用户名: 密码: 验证码:
Al_2O_3超微粉体的制备、改性及其α相变控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先以NH_4Al(SO_4)_2和NH_4HCO_3为原料,用沉淀法制备了一种氧化铝的新型前驱体—碳酸铝铵(AACH),对其制备工艺进行了研究。接着对碳酸铝铵进行了焙烧实验,研究了其在升温过程中的相变行为,结果表明:纯AACH在1200℃保温1.5h的情况下才能100%转变为α氧化铝,而在这样高的温度下,粒子之间会形成烧结颈,从而使粉体产物在形貌上出现所谓“树枝状”结构,给粉体使用时的分散带来了困难。
     为了消除这种“树枝状”结构,本文通过掺杂TiO_2、MgO、ZnO等物质来降低氧化铝α相变温度,从而抑制“树枝状”结构的形成,控制粉体颗粒的粒径。结果表明:这三种物质均有明显的降低氧化铝α相变温度,促进氧化铝α相变的作用,得到的焙烧产物中基本上没有“树枝状”结构。
     用作催化剂载体的氧化铝粉体需要有良好的热稳定性。本文研究了SiO_2、ZrO_2这两种物质对氧化铝的热稳定性能的影响。结果表明SiO_2优于ZrO_2:5%SiO_2添加的样品在1200℃焙烧2h后粒子粒径仍然保持在10nm左右。
A new precursor of Al2O3 has been synthesized by precipitation method, using NH4A1 (SO4) 2 and NH4HCO3 as raw materials. Some research work has been done on the preparation process. The phase transformation behavior during heat-treatment has been studied. The results show that the a -phase-transformation of pure AACH can be completed by heating at 1200 癈 for two hours. But under this temperature, the alumina particles will be sintered together, which can lead to the formation of bough-like structures. And these bough-like structure will make the powder difficult to be dispersed.
    To resolve this problem , TiO2, MgO, ZnO have been used as doping materials. The results show that these three kind of materials are effective to reduce the a -phase-transformation temperature and accelerate the a -Phase-Transformation process. No bough-like structure was found in the doping production of heat-treatment.
    As far as alumina powder is concerned ,on the contrary, the excellent thermal stability is needed as catalyst carrier. The effects of SiO2 and ZrO2 on the thermal stability of alumina powder has been studied. The. results show that SiO2 is effective to stablize Al2O3 powder, which can be drawn from the fact that the particle size of the sample with 5%Si02 doped can be kept around 10nm after calcined at 1200℃ for two hours.
引文
[1] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2] 杨金龙,等.陶瓷粉末颗粒尺寸测试、表征及分散[J].硅酸盐通报,1995,5:67~77
    [3] 罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57~61
    [4] 刘大成.粉体团聚及解决措施[J].中国陶瓷,2000,36(6):33~35
    [5] 李国栋.氧化物超细粉团聚机理研究[J].硅酸盐学报,2002,30(5):645~648.
    [6] 任俊,卢寿慈.在水介质中分散剂对微细颗粒分散作用的影响[J].北京科技大学学报,1998,20(1):7~10.
    [7] Hunter R J. Zeta Potential in Colloidal Science[M].Academic Press,London, 1981.
    [8] 陈宗淇,王光信,等.胶体与界面化学[M].北京:高等教育出版社,200 :160.
    [9] 武福运,刘国红,等.多品种氢氧化铝的应用及生产[J].矿产保护及利用,2001(6);41~44.
    [10] 姚冬龄.蒽醌法生产过氧化氢工艺中活性氢氧化铝的应用[J].无机盐工业,2001,33(5):16~18.
    [11] 周华梁.新型环氧树脂填料氧化铝的应用实验研究[J].绝缘材料,1998(2):11~16
    [12] Igor Levin,et al., Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences[J]. J. Am. Ceram. Soc.,81,8 (1998): 1995~2012.
    [13] Zhi-Peng Xie,et al.,Influence of α-Al_2O_3 seed on the morphology of grain growth in alumina ceramics from Bayer alumina hydroxide[J]. Materials Letters,57(2003):2051~2058.
    [14] YuanGo-Wang,et al., Ordering of Octahedral Vacancies in Transition Aluminas[J] J. Am. Ceram. Soc.,81,6,(1998),1655~1660.
    [15] Ting C Chou,et al., Nucleation and Concurrent Anomalous Grain Growth of α-Al_2O_3 During γ→α Phase Transformation[J]. J. Am. Ceram. Soc.,74,9,(1991),2270~2279.
    [16] 古堂生,林光明.非晶态和晶态纳米氧化铝粉的相变与红外光谱[J].无机材料学报,1997,12(6):840~844.
    [17] F.Wdynys,et al., Alpha Alumina Formation in Alum-Derived Gama
    
    Alumina[J].J. Am. Ceram. Soc.,65,9,(1982),442~448.
    [18] Roger B.Bagwell,et al., Effect of Seeding and Water Vapor on the Nucleation and Growth of alpha-Al2O3 from gamma-Al_2O_3 [J]J. Am. Ceram. Soc.,82,4, (1999),825~832.
    [19] Masato Kumaga, et al.,Alpha Alumina Formation in Alum-Derived Gama Alumina[J] J. Am. Ceram. Soc.,68,9,(1985),500~505.
    [20] Hung-Chan Kao, et al.,kinetics and Microstructure of Heterogeneous Transformation of θ-Alumina to α -Alumina[J]. J. Am. Ceram. Soc., 83,2,(2000),362~368.
    [21] 郝崇衡,张文敏,等.物理化学学报,1996,12(11):971~975.
    [22] 尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001:93~105.
    [23] Ronald G.Munro, J. Am. Ceram. Soc.,80,8,(1997),1919~1928.
    [24] 张永刚,闫裴.无机盐工业,2001,33(3):19~22.
    [25] Klug O.The 100 years development of the Bayer-alumina production. Magy Alum,1989,26(2):52~58.
    [26] 张美鸽.高纯氧化铝制备技术的进展[J].功能材料,1993,24(2):187~191.
    [27] Paik H N. Preparation of high-purity α-alumina by an aluminum isoprolysis process. Yoop Hauhochi,1980,26(3):445~451.
    [28] 杨晔,吴玉程,等.碳酸铝铵低温分解制备α—Al_2O_3超细粉末[J].过程工程学报,2002,2(4):325~329.
    [29] 林元华,等.前驱体热解法制备高纯超细α—Al_2O_3粉体[J].硅酸盐学报,1998,13(6),803~807.
    [30] 李继光,等.碳酸铝铵热分解制备α—Al_2O_3超细粉[J].无机材料学报,1998,13(6):803~807.
    [31] 郝臣,等.化学法合成纳米氧化铝粉体工艺的研究[J].机械工程学报,2002,26(7):25~27.
    [32] Ji-young Park,Seong-Geun Oh, et al. Preparation of alumina oxide particals using ammonium acetate as precipitating agent[J].Materials Letters, 56(2002):429~434.
    [33] Yi-quan Wu, et al.,Preparation of platelike nano alpha alumina particals[J].Ceramics International,27(2001):265~268.
    [34] 英宏,李继光,等.东北大学学报,1999,20(5).
    [35] 王宏志,高濂,等.高分子网络凝胶法制备纳米α—Al_2O_3粉体[J].无机材料学报,2000,15(2):356~360.
    
    
    [36] 田丁,王修慧,等.sol—gel法制备高纯超细氧化铝粉体技术及产业化研究.大连铁道学院学报,2002,23(2):78~81.
    [37] 王歆,庄志强,等.材料导报,20000,1499(11):42~44.
    [38] 曾文明,陈念贻等.无机盐制备氧化铝纳米粉及其物理化学的研究[J].无机材料学报,1998,13(6):887~892.
    [39] Ling Wang,et al., J. Am. Ceram. Soc., 74, 11,(1991),2934~2936.
    [40] 许珂敬,杨新春,等.采用引入品种水热合成法制备α—Al_2O_3纳米粉[J].硅酸盐学报,2001,29(6):576~579.
    [41] Pramod K. Sharama, et al., Hydrothermal Synthesis of Nanosize alpha-Al_2O_3 from Seeded Aluminum Hydroxide[J]. J.Am. Ceram. Soc.,81,10,(1998),2732~2734.
    [42] Chih-Peng Lin, et al., Preparation of Nanometer-Sized α-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid[J]. J.Am. Ceram. Soc.,85,1,(2002),129~133.
    [43] Gregory P. Johnston,et al., J.Am. Ceram. Soc.,75,12,(1992),3294~3298.
    [44] 杨晔.纳米α—Al_2O_3粉体制备及其在水性体系中的分散[D].合肥:合肥工业大学,2002.
    [45] Tadao Sugimoto,Preparation of monodispersed colloidal particals[J]. Adv. Colloid and Interface Sci.,1987,28~65
    [46] 徐祖耀,李鹏兴.材料科学导论[M].上海:上海科学技术出版社,1986.
    [47] Sylvie Rossignol,Charles Kappenstein,Effect of doping elements on the thermal stability of transition alumina[J] ,Inorganic Materials, 2001(3),51~58.
    [48] J.Tartaj&G.L. Messing,Anisotropic grain growth in α-Fe_2O_3-doped alumina[J], J. Euro. Ceram. Soc.,1997(17),719~725.
    [49] 王欣,王佩玲,等.TiO_2和MgO微量添加对Al_2O_3陶瓷烧结致密化的影响[J].无机材料学报,2001,16(5):979~984.
    [50] Anteneh Kebble,G.L. messing, et al.,Grain boundaries in Titania-Doped α-alumina with anisotropic microstructure[J], J.Am. Ceram. Soc., 80,11,1997,2814~2820.
    [51] Anteneh Kebbede, Altaf H. Carim, Influence of process variations on microstructure in doped sol-gel derived α-alumina[J],Materials letters, 1998,36,109~133.
    [52] 吴振东,叶建东.添加剂对氧化铝陶瓷烧结和显微结构的影响[J].兵器材料科学与工程,2002,25(1):68~72.
    [53] R.James, L,T.Knightley, Synthesis rutes to microfine biphasic
    
    titania-alumina powders[J],Dyes and Pigments,2003,56,111~124.
    [54] 吴义权,张玉峰,等.低温制备纳米α—Al_2O_3粉体[J].无机材料学报,2001,16(2):349~352.
    [55] L-A Xue,L-W Chen, Influence of additions on the γ-to-α transformation of alumina[J],Jounal of Materials Sciences Letters, 1992,11,443~445.
    [56] Masakuni OZAWA,OSAMU KATO, et al.,The effect of a Cr_2O_3-addition on the phase transformation and catalytic properties of γ-Al_2O_3 in treatment of lean-burn exhausts[J],Jounal of Materials Sciences, 1998,33,737~741.
    [57] 李继光,等.仔晶对碳酸铝铵热分解相变及α—Al_2O_3纳米粉烧结活性的影响[J].金属学报,1999,3 5(10):1099~1102.
    [58] 李继光.湿化学法合成α—Al_2O_3纳米粉[J].材料研究学报,1998,12(1):105~107.
    [59] R.A.Shelleman, et al.,J. Non-Crystal Solids,82,(1986),277~285.
    [60] A.Krell, et al., Nanostruct. Mater.,11,8,(1999),1141~1153.
    [61] Altaf H. Carim, et al., Conversion of Diaspore to Corundum: A New alpha-Alumina Transformation Sequence J.Am. Ceram. Soc., 80,10, (1997), 2677~2680.
    [62] Chang-Seob et al., J. Am. Ceram. Soc.,31,(1996),5321~5325.
    [63] Seongtae Kwon, et al., Sintering of Mixtures of Seeded Boehmite and Ultrafine α-Alumina[J]. J.Am. Ceram. Soc.,83,1,(2000),82~88.
    [64] Kyoung R. Han, et al., Preparation Method of Submicrometer-Sized α -Alumina by- Surface Modification of γ-Alumina with Alumina Sol[J]. J.Am. Ceram. Soc.,83,4,(2000),750~754.
    [65] Kiyoshi Okada, et al., Effect of Divalent Cation Additives on the γ-Al_2O_3-to-α-Al_2O_3 Phase Transition[J]. J.Am. Ceram. Soc.,83,4, (2000), 928~932.
    [66] R.A. Shelleman,et al., Liquid-Phase-Assisted Transformation of Seeded γ-Alumina[J]. J.Am. Ceram. Soc.,71,5,(1988),317~322.
    [67] Yoshiko Suwa,et al., J.Am. Ceram. Soc.,68,9,(1985),238~240.
    [68] Keiji Daimon,et al., J. Crystal Growth,75,(1996),348~352.
    [69] A. Janbey,et al.,J.Euro.Ceram.Soc.,21,(2001),2285~2289.
    [70] E.M. Lopasso,et al.,J. Mater. Sci.,32,(1997),3299~3304.
    [71] Debra S. Horn,et al., Mater. Sci&Eng.,A195,(1995),169~178.
    [72] 张联盟,方青 等,Al_(2(1-x))Mg_x Ti_(1+x)O_5体系固溶体的合成及热性能
    
    研究,硅酸盐学报,2002,30(4):451~455.
    [73] 陈改荣,徐绍红,等.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究[J].功能材料,2002,33(5):521~523.
    [74] 武光明,符晓荣,等.溶胶凝胶法制备MgO薄膜的研究[J].功能材料,1999,30(6):631~632.
    [75] 刘勇,陈小银.氧化铝热稳定性的研究进展[J].化学通报,2001,2:65~70.
    [76] Burtin P, Brunelle J P, Pijolat M ,et al, Appl. Catal.,1987,34:225~238.
    [77] Arai H,Machida M, Appl. Catal.,1996,138:161.
    [78] Schaper H,Amesz D J, Doesburg E B M,et al, Appl. Catal.,1984,9:129.
    [79] Johnson M F L, J. Catal.,1990,123:245.
    [80] 陈颖,聂柞仁,等.稀土对氧化铝凝胶加热转变过程的影响[J].中国稀土学报,2002,20(2):126~132.
    [81] Xiong G, et al, Stud. Surf. Sci&Catal,1998,119:747.
    [82] Church J S,Cant N W, Trimm D L, Appl. Catal. A,1993,101:105.
    [831] Machida M,Eguchi K, Arai J, J. Catal.,1987,103:385.
    [84] Ahlstrom-silversand A F, Odenbrand C U I,Appl.Catal.A, 1997,153~57.
    [85] Arai H,Machida M, Catal. Today, 191,10:81.
    [86] Richard L. Smith, Svetlana V. Yanina, Inhibition of Sintering and Surface Area Loss in Phosphorus-Doped Corundum Derived from Diaspore[J]. J.Am.Ceram.Soc., 2002,85(9), 2325~2330.
    [87] Beguin B,Garbowski E,Drimet M, J. Catal.,1991,127:595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700