porous Medium[J]. Int. J. Heat Mass Transfer, 1993, 36(13): 3201-3209.
    3. Jeong YS, Lee SM., Kim NK, Hwang JM., Chae JO.. A study on combustion characteristics of superadiabatic combustion in porous media[J]. KSME International Journal, 1998, 12(4): 680-687.
    4. Sumrerng Jugjai and Amorn Somjetlertcharoen, Multimode Heat Transfer in Cyclic Flow Reversal Combustion in A Porous Medium[J]. Int. J. Energy Res., 1999, 23: 183-206.
    5. Weinberg F., Heat-recirculating burners: Principles and some recent development[J]. Combustion Science and Technology, 1996. Vol. 121: 3-22.
    6. http://www.szsitt.com/nf/guojijimao/russian/material/mete-2.htm.
    7. http://www.edu.cn/ke_yan fa zhan/dong_tai/xinzhi/173.php.
    8.Bear J.著,李竟生,陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社,1983.
    9.杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展[J].热能动力工程,2002,17(99):221-226.
    10. Durst F. and Weclas M. A new type of internal combustion engine based on the porous-medium combustion technique[J]. Proceedings of the Institute Mechanical Engineers, Part D Journal of Automobile Engineering, 2001, Vol.215, No. D1: 63-81.
    11. Kaplan, Michele; Hall, Matthew J. The combustion of liquid fuels within a porous media radiant burner[J]. Experimental Thermal and Fluid Science, 1995, Volume: 11, Issue: 1, July, pp. 13-20.
    12.李艳红,徐吉浣.多孔介质中预混式燃烧的研究概况[J].公用科技,1996,12(3):5-7.
    13. Zhdanok S., Lawrence A. Kennedy and G. Koester, Superadiabatic combustion of methane air mixturesunder filtration in a packed bed[J]. Combustion and Flame, 1995, 110: 221-231.
    14. Hsu, P. F., Evans, W. D., and Howell, J. R., Experimental and numerical study of premixed combustion within nonhomogeneous porous media[J]. Combustion Science and Technology, 1993, 90: 149-172.
    15. Weinberg, F. J. Combustion Temperature: The Future?[J]. Nature, 1971, 233: 239-241.
    16. Hardesty, D. R., and Weinberg, F. J. Burners producing large excess enthalpies[J]. Combustion Science and Technology, 1974, Vol.8: 201-214.
    17. Lloyd, S.A., and Weinberg, F. J. A burner for mixtures of very low heat content[J]. Nature, 1974, 251,47.
    18. Lloyd, S.A., and Weinberg F. J. Limits to energy release and utilization from chemical fuels [J].Nature, 1975, 257:367.
    19. Lloyd, S.A., and Weinberg, F. J. A recirculating fluidized bed combustor for extended flow regimes[J]. Combustion and Flame, 1976, 27, 391.
    20. Hardesty, D. R., and Weinberg, F. J. Converter efficiency in burner systems producing large excess enthalpies[J]. Combustion Science and Technology, 1976,Vol.12: 153-168.
    21. Weinberg, F. J. (1975). The first half-million years of combustion research and today's
    
    burning problems. Fifteenth(International)Symposium on Combustion. The Combustion Institute, Pittsburgh: 1-17.
    22. Takeno T, Sato K. An excess enthalpy flame theory[J]. Combustion Science and Technology, 1979, 20: 73-84.
    23. Takeno, T., and Sato, k., A theoretical study on an excess enthalpy flame, Eighteenth symposium(international)on combustion, The combustion institute, 1981, pp.465-472
    24. Kotani, Y., and Takeno, T., An experimental study on stability and combustion characteristics of an excess enthalpy flame[A]. Nineteenth symposium(international)on Combustion, The Combustion Institute, 1982, pp. 1503-1509.
    25. Kotani,Y., Behbahani, H.F. and Takeno, T., An excess enthalpy flame combustion for extended Flow Ranges[A]. 20th Symposium(international.) on Combustion, The Combustion Institute, 1984, pp.2025-2033.
    26. Echigo R., Effective Energy conversion Method between Gas Enthalpy and Thermal Radiation and Application to Industrial Furnaces, Proc. 7th Int. Heat Transfer Conf., Munich, USA, 1982,Vol.Ⅵ: 361-366.
    27. Echigo R, et al. Analytical and experimental studies on radiative propagation in porous media with internal heat generation. Proceedings of 8th international heat Transfer Conference, San Francisco, 1986, Vol. Ⅱ, pp.827-832.
    28. Yoshizawa Y, Sasaki K, Echigo R. Analytical Study of the Structure of Radiation controlled Flame[J]. International Journal of Heat and Mass Transfer, 1988,31: 311-319.
    29. Baek, S. W. The Premixed Flame in a Radiatively Active Porous Medium[J]. Combustion Science and Technology. 1989, Vol.64, No.4-6: 277-287.
    30. Sathe S B, Peck R E, Tong T W. A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners[J]. International Journal of Heat and Mass Transfer, 1990,33: 1331-1338.
    31. Echigo R, Kurusu M, Ichimiya K and Yoshizawa Y, Combustion augmentation of extremely low calorific gases(application of the effective energy conversion method from gas enthalpy to thermal radiation), Proc. 1983 ASME-JSME Thermal Energy Joint Conf., Honolulu, Vol. Ⅳ: 99-103.
    32. Echigo R, High temperature heat transfer augmentation. In High Temperature Heat Exchangers(Edited by Mori Y, Sheindlin A. E. and Afgan N), Hemisphere, Washington, DC, 1986: 230-259.
    33. Echigo R, Sophisticated applications of radiation heat transfer. In Heat Transfer in High Technology and Power Engineering(Edited by W.J. Yang and Y. Mori), Hemisphere, Washington, DC, 1987: 503-514.
    34. Yoshizawa Y, Echigo R and Tomimura T, A Study on a high performance radiant heater, Proc. 1987 ASME-JSME Thermal Energy Joint Conf., Honolulu, Vol.5: 317-323.
    35. Echigo R, Yoshida H, Mochizuki T. Temperature equalization by the radiative converter for a slab in continuous casting direct rolling, JSME Int. J. Ser., 1988, Ⅱ31(3): 545-552.
    36. Yoshida H., Yun J.H. and Echigo R. Transient characteristics of combined conduction, convection and radiation heat transfer in porous media[J]. Int. J. Heat Mass Transfer. 1990, Vol.33, No.5: 847-857.
    37. Pfefferle W c, Pfefferle L D. Catalytically stabilized combustion[J]. Prog. Energy Combustion Science, 1989, 12:25-41.
    
    
    38. Wang K.Y. and C.L. Tien. Thermal insulation in flow systems: Combustion radiation and convection through a porous segment[J]. J. Heat Transfer, 1984,106(3): 453-459.
    39. Echigo R, Tomimura T, Yoshizawa Y, Jrmouehi H. Effective energy conversion method between gas enthalpy and thermal radiation(effects of gaseous radiation and incoming radiations)[A]. Rep. Inst. Adv. Mater. Study, Kyusen Univ. 1988, 2(1): 53-66.
    40. Yoshizawa Y, Sasaki, Echigo R. Analytical study of the radiation controlled flames. Proc. of 8th Int. Heat Transfer Conference, San Francisco, 1986.
    41. Yoshizawa Y, Sasaki, Echigo R. Analytical Study of the Structure of Radiation controlled Flames. ASME HTD-81, 1987: 35-42.
    42. Fu, X., Viskanta, R. Gore, J. P. A model for the volumetric radiation characteristics of cellular ceramics[J]. Int. Comm. Heat Mass Transfer, 1997,24(8): 1069-1082.
    43. Fu, X., Viskanta, R. Gore, J. P. Prediction of effective thermal conductivity of cellular ceramics[J]. Int. Comm. Heat Mass Transfer, 1997,25(2): 151-160.
    44. Hashimoto T, Yamasakin S, Takeno T. An excess enthalpy flame stabilized in ceramic tubes. The 8th ICOGER, Minsk: USSR, 1988.
    45.吕兆华,Matthews R D and Howell J.多孔陶瓷材料中的预混合火焰[J].华东工学院学报,1989,No.3:25-29.
    46.吕兆华,孙思诚等.多孔泡沫陶瓷中预混合火焰燃烧速率的实验研究[J].燃烧科学与技术,1995:1(2):129-134.
    47.吕兆华,孙思诚.多孔介质中预混合燃烧速率的预示[J].燃烧科学与技术,1998,4(3):242-246.
    48.吕兆华,Matthews R D.分段多孔介质燃烧器二次进气燃烧排放研究[J].燃烧科学与技术,2000,Vol.6,No.2:124-128.
    49.李艳红等,多孔陶瓷板中城市燃气预混合燃烧的实验研究和数值计算.工程热物理学报[J].1997,V18,No.3:385.
    50.李艳红,程惠儿,徐吉浣,张鹤声,多孔陶瓷板中城市燃气预混合燃烧的数值模拟,上海交通大学学报[J].1999,33(8):1001-1003.
    51.刘宪秋、卢国楷、马志伟等.多孔介质对贫燃料燃烧极限的影响[J].北京化工学院学报(自然科学版),1994,Vol.21,No.2:54—57.
    52. Sathe S.B., Kulkari, M.R.et al. An experimental and Theoretical Study of Porous Radiant Burner Performance. 23rd Symposium(International)on Combustion. Pittsburgh, PA, 1990: 1011-1018.
    53. Norbury J, Byrne H. The effects of radiation on combustion in porous media[J]. Mathematical and computer modeling. Volume: 24, Issue: 8, October, 1996, pp. 89-94.
    54. Babkin,V. S., Pure Appl. Chem.1993, 65(2): 335.
    55. Koester, G. E., Kennedy, L. A., and Subramaniam V.V. Proceedings of The Central States Section Meeting of the combustion Institute,Madison,WI, 1994:55.
    56. Chaffin C, Koenig M, Koeroghlian M, et al. Experimental Investigation of Premixed Combustion within Highly Porous Media[J]. Proc. ASME/JSME Thermal Engineering Joint Conf, 1991, No.4: 219-224.
    57. Aldushin. A. P., Combustion and Flame, 1993,94:308.
    58. Xiong Tiang-yu. Experimental Study of Ultra-low Emission Radiant Porous Burner[A]. Presented at AFRC 1991 Spring Members Only Meeting[C]. Hartford, Connecticut, 1991,March 18-19.
    
    
    59. Hashimoto T, Yarnasaki S. An Excess Enthalpy Flame Stabilized in Ceramic Tubes[A]. Prog. In Astro and Aero[C]. 1983, 88: 57-77.
    60. Kendall R M, Desjardin S T, Sullivan J D. Basic Research on Radiant Burners[R]. Annual Report(Jan. 1989-March 1990)Report No. GRI-90/0325, Gas Research Institute, Chicago, IL, 1990.
    61. Goeckner B A, Helmich D R, McCarthy TA, et al. Radiative Heat Transfer Augmentation of Natural Gas Flames in Radiant Tube Burners with Porous Ceramic Inserts[J]. Experimental Thermal and Fluid Science, 1992, 5: 848-860.
    62. Peard T E, Peters J E, Brewster M Q, et al. Radiative Heat Transfer Augmentation in Gas-fired Radiant Tube Burners by Porous Inserts: Effect of Insert Geometry[J]. Experimental Heat Transfer, 1993, 6: 273-286.
    63. Chaffin C, Koenig M, Koeroghlian M, et al. Experimental Investigation of Premixed Combustion within Highly Porous Media[J]. Proc. ASME/JSME Thermal Engineering Joint Conf, 1991, 4: 219-224.
    64. Khanna R, Goel R, Ellzey J L. Measurements of Emissions and Radiation for Methane Combustion within a Porous Medium Burne[J]. Combustion Science and Technology, 1994, 99: 133-142.
    65. Ellzey J L, Goel R. Emissions of CO and NO from a Two Stage Porous Media Burner[J]. Combustion Science and Technology, 1995, 107: 81-91.
    66. Hachert, C.L. Ellzey, J.L. and Ezekoye, O.A. Combustion and heat transfer in model two-dimensional porous media[J]. Combustion and Flame, 1999, 116: 177-191.
    67. Min, D.K., and Shin, H.d. Int. J. Heat Mass Transfer, 1991,34:341.
    68. Mohamad, A.A., Viskanta, R. and Ramadhyani, S. Numerical predictions of combustion and heat transfer in a packed bed with embedded coolant tubes[J]. Combustion Science and Technology, 1994, Vol.96: 387-407.
    69. Mohamad, A.A., Ramadhyani, S. and Viskanta, R. Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes[J]. International Journal of Heat Mass Transfer, 1994, 37: 1181-1191.
    70. FU, X., Viskanta, R. Gore, J. P. Combustion and heat transfer interaction in a pore-scale refractory tube burner[J]. J. Thermo-physics Heat Transfer, 1998, 12:164-171.
    71. Hsu P.F, Matthews R D. The Necessity of Using Detailed Kinetics in Mode for Combustion within porous Media[J]. Combustion and Flame, 1993,Vol. 93:457-466.
    72. Chen Y K, Matthews R D, Howell J R. The effect of radiation on the structure of premixed flame within a highly porous inert medium. ASME Winter Annual Meeting, Boston: ASME, 1987.
    73. Chen Y K, Matthews R D, et al. Experimental and theoretical investigation of combustion in porous inert media. Submitted for the 22ed Symposium(International)on Combustion, Seattle, 1988.
    74. Malico I., Zhou X.Y. and Pereira J.C.F. Two-dimensional numerical study of combustion and pollutants formation in porous burners[J]. Combustion Science and Technology, 2000, Vol.152, pp.57-79.
    75. Malico I. and Pereira J.C.F. Numerical predictions of porous burners with integrated heat exchangers for household applications[J]. Journal of Porous Media, 1999, 2(2): 153-162.
    76. Zhou X.Y. and Pereira J.C.F.. Comparison of Four Combustion Model for Simulating the
    
    Premixed Combustion in Inert Porous Media[J]. Fire and Materials, 1998,22(2): 187-197.
    77. Forman A. Williams, Combustion theory—the fundamental theory of chemically reaction flow system(Second edition). The Benjamin/Cumming Publishing Company, Inc, 1985.
    78. Boreskov G.k. and Matros, Y. S. Catal. Rev. Sci. Eng., 1983, 25(4): 551-590.
    79. Matros. Y. S. Performance of Catalytic Processes under Unsteady Conditions[J]. Chemical Engineering Science, Vol. 45,1990, No.8: 2097-2102.
    80. Matros.Y.S. Chem. Eng. Sci,, Process, 1993, 32:89-98.
    81. Nieken, U. Kolios, G. Eigenberger, G. Fixed Bed Reactors with Periodic Flow Reversal: Experimental Results for Catalytic Combustion[J]. Catalysis Today 20,1994:335-350.
    82. Eigenberger G. and Nieken, U. Catalytic Combustion with Periodic Flow Reversal[J]. Chemical Engineering Science, 1988,Vol. 43, No.8:2109-2115.
    83. Ruoyu Hong, Xin Li, Hongzhong Li and Weikang Yuan. Modeling and Simulation of SO_2 Oxidation in a Fixed-bed Reactor with Periodic Flow Reversal[J]. Catalysis Today 38,1997: 47-58.
    84.王辉,肖博文,袁渭康,非稳态SO_2转化器稳定性研究,化学工程[J].1997,25(4):26-29.
    85.袁渭康,工业反应过程大开发方法Ⅲ:工业废气催化燃烧反应器的开发[J].石油化工,1994,23(3):181-186.
    86. Rachid B. Slimane, Francis S. Lau, and Javad Abbasian. Hydrogen Production by Superadiabatic Combustion of Hydrogen Sulfide. Proceedings of the 2000 Hydrogen Program Review.
    87. Kennedy, L.A., Fridman, A. A., and Saveliev, A.V., "Superadiabatic Combustion in Porous Media: Wave Propagation, Instabilities, New Type of Chemical Reactor"[J]. Fluid Mechanics Research 1995, 22: 2. 1-25.
    88. Hanamura K, Akagi K, Koyanagi K. Autothermic Reforming by Reciprocating-flow Super-adiabatic Combustion in porous Media. Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference, San Diego, California, 1999: 1-6.
    89. Commercial report: A new method of destroying organic pollutants in exhaust air, ADTEC Co, Ltd. 1990.
    90. Tony Martin. Regenerative Ceramic Burner Technology and Utilization[J]. Industrial Heating, 1988,55(4): 12-15.
    91. Lawrence V. Rich. Regenerative Burners in Reheat Furnaces[J]. Iron and Steel Engineer, 1989,67(10): 46-52.
    92. Ryozo Echigo, Katsunori Hanamura, Hideo Yoshida, et al. Sophisticated thermoelectric conversion device of porous materials by super-adiabatic combustion of reciprocating flow and advanced power generation system[A]. Ⅺ international conference on thermoelectrics, October 7-9,1992, Ⅲ-2, 45-50.
    93. Hoffmann, J. G., Echigo, R., Tada, S., and Yoshida, H., Proceedings 8th International Symposium on Transport Phenomena in Combustion, San Francisco, USA, 1995,7-C-5.
    94. Hoffmann, J. G., Echigo, R., Yoshida, H., and Tada, S., Experimental Study on Combustion in Porous Media with A Reciprocating Flow System. Combustion and Flame, 1997,Vol.111, No. (1/2): 32-46.
    95. Sumrerng Jugjai. Experimental Study on Cyclic Flow Reversal Combustion in a Porous Media[J]. Combustion Science and Technology, 2001, Vol.163: 245-263.
    96. Aldushin, A.P. Rumanov, I.E. Matkowsky, B.J. Maximal Energy Accumulation in a
    
    Superadiabatic Filtration Combustion Wave[J]. Combustion and Flame, 1999, 118: 76-90.
    97. Mare, L. di, Mihalik, T. A., Continillo, G. and Lee, J.H.S. Experimental and Numerical Study of Flammability Limits of Gaseous Mixtures in Porous Media[J]. Experimental Thermal and Fluid Science, 2000, 21: 117-123.
    98. Echigo, R., Yoshida, H., Tawata, K., and Tada, S,, 12th Intl., Conf. On Thermoelelectrics, Yokohama, 1993,Ⅵ-5.3
    99. Hoffmann, J. G., Echigo,, R., Tada, S., and Yoshida, H., Analytical Study on Flame Stabilization Reciprocating Combustion in Porous Media with High Thermal Conductivity [A]. Twenty-sixth Symposium(International)on Combustion, The Combustion Institute, 1996: 2709-2716.
    100. Kennedy, L.A., Fridmann,A.A., and Saveliev, A.V., J. Fluid Mech. Res. 1995, 2:1-26.
    101. Marcus K. Drayton, Alexei V. Saveliev, Lawrence A. Kennnedy, Alexander A. Fridman, Yao-en(David) Li. Syngas Production Using Superadabatic Combustion of Ultrarich Methane-Air Mixtures[A]. Twenty-seven Symposium(International) on Combustion Institute, 1998: 1361-1367.
    102. Trimis D, Durst F., Combustion in a porous medium-Advances and applications[J]. Combustion Science and Technology, 1996,Vol. 121, 1-6:153-168.
    103. Mβbauer, S., Pickencker, O., Pickencker, K. and Trimis, D. Fifth International Conference on Technologies and Combustion for a Clean Environment(Clean Air Ⅴ), Lisbon (Portugal), 12-15 July 1999 Volume Ⅰ: 519-523.
    104. Pinaev A. V. and Lyamin G. A. (1989) Fundamental Laws Governing Subsonic and Detonating Gas combustion in inert Porous Media[J]. Combustion Explosion and Shock Waves USSR, 25(4), pp.448-458, translated from Fizika Goreniya ⅰ Vzryva, 1989, 25(4): 75-85.
    105. Durst F. and Weclas, M. Direct injection IC engine with combustion in a porous medium: a new concept for a near-zero emission engine[J]. International Congress on Engine Combustion Processes, HDT. Essen(1999).
    106. Ferrenberg, A. The single cylinder regenerated ICE[J]. SAE 900911(1990)
    107. Ferrenberg, A. Low heat regenerated engine: a superior alternative to turbo compounding[J]. SAE Trans, SAE 940946, 1994.
    108. Ferrenberg, A. Progress in the development of the regenerated diesel engines[J]. SAE Trans, SAE 961677, 1996.
    109. Hananmara, K, Bohda, K. and Miyairi, Y., A Study of super-adiabatic combustion engine[J]. Energy Covers. Mgmt, 1997, 38:1259-1266.
    110. Athanasios, G. Konstandopoulos and Margaritis Kostoglou, Reciprocating Flow Regeneration of Soot Filters[J]. Combustion and Flame, 2000, 121:488-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700