用户名: 密码: 验证码:
胶团强化超滤法处理含铅废水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产过程中会产生大量的含铅废水,而Pb~(2+)对人体危害极大,必须采取措施从废水中去除Pb~(2+)。胶团强化超滤(MEUF)工艺是一种新兴的从废水中高效去除重金属的方法,但是其存在表面活性剂用量大、渗透出水中表面活性剂含量高等问题,严重制约着其工业化应用进程,基于此,本论文采用复配体系和实现表面活性剂的回用来达到减少十二烷基硫酸钠(SDS)用量并降低出水中SDS浓度的目的。
     基于SDS的MEUF工艺研究确定了25℃纯水中SDS的临界胶团浓度(CMC)为9mM。处理含Pb~(2+)浓度为5mg/L模拟废水时,最佳工艺条件为:进料液在搅拌器下搅拌30min并静止3h,进水SDS浓度为9mM,不调节溶液pH,在0.07MPa膜操作压力下采用单级无循环连续错流式操作模式运行超滤膜组件,运行时间为18min,此时MEUF各项指标达到稳定,渗透液中Pb~(2+)达到污水综合排放标准。
     为了降低SDS用量,选用两种非离子表面活性剂壬基酚聚氧乙烯醚(NP10)和聚氧乙烯失水山梨醇单油酸酯(Tween80)同SDS复配,发现Tween80/SDS复配体系在表面活性剂用量较少的情况下性能优于NP10/SDS复配体系,所以确定最佳的复配体系为SDS浓度为1mM,Tween80/SDS摩尔复配比为0.05,此时胶团相对稳定,溶液Zeta电位值达到-32.23mV。实验采用化学沉淀法降低渗透液中SDS的含量,确定最佳的CaCl_2/SDS摩尔比为0.9,此时SDS去除率达到了87.62%,SDS浓度为19.18mg/L,达到了污水综合排放标准第二类污染物三级标准;采用化学沉淀再生法实现了浓缩液中SDS的沉淀和再生,在CaCl_2/SDS摩尔比为0.9时,SDS沉淀率达到89.26%,而浓缩液中Tween80和Pb~(2+)浓度基本不变,实现了浓缩液中SDS同Pb~(2+)较好的分离;确定最佳的Na_2CO_3/Ca(C_(12)H_(25)SO_4)_2摩尔比为4,此时溶液中SDS浓度达到1.285mM, Ca(C_(12)H_(25)SO_4)_2的再溶率达到91.26%;全过程SDS的再生率达到81.46%,且再生的SDS性质未变,回用于MEUF工艺的效果良好,Pb~(2+)的截留率达到99.3%。
     本论文明确了不同清洗剂的作用,四种清洗剂对Pb~(2+)的清洗能力强弱顺序为NaOH>HNO_3>NaOCl>H_2O,对SDS的清洗能力强弱顺序为NaOCl>HNO_3>H_2O>NaOH,对膜的渗透通量恢复能力强弱顺序为HNO_3>H2O>NaOH>NaOCl;本论文综合四种清洗剂的特点,设计了最佳清洗流程,在基于SDS的MEUF工艺中可以实现对膜污染的完全清洗,渗透通量恢复率达到99.17%,在基于最佳复配体系的MEUF工艺中,最佳清洗流程可以使渗透通量恢复率达到87%。
A large amount of lead-containing waste water is generated in industrial process. Since Pb~(2+) is harmful to human health, it is of great importance to take measures to remove Pb~(2+) from waste water. Micellar-enhanced ultrafiltration (MEUF) is an emerging technology to remove heavy metals from waste water efficiently, but there are still some disadvantages seriously restricting their industrial application process. For instance, a large amount of surfactant is needed in the process, and the concentration of surfactant is still very high. Therefore, mixed surfactants were used to reduce the use of Sodium Dodecyl Sulfate (SDS) and the concentration of SDS in effluent in this paper.
     In SDS-based MEUF process, the critical micelle concentration (CMC) of SDS is identified as 9mM in the water at 25℃. In the treatment of lead-containing waste water with the concentration of 5mg/L, the optimum condition was shown that the feed solution was firstly stirred for 30min and kept still for 3h, the concentration of SDS in feed solution set as 9mM, pH value not adjusted, and the feed solution was filtered through ultrafiltration membrane module using single-stage loop-free continuous cross-flow operation mode at 0.07 MPa. After 18min operation, every factors of MEUF process reached stable, and the concentration of Pb~(2+) in permeate solution met the sewage discharge standards.
     In order to reduce the use of SDS, two kinds of nonionic surfactants, polyxyethylene nonyl phenyl ether (NP10) and polyoxyethylene sorbitan monooleate (Tween80) were used to mix with SDS. The results shown that the performance of Tween80/SDS mixed micellar system was better than that of NP10/SDS mixed micellar system in the case of using fewer amounts of surfactants. Therefore the optimal mixed micellar system was selected: the concentration of SDS was 1mM and the mole ratio of Tween80 and SDS was 0.05. The Zeta potential was -32.23mV under the optimum mole ratio of Tween80 and SDS condition and the micelles were stable at that moment.
     Chemical precipitation method was used to reduce the use of SDS in the permeate solution. The results indicated that the optimal mole ratio of CaCl_2 and SDS was 0.9, then the precipitation efficiency of SDS reached 87.62%, and the concentration of SDS in permeate solution was 19.18mg/L, which met the third grade standard of wastewater discharge standards of the second type of pollutants. Chemical precipitation-regeneration method was used to recover SDS from retentate solution. When the molar ratio of CaCl_2 and SDS was 0.9, the precipitation efficiency of SDS was 89.26%, and the concentration of Tween80 and Pb~(2+) were unchanged essentially. SDS and Pb~(2+) in retentate solution were effectively separated. When the optimal mole ratio of Na2CO_3 and Ca(C_(12)H_(25)SO_4)_2 was selected as 4, the concentration of SDS in permeate solution was 1.285mM, and the redissolution percent of SDS was 91.26%. In the whole process, the recover efficiency of SDS was 81.46%, and the performance of regenerated SDS did not change. The regenerated SDS could be used in MEUF process again, and the retention rate of Pb~(2+) could reach 99.3%.
     The function of different cleaning agents was revealed. The order for cleaning Pb~(2+) was NaOH>HNO_3>NaOCl>H_2O, the order for cleaning SDS was NaOCl> HNO_3> H2O> NaOH, and the order for the flux recovery was HNO_3> H_2O> NaOH> NaOCl. The optimal cleaning process was designed based on the characteristics of four cleaning agents. In SDS-based MEUF process, the fouled membrane could be completely regenerated by the cleaning process and the flux could be recovered to 99.17%, while in mixed micellar system, the flux could be recovered to 87%.
引文
1张英,周长民,蔡冉.重金属铅污染对人体的危害[J].辽宁化工,2007,36(6):395-397.
    2蒋克彬,张小海,蔡冉.含铅废水工程治理技术综述[J].科技情报开发与经济,2008,18(14):118-120.
    3 Guntae Son,Seunghwan Lee. Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution[J]. Korean Journal of Chemical Engineering, 2011,28(3):793-799.
    4张少峰,胡熙嗯.含铅废水处理技术及其展望[J].环境污染治理技术与设备,2003,4(11):68-71.
    5张振.利用低浓度表明活性剂胶团强化超滤处理重金属废水[D] .长沙:湖南大学硕士学位论文, 2007: 18-32.
    6常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境,2005,24(4):29-34.
    7谢章旺.壳聚糖络合-超滤耦合工艺对溶液中重金属去除的研究[D].上海:上海交通大学硕士学位论文,2010:1-2.
    8林丹.浅谈铅的污染及对人的危害[J].新余高专学报,2006,11(2):109-111.
    9杨建雄,张瑾锦.铅中毒的危害及其预防和治疗[J].陕西师范大学继续教育学报(西安),2006,23(2):114-116.
    10金娜,印万忠.铅的危害及国内外除铅的研究现状[J].陕西师范大学继续教育学报(西安),2006,22:114-118.
    11孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000:1-20.
    12 R.C.Widner, M.F.B. Sousa, R.Bertazzoli. Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode[J]. Journal of Applied Electrochemistry, 1998, 28(2):201-207.
    13金焰,李敦顺,曹阳.铁氧体沉淀法处理模拟含铅废水[J].化学与生物工程,2006,23(7):45-47.
    14渠荣遴,李德森,杜荣骞等.水体重金属污染的植物修复研究(Ⅱ)[J].农业环境保护,2002,22(6):499-501.
    15刘宏燕.椰壳基活性炭改性及其对Pb~(2+)的吸附性能研究[D].长沙:中南大学硕士学位论文,2010:1-2.
    16谢峻铭.含铅废水的处理工艺研究[J].江西化工,2010,(3):35-37.
    17吴涓,李清彪,邓旭等.白腐真菌吸附铅的研究[J].微生物学报,1999,39(1):87-90.
    18陈浚.电渗析法处理含铅废水研究[D].杭州:浙江工业大学硕士学位论文,2004:1-2.
    19李纯茂,俞宁.膜分离技术在重金属废水处理中的应用研究[J].三峡环境与生态,2009,2(1):46-49.
    20邓娟利,胡小玲,管萍等.膜分离技术及其在重金属废水处理中的应用[J].材料导报,2005,(2):23-26.
    21 Kurt E. Geckeler, Konstantin Volchek. Removal of Hazardous Substances from Water Using Ultrafiltration in Conjunction with Soluble Polymers [J]. Environment Science & Technology, 1996,30(3):725-734.
    22 I. Tadesse, S.A. Isoaho, F.B. Green, etal. Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresour[J]. Bioresource Technology, 2006, 97(4), 529-534.
    23大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社, 2004:1-30.
    24孙建民,于丽青,孙汉文.重金属废水处理技术进展[J].河北大学学报, 2004, 24(4): 438-443.
    25贾燕,汪洋.重金属废水处理技术的概况及前景展望[J].中国西部科技(学术版), 2007(4): 10-13.
    26陈建伟.膜分离技术在重金属废水处理中的应用研究进展[J].广东化工, 2009, 36(4): 132-135.
    27 M.C. Porter. Membrane filtration[M]. P.A. Schweitzer (Ed.). Handbook of Separation Techniques for Chemical Engineers. New York: McGraw-Hill, 1997.
    28 G. Chen, X. Chai, P.L. Yue, etal. Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation[J]. Journal of Membrane Science, 1997,127(1):93-99.
    29 C.C. Tung, Chai, Y.M. Yang, C.H. Chang, etal. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration withmixed surfactants[J]. Waste Management, 2002, 22(7):695-701.
    30 A.S. Jonsson, G. Tragardh. Ultrafiltration applications[J], Desalination, 1990, 77(1-3): 135–179.
    31 Ruey-Shin Juang,Yong-Yan Xu,Ching-Liang Chen. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration[J]. Journal of Membrane Science, 2003,218(1-2):257-267.
    32 K. Baek, H.H. Lee, J.W. Yang. Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate[J]. Desalination, 2003, 158(1-3): 157–166.
    33王世荣,李祥高,刘东志等.表面活性剂化学[M].北京:化学工业出版社,2010:1-2.
    34董国君,苏玉,王桂香.表面活性剂化学[M].北京:北京理工大学出版社,2009:1-2.
    35金谷.表面活性剂化学[M].合肥:中国科技大学出版社,2008:15-16.
    36 B. Rahmanian, M. Pakizeh, A. Maskooki. Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane[J]. Journal of Hazardous Materials, 2010,184(1-3):261-267.
    37黄洪周.中国表面活性剂总揽[M].北京:化学工业出版社,2003:134-166.
    38张天胜.表面活性剂应用技术[M].北京:化学工业出版社,2003:130-400.
    39刘程,李江华等.表面活性剂应用手册[M].北京:化学工业出版社,2004:45.
    40 Paiboon Yenphan, Ampai Chanachai, Ratana Jiraratananon. Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants[J]. Desalination, 2010,253(1-3):30-37.
    41 E. Samper, M. Rodríguez, M.A. De la Rubia, etal. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS)[J]. Separation and Purification Technology, 2009,65(3):337-342.
    42 Junkal Landaburu-Aguirre, Verónica García, Eva Pongrácz, etal. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments[J]. Desalination, 2009,240(1-3):262-269.
    43 Katarzyna Staszak, Beata Redutko, Krystyna Prochaska. Removal of metal ions from aqueous solutions by micellar enhanced ultrafiltration(MEUF)[J]. Polish Journal of Chemical Technology, 2010,12(3):62-65.
    44 Francesco Ferella, Marina Prisciandaro, Ida De Michelis, etal. Removal of heavy metals by surfactant-enhanced ultrafiltration from wastewaters[J]. Desalination, 2007,207(1-3):125-133.
    45许振良,徐惠敏,翟晓东.胶束强化超滤处理含镉和铅离子废水的研究[J].膜科学与技术,2002,22(3):15-20.
    46 Chung-Ching Tung, Yu-Min Yang, Chien-Hsiang Chang, etal. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants[J]. Waste Management, 2002,22(7):695-701.
    47 Chi-Wang Li, Chuan-Kun Liu, Wei-Shuen Yen. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions[J]. Chemosphere, 2006,63(2):353-358.
    48 M.A. Monem El Zeftawy, Catherine N. Mulligan. Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF)[J]. Separation and Purification Technology, 2011,77(1):120-127.
    49 Lisa Ghezzi, Gabriele Monteleone, Brian Robinson, etal. Metal extraction in water/micelle systems: Complex formation, stripping and recovery of Cd(II)[J]. Colloids and surfaces A-Physicochemical and engineering aspects, 2008,317(1-3):717-721.
    50 Bita R. Fillipi, John F. Scamehorn, Sherril D. Christian, etal. A comparative economic analysis of copper removal from water by ligand-modified micellar-enhanced ultrafiltration and by conventional solvent extraction[J]. Journal of Membrane Science, 1998,145(1):717-721.
    51曲云欢,曾光明,黄瑾.胶团强化超滤与泡沫分离组合工艺深度处理含Cd~(2+)废水[J].水处理技术,2008,34(6):55-58.
    52 Rabindra Bade, Seung Hwan Lee. Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes for copper removal from wastewater[J]. Korean Journal of Chemical Engineering, 2007,24(2):239-245.
    53 Chandan Das, Pintu Maity, Sunando DasGupta, etal. Separation ofcation–anion mixture using micellar-enhanced ultrafiltration in a mixed micellar system[J]. Chemical Engineering Journal, 2008,144(1):35-41.
    54 Xue Li, Guang-Ming Zeng, Jin-Hui Huang, etal. Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd~(2+) or Zn~(2+) by ultrafiltration[J]. Journal of Membrane Science, 2009,337(1-2):92-97.
    55 Shih-Hsien Chang, Kai-SungWang, Pei-I Hu, etal. Rapid recovery of dilute copper from a simulated Cu–SDS solution with low-cost steel wool cathode reactor[J]. Journal of Hazardous Materials, 2009,163(2-3):544-549.
    56 Chandan Das, Sunando DasGupta, Sirshendu De. Simultaneous Separation of Mixture of Metal Ions and Aromatic Alcohol using Cross Flow Micellar-Enhanced Ultrafiltration and Recovery of Surfactant[J]. Separation Science and Technology, 2008,43(1):71-92.
    57徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003:232-263.
    58华耀祖.超滤技术与应用[M].北京:化学工业出版社,2004:184-243.
    59 Cardew P T, Le M S. Membrane Processes: A Technology Guide[M]. UK: Royal Society of Chemistry, 1998.
    60 Cheryan M. Ultrafiltration Handbook[M]. Lancaster, PA: Technomic, 1986.
    61 Ridgway H F. Microbial adhesion and biofouling of reverse osmosis membranes[C]. Parekh BS. Reverse Osmosis Technology. New York: Marcel Dekker, 1988: 429-481.
    62 Howell J A, Nystr?m M. Membrane in Bioprocessing-Theory and Applications[M]. Howell J A, Sanchez V, Field R W. Reverse Osmosis Technology. London: Elesevier Applied Science, 1993.
    63刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    64王萍,朱宛华.膜污染与清洗[J].合肥工业大学学报(自然科学版),2001,24(2):230-233.
    65张国俊,刘忠洲.膜过程中膜清洗技术研究进展[J].水处理技术,2003,29(4):187-190.
    66吴光夏,张东华,刘忠洲等.膜的负压清洗方法研究[J].膜科学与技术,1999,19(4):52-55.
    67董金冀,陈小青.超滤膜化学清洗技术的探讨与改进[J].金属世界,2008,(1):58-60.
    68 Munoz-Aguado M J, Wiley D E, Fane A G. Enzy-matic and detergent cleaning of a polysulfone ultrafiltration membrane fouled w ith BSA and whey[J]. Journal of Membrane Science, 1996, 117 (1-2): 175-187.
    69黄瑾辉.胶团强化超滤法处理含镉废水的机理与应用基础研究[D].长沙:湖南大学博士学位论文,2007:53-125.
    70薛罡,龚清杰,梁小菲.胶束强化超滤处理含锰废水[J].膜科学与技术,2010,30(4):78-83.
    71 Kandipati Sreenivasarao, Fiona M. Doyle. Solubility products of salts of selected metal ions and anionic C12 surfactants[J]. Separation and Purification Technology, 1997, 12(2): 157-164.
    72 A. J. Chhatre, K. V. Marathe. Dynamic Analysis and Optimization of Surfactant Dosage in Micellar Enhanced Ultrafiltration of Nickel from Aqueous Streams[J]. Separation Science and Technology, 2006, 41(12): 2755-2770.
    73 Gargi Ghosh, Prashant K. Bhattacharya. Hexavalent chromium ion removal through micellar enhanced ultrafiltration[J]. Chemical Engineering Journal, 2006, 119(7): 45-53.
    74刘芬,刘文华,李方文等.草酸生产含铅废水处理工艺研究[J].给水排水,2004,(11):50-53.
    75方瑶瑶.阴离子表面活性剂胶团强化超滤去除镉离子的应用研究[D].长沙:湖南大学博士学位论文,2009:45-46.
    76王学松.现代膜技术及其应用指南[M].北京:化学工业出版社,2005:646-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700