用户名: 密码: 验证码:
基于弹塑性本构理论的岩石相变折曲研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石折曲带在自然界广泛存在,是一种重要的地质构造,许多学者做过岩石折曲的实验研究,但没有从理论上进行深入的分析,因此以前一直没有合适的理论模型来揭示折曲带的形成机理和对折曲现象进行定量预测。本文将岩石折曲视为应力导致的相变,建立了沉积岩折曲带形成的相变折曲分析模型。对一些岩石矿物相变的详细过程研究发现某些相变过程确系一种塑性变形过程,从而推测岩石中的折曲带是应力导致的相变大变形留下的地质构造形迹。
     通过对超弹性材料相变发生条件进行的研究表明,具有非凸应变能函数的超弹性材料可以发生相变,进一步分析表明:相变可以在能应变软化的弹塑性材料中发生;相变的Maxwell应力、弹性相和弹塑性相的应变都是确定的。文中证明,对任一条假设的应变软化曲线,Maxwell应力直线和应变软化曲线所围面积的代数和总是等于零,这和Ericksen对非线性弹性杆相变研究得到的结论相一致。
     本文考虑了跨越折曲带界面的变形梯度的不连续和应力的不连续,强加了跨越界面的力的连续性和相变Maxwell条件,给出了平面应变条件下的相变控制方程。利用相变控制方程和岩石弹塑性本构方程,建立了沉积岩折曲带形成的相变折曲分析模型。折曲分析转化为在给定的简单加载条件下寻求应力张量最大主值的最小值,在该值处,由相变控制方程和弹塑性本构方程导出的方程组具有唯一的物理意义上可接受的实数解,所得的方程组实数解可以由同伦算法求解。数值结果依赖于所选用的本构方程,分别应用基于Drucker-Prager屈服准则的大变形岩石的弹塑性本构方程和引入微结构张量导出的横观各向同性弹塑性本构方程进行了求解。通过平面应变数值算例表明,折曲应力、折曲带内外区域中的应力与应变、折曲带的倾角以及折曲角等都可以由此得出,且与实验结果相吻合。计算表明当塑性切线模量与弹性模量之比较小时,跨越相变界面的应变跳越较大,验证了折曲带的产生是岩石在高围压下发生的韧性剪切的结果,得到相变发生取决于材料性质、静水压力和应力偏张量的结论。
Rock kink bands have been widely observed in nature. Rock kinking involves important information of the earth’s crust movement. Many researchers have devoted their work to experimental research on rock kinking, but no theoretical model has been given so far to reveal its formation mechanism and to predict it exactly. Regarded as a result of stress-induced phase transition for the formation of kink bands in sedimentary rocks, an elastoplastic phase transition model is suggested in the present paper. The precise studies to the rock mineral phase transition discovered some of the deformation process is truly plastic thus concluded that kink bands are the marks of geologic structure resulted from stress-induced phase transition
     The theoretical studies discovered that phase transition may occur to superelastic materials having non-convex strain energy function. Further analysis revealed phase transition may occur in such elastoplastic materials with strain softening behavior and the Maxwell stress and the strains inside both elastic phase and elastoplastic phase are all determined after phase transformation has occured. It is proved that for any assumed strain-softening curve the algebraic sum of areas enclosed by the Maxwell stress straight line and strain-softening cure is always equal to zero that agrees with the result given by Ericksen for the analysis of phase transformations in nonlinearly elastic bars.
     Considering the discontinuity of deformation gradient and stress across interfaces between kink band and un-kinked areas, imposing the continuity of traction across interfaces and the Maxwell relation the phase transformation control function under planar strain is established in this paper. With the control function and the elastoplastic constitutive equation for sedimentary rocks, the phase transition analysis model for rocks kinking formation is provided. With the aid of phase transition model, kinking analysis is transferred into seeking the minimum first principal value of the stress tensor on which the equations reduced by phase transition conditions and the constitutive laws have a unique, physically acceptable real solution which can be found by homotopy continuation methods. The results solved numerically depend on the constitutive laws selected so the elasoplastic constitutive laws both based on Drucker-Prager yield criteria for rock definite deformation and embodied rock transverse isotropy by incorporating a microstructure tensor are applied respectively. The numerical example of planar strain state illustrated that critical kinking stress, stress and strain in and out the kink bands, both the inclination angle of the kink band and the kink orientation can all be predicted which are accordance with the experimental measurements. As is shown by the calculations that the smaller the rate of plasticity tangent module to elasticity module the larger the strain jump quantity across phase transformation interface is, which verified the kink band formation was due to rock subjected ductile shear in high confine pressure. The conclusions that phase transformation occurrence was dependent with material behavior, mean pressure and stress deviator was drawn.
引文
[1]徐开礼,朱志澄,构造地质学,北京:地质出版社,1983,9
    [2]何永年等,构造岩石学基础,北京:地质出版社,1988,7
    [3] B.雅罗谢夫斯基,断裂与褶曲构造学,北京:地震出版社,1987,5
    [4]李东旭,周济元,地质力学导论,北京:地质出版社,1986,6
    [5]王自强,段祝平,塑性细观力学,北京:科学出版社,1995,8
    [6]许志琴,地壳变形与显微构造,北京:地质出版社,1984
    [7]林传勇,何永年,史兰斌,岩石的韧性剪切和脆一韧性转换变形,北京:地质出版社,1992,183-190
    [8]孙岩,沈修志,黄仲谨等,两类糜棱岩的特征、成因及其地质意义,地震地质,1986,8(4):63-69
    [9]刘瑞殉,显微构造地质学,北京:北京大学出版社,1988
    [10]张逸昆,J.Suppe,贾东,卢华复,广义“断层转折褶皱”的几何学正演数值模拟,高校地质学报,2005,11,4
    [11]陈杰等,利用河流阶地限定活动褶皱的类型和生长机制:运动学模型,地震地质,2005,27,4
    [12] Knipe R J. Deformation mechanisms—recognition form natural teetonics. Journal of Structural Geology, 1989,11:127-146.
    [13] Suppe J. Geometry and kinematics of fault-bend folding. America Journal of sciences, 1983, 283:684-721
    [14] Suppe J, Medwedeff D A. Fault-propagation folding. GSA Abstracts with Programs, 1984,16:670.
    [15] Jamison W R. Geometric analysis of fold development in overthrust Terranes. Journal of Structural Geology, 1987,9:207-219
    [16] Mitra S. Fault—propagation folds: geometry, kinematics, and hydrocarbon traps.AAPG Bulletin, 1990, 74:921-945
    [17] Microcomputer techniques and applications Microcomputer software for structural geologists. Journal of Structural Geology, 1991, 13, 9:1079-1083
    [18] A. J. Van Loon, K, Brodzikowski, R.Gotowa. Kink structures in unconsolidated fine-grained sediments. Sedimentary Geology, 1984, 41,(2-4):283-300
    [19] A. J. Van Loon, K. Brodzikowski, R. Gotowa. Structural analysis of kink bands in unconsolidated sands. Tectonophysics, 1984, 104:351-374
    [20] Howard R. Williams. Stick-slip model for kink band formation in shear zones and faults. Tectonophysics, 1987,140: 327-331
    [21] M. Ahmer Wadee, R. Edmunds. Kink band propagation in layered structures Journal of the Mechanics and Physics of Solids, 2005,53: 2017-2035
    [22] M. Ahmer Wadee, G. W. Hunt, M. A. Peletier. Kink band instability in layered structures. Journal of the Mechanics and Physics of Solids, 2004, 52,1071-1091
    [23] Giles W. Hunt, Mark A. Peletier, M. Ahmer Wadee. The Maxwell stability criterion in pseudo-energy models of kink banding. Journal of Structural Geology, 2000, 22, 669-681
    [24] R. Edmunds, M. Ahmer Wadee. On kink banding in individual PPTA fibres. Composites Science and Technology, 2005, 65, 1284-1298
    [25] R. Edmunds, G.W. Hunt, M. Ahmer Wadee. Parallel folding in multi-layered structures. Journal of the Mechanics and Physics of Solids, 2006, 54, 384-400
    [26] J. S. Tchalenko. The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics, 1968, 6, 159-174
    [27] M. A. Biot. The influence of gravity on the folding of a layered viscoelastic medium under compression. Journal of the Franklin Institute,1959, 267, 211-228
    [28] Biot,M.A. Theory of folding of stratified viscoelastic media and its implication in tectonics and orogenesis. Geoi. Soc. America bull,1961,72:1595-1632
    [29]胡玲编,显微构造地质学概论,北京:地质出版社,1998
    [30]刘巍,杜建国,丁建才,地球内部矿物相变及其地质意义,现代地质,2001,6
    [31]姜永东等,单一岩石变形特性及本构关系的研究,岩土力学,2005,26,6
    [32]韦立德等具有统计损伤的岩石弹塑性本构模型研究,岩石力学与工程学报,2004,23,(12)
    [33]周小平,张永兴,朱可善,单轴拉伸条件下细观非均匀性.岩石本构关系研究,土木工程学报,2005,38,3
    [34]谢宇新,弹塑性材料的相变研究,天津大学博士学位论文,2006,6
    [35]霍永忠,热弹性马氏体相变连续介质热力学研究,力学进展,2005,8
    [36]王嘉荫,应力矿物概论,北京:地质出版社,1978
    [37]徐开礼,朱志澄,构造地质学,北京:地质出版社,1983,9
    [38] B.雅罗谢夫斯基,断裂与褶曲构造学,北京:地震出版社,1987,5
    [39]李东旭,周济元,地质力学导论,北京:地质出版社,1986,6
    [40] Knipe R J. Deformation mechanisms-recognition form natural tectonics. Journal of Structural Geology,1989,11:127-146
    [41] Ismat Z, Mitra G. Folding by cataclastic flow at shallow crustal levels in the Canyon Range,Sevier orogenic belt, west-central Utah. Journal of Structural Geology,2000,23:355-378
    [42] Han dy M R,Wissing S B,Streit L E. Frictional-viscous flow in mylonite with varied bimineralic composition and its effect on lithosphereic strength Tectonophysics,1999,303:175-191
    [43]陈杰等,利用河流阶地限定活动褶皱的类型和生长机制:运动学模型,地震地质,2005,27,4
    [44]郑亚东,王涛,王新社,新世纪构造地质学与力学的新理论-最大有效力矩准则,自然科学进展,2005,15,2
    [45] Suppe J. Geometry and kinematics of fault-bend folding. America Journal of sciences, 1983,283:684-721
    [46] Suppe J, Medwedef D A. Fault-propagation folding. GSA Abstracts with Programs,1984,16:670
    [47] Holland T H. Some geometrical features of the anticline. Journal of Institute of Petroleum Technology,1914,1:13-27
    [48] Biot,M.A. Theory of folding of stratified viscoelastic media and its implication in tectonics and orogenesis. Geoi. Soc. America bull.1961,72:1595-1632
    [49] M.S. PATERSON, L.E.WEISS. Experimental deformation and folding in Phyllite. Geological Society of America Bulletin.1966,77,9:343-374
    [50] M.E.Gurtin, An Introduction to Continuum Mechanics. New York: Academic Press, 1982.
    [51] R.W.Ogden, "Elements of the theory of finite elasticity," in Nonlinear Elasticity: Theory and Applications, Y.B.Fu&R.W.Ogden, Ed. Cambridge: Cambridge University Press, 2002, 1-57.
    [52]黄克智,薛明德,陆明万,张量分析,清华大学出版社,2003,7
    [53] Freidin A B, Croitoro E M. Phase transitions zones and two phase strain fields in elastic solids[C]//Proc 1st Canadian conference on Nonliner Solids Mechanics. Victoria, Canada, 1999:509-518
    [54] J. L. Ericksen, Equilibrium of Bars. Journal of Elasticity, 1975, 5, 191-201
    [55] R. Abeyaratne,An Admissibility Condition for Equilibrium Shocks in Finite Elasticity. Journal of Elasticity, 1983,13, 175-184,
    [56] R. C. Abeyaratne. Discontinuous Deformation Gradients in the Finite Twisting of an Incompressible Elastic Tube.Journal of Elasticity, 1981,11, 43-80
    [57] R. Abeyaratne, Discontinuous Deformation Gradients Away from the Tip of a Crack in Anti-Plane Shear, Journal of Elasticity, 1981 11, 373-393.
    [58] A. R, Bhattacharya.K, and K. J.K, Strain-energy functions with multiple local minima: modeling phase transformation using finite thermo-elasticity, in Nonlinear Elasticity: theory and Applications, F. Y.B and O. R.W., Eds. Cambridge: Cabdridge University Press, 2001, 431-490.
    [59] G. Y. Qiu and T. J. Pence, Loss of ellipticity in plane deformation of a simple directionally reinforced incompressible nonlinearly elastic solid, Journal of Elasticity, 1997,49, 31-63
    [60] Q. Jiang and J. K. Knowles, A Class of Compressible Elastic-Materials Capable of Sustaining Finite Antiplane Shear, Journal of Elasticity, 1991, 25,193-201
    [61] P. Rosakis and J. K. Knowles, Unstable kinetic relations and the dynamics of solid-solid phase transitions, Journal of the Mechanics and Physics of Solids, 1997, 45, 2055-2081
    [62] G. Y. Qiu and T. J. Pence, Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids, Journal of Elasticity, 1997, 49,1-30
    [63] Y. B. Fu and A. B. Freidin, Characterization and stability of two-phase piecewise-homogeneous deformations, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004, 460, 3065-3094,
    [64] Y. B. Fu and Y. T. Zhang, Continuum-mechanical modelling of kink-band formation in fibre-reinforced composites, International Journal of Solids and Structures, 2006, 43, 3306-3323
    [65] Y. T. Zhang, Y. X. Xie, and S.G.Ren, Modeling of kinking in elastoplastic continua as a stress-induced phase transformation, International Journal of Plasticity, submitted.
    [66] R. Abeyaratne.J. K. Knowles, Non-Elliptic Elastic-Materials and the Modeling of Elastic-Plastic Behavior for Finite Deformation, Journal of the Mechanics and Physics of Solids, 1987, 35,343-365
    [67] J. M. Ball, Mathematical models of martensitic microstructure, Materials Science and Engineering, 2004, 378, 61-69
    [68] R. Abeyaratne and J. K. Knowles, On the stability of thermoelastic materials, Journal of Elasticity, 1998, 53, 199-213
    [69] R. Abeyaratne and J. K. Knowles, Equilibrium Shocks in Plane Deformations of Incompressible Elastic-Materials, Journal of Elasticity, 1989, 22, 63-80,
    [70]张义同,谢宇新,任述光,弹塑性杆的相变,天津大学学报, 2006, 39(7):763-767
    [71] McMeeking R M,Evans A G. Mechanisms of transformation toughening in brittle materials. J Am Ceram, Soc,l982,65(5): 242-245
    [72] Budiansky B,Hutchinson J W, Immbmpoulos J C. Continuum theory dilatant transformation toughening in ceramics. Int J Solids Structures,1983,19:337-355
    [73] Evans A G, Cannon R M. Toughening of brittle solids by martensitic transformation. Acta Metall,1986,34(5):761-800
    [74] Lambropoulos J C. Shear shape and orientation effects in transformation toughening.Int J Solids Structures, l986,22(10):1083-ll06
    [75]王志刚,黄克智,一种描述形状记忆合金拟弹性变形行为的本构模型,力学学报,1991,23(2):201-210
    [76] Abeyaratne R, Knowles J K. A continuum model of a thermoelastic solid capable of undergoing phase transitions. J Meeh Phys Solids,1993,41(3):54l-57l
    [77] Chen I W. Reyes Morel P E. Implications of transformation plasticity in ZrO2 containing ceramics: I, shear and dilation effects. J Am Ceram Soc,1986,69(3):181-l89
    [78] Reyes Morel P E. Chen I W. Transformation plasticity of CeO2:-stabilized tetragonal zirconia polyerystals: I,shess assistance and autecatalysis. J Am Ceram Soc,1988,71(5):343-353
    [79]蔡乾煌,复相陶瓷中颗粒桥联与相变协同增韧作用的力学分析,固体力学学报,1994,15(4):303-310
    [80] Patel J R,Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica,l953,l:53l-538
    [81]郭扬波,唐志平,徐松林,一种考虑静水压力和偏应力共同作用的相变临界准则,固体力学学报,2004,25(4):417-422
    [82] J. K. Knowles, On the dissipation associated with equilibrium shocks in finite elasticity, J. Elasticity, 1979, 9,131-158,
    [83] Ogden, Nonlinear elastic deformations. New York: Dover Publications, 1997.
    [84] T. Rojc, On a mixed approach to the finite element solution of large strain elastoplastic problems, Engineering Computations, 1998,15, 150
    [85] A. B. C. Freidin, A.M., Phase transition zones in nonlinear elastic isotropic materials. Part 2: Incompressible materials with a potential depending on one of deformation invariants, Izv. RAN, Mekhanika Tverdogo Tela (Mechanics of Solids), 1994, 29, 46-58,.
    [86] M. E. Gurtin, Two–phase deformations of elastic solids, Arch. Rat. Mech. Anal., 1983,84,
    [87]黄克智,黄永刚,固体本构关系,北京:清华大学出版社, 1999
    [88]李国琛,耶纳,塑性大应变微结构力学,北京:科学出版社, 2003
    [89] A.C.Eringen, Mechanics of Continua, Sencond ed: Robert E. Krieger Publishing Company, 1980.
    [90]黄克智,非线性连续介质力学,北京:清华大学出版社,北京大学出版社, 1989
    [91] A. de Gayffier, G. Nefussi, and P. Gilormini, Plane cyclic deformation in hypo-elasticity, Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique Physique Astronomie, 1998.326, 297-300,
    [92] B. Svendsen, S. Arndt, D. Klingbeil, and R. Sievert, Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation, International Journal of Solids and Structures, 1998,35, 3363-3389
    [93] G. Meschke, R. Lackner, and H. A. Mang, An anisotropic elastoplastic-damage model for plain concrete, International Journal for Numerical Methods in Engineering, 1998, 42, 703-727
    [94] E. Stein and M. Kreienmeyer, Coupling of BEM and FEM by a multiplicative Schwarz method and its parallel implementation, Engineering Computations, 1998,15, 173
    [95] G. A. Maugin and M. Epstein, Geometrical material structure of elastoplasticity, International Journal of Plasticity, 1998.14, 109-115
    [96] J. Lufrano, P. Sofronis, and D. Symons, Hydrogen transport and large strain elastoplasticity near a notch in alloy X-750, Engineering Fracture Mechanics, 1998,59, 827-845.
    [97] T. Sawa, M. Aoki, and O. Nishikawa, Elastoplastic finite element analysis and strength evaluation of adhesive butt joints of similar and dissimilar hollow shafts subjected to external bending moments, Journal of Adhesion, 1997, 61, 55-69
    [98] P. M. Mariano, On the axioms of plasticity, International Journal of Solids and Structures,1998,35,1313-1324
    [99]徐卫亚,韦立德,岩石损伤统计本构模型的研究,岩石力学与工程学报,2002,21(6): 787-79l
    [100]韦立德等,具有统计损伤的岩石弹塑性本构模型研究,岩石力学与工程学报,2004,23,(12)
    [101]曹文贵,方祖烈,唐学军,岩石损伤软化统计本构模型之研究,岩石力学与工程学报,1998,l7(6):628-633
    [102]秦跃平,岩石损伤力学模型及其本构方程,岩石力学与工程学报,2001,20(4):560-562
    [103]杨春和,李银平,互层盐岩体的Cosserat介质扩展本构模型,岩石力学与工程学报,2005,24(23):4227-4232
    [104] Fu Y B, Freidin A B. Characterization and stability of two phase piecewise-homogeneous deformations,Pro RSocLond A, 2004, 460:3065-3094.
    [105] Fu Y B, Zhang Y T. Continuum-mechanical modeling of kink-band formation in fiber-reinforced composites, International Journal of solids and Structures,2006,43 (11/12);3306-3323.
    [106] KEVlN G. STEWART. Mobile-hinge kinking in layered rocks and models. Journal of Structural Geology, 1991,13, 243 -259
    [107] Freidin A B,Viltchevskaya E N, Sharipova L. Two-phase deformations within the framework of phase transition zones, Theoretical and Applied Mechanics,2004,28/29:149-172.
    [108] Y.T.Zhang, et al. Prediction of the Luders band in fine grained steel strips under uniaxial tension. Comput. Mater Sci (2007), doi:10.1016/.2007,05,011
    [109] Y T Zhang, J L Qiao , T Ao. Strain softening of materials and Luders-type deformations. Modelling Simul. Mater. Sci. Eng, 2007, 15:147–156.
    [110] Yi Tong Zhang, Shu Guang Ren, Tao Ao. Elastoplastic modeling of materials supporting multiphase deformations, Materials Science and Engineering,2007 447 332-340
    [111] Y.T. Zhang , T. Ao, J. F. Xu. Analysis of stress-induced phase transformations in elastoplastic materials with strain-softening behavior under plane shear, Journal of Material Scien,2007, DOI 10.1007/s10853-007-1883-4
    [112]任述光,张义同,徐家福,谢宇新,沉积岩挤压折曲带参数计算的相变分析模型,天津大学学报,2008,3(待刊)
    [113] Arvid M.Johnson. Orientations of faults determined by premonitory shear zones,Tectonophysics, 1995, 247161-258
    [114] Kwasniewski, M.A. Mechanical behavior of anisotropic rocks. In Hudson, J.A.(Ed), Comprehensive Rock Engineering, Fundamentals. Pergamon Press, Oxford,1993, 1:285-312.
    [115] Ramamurthy,T. Strength and modulus responses of anisotrophic rocks. Comprehensive Rock Engineering, Fundamentals. Pergamon Press, Oxford,1993, 1: 285-312.
    [116] Boehler JP, Sawczuk A. Equilibre limite des sols anisotropes. Journ de Macanique,1970,3:5-33.
    [117] Nova R. The failure of transversely anisotropic rocks in triaxial compression. Int Journ Rock Mech Mining Sci & Geomech Abstr, 1980,17:325-32.
    [118] Walsh JB, Brace JF. A fracture criterion for brittle anisotropic rock. Journ Geoph Res,1964,69:3449-56.
    [119] Hoek E. Strength of jointed rock masses. Geotechnique 1983,33:187-205.
    [120] Hoek E, Brown ET. Empirical strength criterion for rock masses. Journ Geotech Eng Div, ASCE,1980;106:1013-35
    [121] Duveau, G., Shao, J.F., Henry, J.P. Assessment of some failure criteria for strongly anisotropic materials. Mech. Cohesive Frict. Mater. 1998, 3, 1-26.
    [122] Boehler, J.P., Sawczuk, A Equilibre limite des sols anisotropes. J. de Mecanique, 1970,3, 5-33.
    [123] Boehler, J.P, Sawczuk, A. On yielding of oriented solids,Acta Mechanica, 1977,27,185-206.
    [124] S. Pietruszczak, D. Lydzba, J.F. Shao, Modelling of inherent anisotropy in sedimentary rocks,Solids and Structures, 2002, 39,637-648
    [125] Pietruszczak, S., Mroz, Z. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Meth. Geomech, 2001,25, 509-524
    [126] S. Pietruszczak, Z. Mrozb. Formulation of anisotropic failure criteria incorporating a microstructure tensor. Computers and Geotechnics, 2000, 26,105-112
    [127] Boehler J P, Lois de comportement anisotrope des miheux continues. J.M.C, 1978, 17,153-190
    [128] Boehler J P. A simple derivation of representations for non-polynomial constitutlve equatations in some case of anisotropy ZAMM, l979,59:157-167
    [129] Smith G F, Rivlin R S. The anisotropic tensors. Q Appt Math, 1957, l5:308-31
    [130] Liu I.S. On representations of anisotropic invariants. Int. J. Engng. Sci, 1982, 10:1099-1109
    [131] Zheng Q-S. On the representations for isotropie vector-valued,symmetric tensor-valued and skew-symmetric tensor valued functions. J. Engng,Sci,1993,31:1013-1021
    [132] Zheng Q-S. On transversely isotropic,orthotropic and relative isotropic functions of symmetric tensor skew-symmetric tensors and vectors,Part I.Two dimensional orthotropic and relative isotropic functions and three dimensional relative isotropic functions fat.J Engng Sci, 1993:1399-1409
    [133] Zheng Q-S. On transversely isotropic,orthotropic and relative isotropic functions of symmetric tensors,Skew-symmetric tensors and vectors:Part II. The representations for three dimensional transversely isotropic functions Int.J Engag Sci.1993, 31:1411-1423
    [134] Zheng Q-S. On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors,skew-symmetric tensors and vectors:Part III. The irreducibility of the representations for three dimensional transversely isotropic functions. Jnt J Engag Sci.1993, 31:1425-1433
    [135] Zheng Q-S. On transversely isotropic,orthotropic and relative isotropic functions of sym-metric tensors,Skew-symmetric tensors and vectors. Part IV. The representations for three dimensional orthotropic functions. Int J Eagng. Sol,1993, 31:1435-1443
    [136]郑泉水,张量函数的表示理论-本构方程的统一不变性研究,力学进展,1996,26(1-2):
    [137] Kanatani, K. Distribution of directional data and fabric tensor. Int. J. Engng. Sci , 1984,22:149-161
    [138] Niandou, H. Etude du comportement rheologique et modelisation de l’argilite de Tournemire: Applications a la stabilited’ouvrages souterrains. Ph.D. Thesis, Universite de Lille, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700