用户名: 密码: 验证码:
人结直肠癌多肽探针的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     结直肠癌(Colorectal cancer)是一种临床上常见、高发、难于早期诊断、难治愈的消化道恶性肿瘤。早期诊断与治疗对于提高结直肠癌的患者的“五年生存率”具有重要的意义。在我国,随着人民生活水平的不断提高,生活方式及膳食结构的改变,这些年该病的发病率和致死率都有迅猛增高的趋势。由于缺乏有效的早期筛查手段,部分临床病例被延误诊断,丧失最佳的治疗时机。放化疗或者术后放疗及化疗毒性较大,效果不明显。绝大多数病人死于肿瘤的转移。致使手术后患者“五年生存率”降低。目前,通常采用CT(Computed tomography)扫描、纤维结肠镜(Fibrocolonoscopy)、超声波扫描(Ultrasonography)、CT引导下穿刺活检(CT-guided needle biopsy)或乙状结肠检查术(Sigmoidoscopy)等进行结直肠癌的早期筛查或术后效果评估。但部分检查手段分辨能力有限、灵敏性较差。检测的准确程度还取决于操作人员的技术水平。部分检测手段还具一定创伤性,会对患者造成二次伤害。所以如何寻找更灵敏、更安全的检测方法以便提高结直肠癌的早期诊断水平是一个亟待解决的问题。
     随着现代生物医学工程技术的发展,多种类型的以荧光为光源的高灵敏度、高清晰度的新型内镜相继被开发出来。结直肠癌由于其特殊的解剖特征而给全新的内窥可视影像技术及靶向化疗的有效实施提供了条件。这种诊疗策略实施的关键在于研发与肿瘤细胞及组织具有较高结合特异性和敏感性的靶向分子,进而展开分子探针及靶向化疗药物载体的开发。
     目前,一些通过噬菌体肽库筛选技术得到的特异性多肽分子以其较好的靶向性、较低的免疫原性以及较小的毒副作用,引起了人们的普遍关注。这些多肽分子一方面可有望用于靶向分子探针的创制。另一方面,通过偶联相应的化疗药物有望用于药物的靶向递送,从而有效改善化疗药物对患者正常组织或细胞所产生的毒副作用。
     目的:
     为了获得具有较好靶向性的多肽分子探针用以结直肠癌的早期诊断,本研究拟通过噬菌体展示技术筛选出能够与人结肠癌细胞Caco-2及人结直肠癌组织特异性结合的阳性噬菌体克隆,在此基础上获得特异性多肽分子,荧光标记后进一步研究其与细胞及组织的结合特异性,为进一步创制开发结肠癌特异性分子探针、后续用于纳米粒子耦联、药物耦联等具有广泛用途的研发奠定基础。
     方法:
     本研究利用噬菌体肽库筛选技术,以人结直肠癌细胞Caco-2细胞为靶细胞、人胚肾细胞HEK293细胞为阴性吸附细胞,进行四轮严格的消减筛选,随机挑选30个阳性克隆并分别进行扩增后进一步利用ELISA的方法进行阳性克隆的鉴定。然后将获得的阳性克隆进行DNA测序,根据噬菌体克隆基因中所插入的核酸序列推导出相应的多肽序列。对所得的四条多肽序列进行生物信息学检索。通过免疫荧光技术进一步鉴定所获得的阳性克隆,在此基础上进一步利用人结肠癌组织冰冻切片进行组织免疫荧光实验。获得了与细胞和组织结合能力较强的阳性克隆SP-2。采用FMOC固相合成法合成噬菌体克隆SP-2的展示肽序列,N端标记荧光素FITC后作为多肽分子探针Caco probe,以荧光显微镜及激光共聚焦扫描显微镜为主要手段对其与细胞及组织的结合特异性进一步表征。
     结果:
     1.我们通过优化改良的噬菌体肽库筛选技术获得了一个可与人结直肠癌细胞和临床肿瘤组织敏感、特异结合的噬菌体克隆SP-2。
     2.经多层次、多类型检测手段的检测,多肽分子探针Caco probe与人结直肠癌Caco-2细胞及组织的结合具有较好的特异性和敏感性。
     3.研究表明,多肽分子探针Caco probe能够特异结合于人结肠癌细胞Caco-2的细胞膜,但具体靶位尚有待深入研究。
     4.经组织芯片方法检测,多肽分子探针Caco probe与人结肠癌组织具有较好的结合特异性和敏感性,阳性率可达70%。
     结论:
     1.本研究通过优化改良的噬菌体肽库筛选技术成功地从噬菌体随机12肽库中筛选获得了与人结肠癌细胞和组织特异性结合的阳性噬菌体克隆。通过进一步鉴定,阳性噬菌体克隆SP-2(CVSVGMKPSPRP)为最佳克隆。
     2.荧光素FITC标记后的多肽分子探针Caco probe可特异结合于人结肠癌Caco-2细胞和人结肠癌组织。
     3.所获靶向多肽分子为结直肠癌的早期诊断、靶向化疗及抗肿瘤短肽的开发开辟了新的途径,具有十分重要的应用价值。
1. Background
     Colorectal cancer is one of the most common malignant neoplasms in the digestive system. With the development of economy, people's living standard, life-style and diet structure are changing. In recent years, the incidence and mortality of colorectal cancer is growing at a fast rate in China.
     At present, imaging examinations still play important roles in the early diagnosis of colorectal cancer, including computed tomography, fibrocolonoscopy, ultrasonography, CT-guided needle biopsy and sigmoidoscopy. However, limited sensitivity may occasionally lead to misdiagnosis. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. Thus, it is necessary to develop some more sensitive and safe methods for the early diagnosis of colorectal cancer.
     Advances have been made in the development of novel endoscopic instruments that are sensitive to fluorescence. Colon is a hollow organ so that it is convenient to be visualized directly by colonoscopy and performed targeted chemotherapy. Targeting imaging requires the detection of molecular targets. However, such targets are too small to be visualized directly by fluorescence colonoscopy, thus probes that are fluorescence labeled are needed to be developed.
     Currently, some targeting peptides selected from phage display have aroused wide concern due to their better properties, including better targeting, low immunogenicity and toxicity.
     2. Purpose
     To select a novel peptide for the development of sensitive peptide probe, we used an improved subtractive phage display technology to identify positive phage clones that can bind specifically to Caco-2cells and colorectal cancer tissues. The synthetic peptide, when conjugated to fluorescein, has great potential to serve as a novel probe for the detection of CRC.
     3. Methods
     A12-mer phage display library was used to select peptides that bind specifically to the human colorectal cancer cell line Caco-2. The human embryonic kidney cell line HEK293was used as negative cells. After four rounds of panning,30positive phage clones were selected and sequenced. Moreover, we performed various systematic approaches for the selection, characterization and validation of an affinity peptide that target Caco-2cells, including ELISA, immunofluorescent staining, competitive inhibition assay and fluorescence imaging. Positive phage clone SP-2was identified and its displayed peptide was deduced. A novel peptide probe named Caco probe was produced when combined with FITC. The specificity of peptide probe to Caco-2cells and colorectal cancer tissues was further studied by using fluorescence imaging.
     4. Results
     1. The novel phage clone SP-2that is sensitive and specific to Caco-2cells and colorectal cancer tissues has been selected via a modified assay.
     2. This peptide probe exhibited a high specificity to Caco-2cells and colorectal cancer tissues via multi-level and multi-type examinations.
     3. The peptide probe can specifically bind to the membrane of Caco-2cells.
     4. A tissue chip containing24cases tissue samples were performed to further evaluate its binding specificity. The results showed that the binding rate was approx.70%, which demonstrated this peptide probe had higher specificity to colorectal cancer tissues.
     5. Conclusions
     1. The phage clone SP-2was identified as the best positive candidate that specifically bind to Caco-2cells and colorectal cancer tissues.
     2. The FITC-labeled peptide probe can specifically bind to Caco-2cells and colorectal cancer tissues.
     3. These studies suggest that this peptide may be a promising lead candidate in the development of a useful colorectal cancer diagnostic and targeted drug delivery agent.
引文
1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000,100(1):57-70
    2. Liu T, Hossain M, Schepmoes AA, Fillmore TL, Sokoll LJ, Kronewitter SR, Izmirlian G, Shi T, Qian WJ, Leach RJ. Analysis of serum total and free PSA using immunoaffinity depletion coupled to SRM. correlation with clinical immunoassay tests. JProteomics.2012,75(15):4747-4757
    3. Brenner H, Chang-Claude J, Jansen L, Seiler CM, Hoffmeister M. Colorectal cancers occurring after colonoscopy with polyp detection:Sites of polyps and sites of cancers. Int J Cancer.2013
    4. Chen HP, Jiang JK, Chen CY, Chou TY, Chen YC, Chang YT, Lin SF, Chan CH, Yang CY, Lin CH. Human cytomegalovirus preferentially infects the neoplastic epithelium of colorectal cancer:A quantitative and histological analysis. J Clin Virol.2012,54(3):240-244
    5. Moossavi S, Bishehsari F. Inflammation in sporadic colorectal cancer. Arch Iran Med.2012,15(3):166-170
    6. Gargalionis AN, Piperi C, Adamopoulos C, Papavassiliou AG. Histone modifications as a pathogenic mechanism of colorectal tumorigenesis. Int J Biochem Cell Biol.2012,44(8):1276-1289
    7. Haas SL, Ye W, Lohr JM. Alcohol consumption and digestive tract cancer. Curr Opin Clin Nutr Metab Care.2012,4(8):1200-1202
    8. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nut. 2012:1-12
    9. Coimbra FJ, Pires TC, Costa Junior WL, Diniz AL, Ribeiro HS. Advances in surgical treatment of colorectal liver metastases. Rev Assoc Med Bras.2011, 57(2):220-227
    10. Redwood D, Provost E, Asay E, Ferguson J, Muller J. Giant inflatable colon and community knowledge, intention, and social support for colorectal cancer screening Prev Chronic Dis.2013,10(2):40-44
    11. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin.2011,61(2):69-90
    12. Madalinski M. Continuous quality improvement of colorectal cancer screening. World J Gastrointest Pharmacol Ther.2013,4(1):1-3
    13. Evans WK, Wolfson MC, Flanagan WM, Shin J, Goffin J, Miller AB, Asakawa K, Earle C, Mittmann N, Fairclough L. Canadian Cancer Risk Management Model: Evaluation of Cancer Control. Int J Technol Assess Health Care.2013, 29(2):131-139
    14. Fischer R, Collet TH, Zeller A, Zimmerli L, Gaspoz JM, Giraudon K, Rodondi N, Cornuz J. Obesity and overweight associated with lower rates of colorectal cancer screening in Switzerland. Eur J Cancer Prev.2013. [Epub ahead of print]
    15. Wang H, Gies N, Wong C, Sadowski D, Moysey B, Fedorak RN. Patients undergoing colorectal cancer screening underestimate their cancer risk and delay presentation for screening. Can J Gastroenterol.2012,26(7):419-423
    16. Park B, Choi KS, Lee YY, Jun JK, Seo HG. Trends in Cancer Screening Rates among Korean Men and Women:Results from the Korean National Cancer Screening Survey (KNCSS),2004-2011. Cancer Res Treat.2012,44(2):113-120
    17. Niv Y. Colonoscopy for early detection and prevention of colorectal cancer. Harefuah.2010,149(8):535-536
    18. Bhangu A, Khan M, Roberts L, Reynolds A, Desai A, Mathew G Detection and survival of colorectal cancer from a 2 week wait service. Surgeon.2011,9(2):78-82
    19. Aswakul P, Prachayakul V, Lohsiriwat V, Bunyaarunnate T, Kachintorn U. Screening colonoscopy from a large single center of Thailand-something needs to be changed? Asian Pac J Cancer Prev.2012,13(4):1361-1364
    20. Perret GY. Pharmacological strategies and micrometastasis:what is known? What must be done? Minerva Med.2010,101(3):163-178
    21. Taber A, Romagnuolo J. Effect of simply recording colonoscopy withdrawal time on polyp and adenoma detection rates. Gastrointest Endosc.2010,71(4):782-786
    22. Aranda Hernandez J, Aguilar-Shea AL, Walsh J. Colorectal Interval Cancer and Colonoscopy Quality Criteria:presentation of a case. Semergen.2013,39(1):52-55
    23. Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev.2000,43(2-3):165-196
    24. Ghosh D, Lee Y, Thomas S, Kohli AG, Yun DS, Belcher AM, Kelly KA. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol.2012,7(10):677-682
    25. Muralidharan V, Kwok M, Lee ST, Lau L, Scott AM, Christophi C. Prognostic Ability of 18F-FDG PET/CT in the Assessment of Colorectal Liver Metastases. J Nucl Med 2012,4(10):44-47
    26. van der Meel R, Gallagher WM, Oliveira S, O'Connor AE, Schiffelers RM, Byrne AT. Recent advances in molecular imaging biomarkers in cancer:application of bench to bedside technologies. Drug Discov Today.2010,15(3-4):102-114
    27. Biomarkers and surrogate endpoints. preferred definitions and conceptual framework. Clin Pharmacol Ther.2001,69(3):89-95
    28. Takagi K., Uehara T., Kaneko E., Nakayama M., Koizumi M., Endo K., Arano Y.99mTc-labeled mannosyl-neoglycoalbumin for sentinel lymph node identification. Nucl Med Biol.2004,31(7):893-900.
    29. Fournier P, Dumulon-Perreault V, Ait-Mohand S, Tremblay S, Benard F, Lecomte R, Guerin B. Novel radiolabeled peptides for breast and prostate tumor PET imaging: 64Cu/and 68Ga/NOTA-PEG-[D-Tyr6, betaAla11, Thi13, Nle14] BBN(6-14). Bioconjug Chem.2012,60(3):82-84
    30. Deutscher SL. Phage display in molecular imaging and diagnosis of cancer. Chem Rev.2010,110(5):3196-3211
    31. Nakai Y, Shinoura S, Ahluwalia A, Tarnawski AS, Chang KJ. Molecular imaging of epidermal growth factor-receptor and survivin in vivo in porcine esophageal and gastric mucosae using probe-based confocal laser-induced endomicroscopy:proof of concept. JPhysiol Pharmacol.2012,63(3):303-307
    32. Deng L, Qi Z, Zou B, Wu H, Huang H, Kajiyama T, Kambara H, Zhou G. Digital detection of multiple minority mutants in stool DNA for noninvasive colorectal cancer diagnosis. Anal Chem.2012,84(13):5645-5652
    33. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004,22(8):969-976
    34. Wang TD. Confocal microscopy from the bench to the bedside. Gastrointest Endosc. 2005,62(5):696-697
    35. Polglase AL, McLaren WJ, Skinner SA, Kiesslich R, Neurath MF, Delaney PM. A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract. Gastrointest Endosc.2005,62(5):686-695
    36. Elahi SF, Wang TD. Future and advances in endoscopy. J Biophotonics.2011, 4(7-8):471-481
    37. Elahi SF, Miller SJ, Joshi B, Wang TD. Targeted imaging of colorectal dysplasia in living mice with fluorescence microendoscopy. Biomed Opt Express.2011, 2(4):981-986
    38. Rybalov M, Breeuwsma AJ, Leliveld AM, Pruim J, Dierckx RA, de Jong IJ. Impact of total PSA, PSA doubling time and PSA velocity on detection rates of (11)C-Choline positron emission tomography in recurrent prostate cancer. World J Urol.2013,31(2):319-323
    39. Tavares AA, Jobson NK, Dewar D, Sutherland A, Pimlott SL, Batis J, Barret O, Seibyl J, Tamagnan G. Iodine-123 labelled reboxetine analogues for imaging of noradrenaline transporter in brain using single photon emission computed tomography. Synapse.2012,66(11):923-930
    40. Kotzamani D, Plaitakis A. Alpha helical structures in the leader sequence of human GLUD2 glutamate dehydrogenase responsible for mitochondrial import. Neurochem Int.2012,61(4):463-469
    41. Legare S, Lague P. The influenza fusion Peptide adopts a flexible flat v conformation in membranes. Biophys J.2012,102(10):2270-2278
    42. Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X. Small-animal PET of tumors with (64)Cu-labeled RGD-bombesin heterodimer. JNucl Med.2009,50(7):1168-1177
    43. Cao Q, Liu S, Niu G, Chen K, Yan Y, Liu Z, Chen X. Phage display peptide probes for imaging early response to bevacizumab treatment. Amino Acids.2011, 41(5):1103-1112
    44. Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Bioactive peptides and depsipeptides with anticancer potential:sources from marine animals. Mar Drugs.2012,10(5):963-986
    45. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P. Pullularins E and F, Two New Peptides from the Endophytic Fungus Bionectria ochroleuca Isolated from the Mangrove Plant Sonneratia caseolaris. Mar Drugs. 2012,10(5):1081-1091
    46. Zhao QQ, Hu YL, Zhou Y, Li N, Han M, Tang GP, Qiu F, Tabata Y, Gao JQ. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity. Int J Nanomedicine.2012, 7:3191-3202
    47. Wu Y, Sadatmousavi P, Wang R, Lu S, Yuan YF, Chen P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int JNanomedicine.2012,7:3221-3233
    48. Kelly KA, Jones DA. Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia.2003,5(5):437-444
    49. Zhang R, Cao X, Wang C, Hou L, Nie J, Zhou M, Feng Y. An antitumor peptide from Musca domestica pupae (MATP) induces apoptosis in HepG2 cells through a JNK-mediated and Akt-mediated NF-kappaB pathway. Anticancer Drugs.2012, 23(8):827-835
    50. Leurs U, Lajko E, Mezo G, Orban E, Ohlschlager P, Marquardt A, Kohidai L, Manea M. GnRH-III based multifunctional drug delivery systems containing daunorubicin and methotrexate. Eur J Med Chem.2012,52:173-183
    51. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science.2010,328(5981):1031-1035
    52. Li B, Gao MH, Chu XM. Molecular mechanism of a novel CD59-binding peptide sp22 induced tumor cells apoptosis. J Cell Biochem.2012,113(12):3810-3822
    53. Mattsson JM, Narvanen A, Stenman UH, Koistinen H. Peptides binding to prostate-specific antigen enhance its antiangiogenic activity. Prostate.2012, 72(14):1588-1594
    54. Xin Q, Cun Z, Xiaochang X, Meng L, Weina L, Qiang H, Yingqi Z, Zhen Y, Wei Z. Identification of a novel peptide ligand of human transfrrin receptor 1 for targeted tumor delivery drug. Protein Pept Lett.2013,20(1):96-101
    55. Su S, Wang H, Liu X, Wu Y, Nie G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials.2013,34(13):3523-3533
    56. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A.2004,101(51):17867-17872
    57. Chen CH, Cuong NV, Chen YT, So RC, Liau I, Hsieh MF. Overcoming Multidrug Resistance of Breast Cancer Cells by the Micellar Doxorubicin Nanoparticles of mPEG-PCL-Graft-Cellulose. JNanosci Nanotechno.2011,11(1):53-60
    58. Zhao Q, Yan P, Yin L, Li L, Chen XQ, Ma C, Wang RF. Validation study of 131 IRRL:Assessment of biodistribution, SPECT imaging and radiation dosimetry in mice. Mol Med Rep.2013,7(4):1355-1360
    59. Burden-Gulley SM, Qutaish MQ, Sullivant KE, Tan MQ, Craig SEL, Basilion JP, Lu ZR, Wilson DL, Brady-Kalnay SM. Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu. International Journal of Cancer.2013,132(7):1624-1632
    60. Li J., Chen K., Liu H., Cheng K., Yang M., Zhang J., Cheng J.D., Zhang Y., Cheng Z. Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconjug Chem.2012,23(8):1704-1711
    61. Huang CW, Li Z, Conti PS. In vivo near-infrared fluorescence imaging of integrin alpha2betal in prostate cancer with cell-penetrating-peptide-conjugated DGEA probe. JNucl Med. 2011,52(12):1979-1986
    62. Liu S, Lin TP, Li D, Leamer L, Shan H, Li Z, Gabbai FP, Conti PS. Lewis Acid-Assisted Isotopic (18)F-(19)F Exchange in BODIPY Dyes:Facile Generation of Positron Emission Tomography/Fluorescence Dual Modality Agents for Tumor Imaging. Theranostics.2013,3(3):181-189
    63. Huang Y, Zhao R, Fu Y, Zhang Q, Xiong S, Li L, Zhou R, Liu G, Chen Y. Highly specific targeting and imaging of live cancer cells by using a peptide probe developed from rationally designed peptides. Chembiochem.2011, 12(8):1209-1215
    64. He X, Na MH, Kim JS, Lee GY, Park JY, Hoffman AS, Nam JO, Han SE, Sim GY, Oh YK. A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol Pharm.2011,8(2):430-438
    65. Wender PA, Goun EA, Jones LR, Pillow TH, Rothbard JB, Shinde R, Contag CH. Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proc Natl Acad Sci U S A.2007, 104(25):10340-10345
    66. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides:from molecular mechanisms to therapeutics. Br J Pharmacol.2009,157(2):195-206
    67. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo:recent advances. Curr Opin Biotechnol.2007,18(1):17-25
    68. Bai H, Xue X, Hou Z, Zhou Y, Meng J, Luo X. Antisense antibiotics:a brief review of novel target discovery and delivery. Curr Drug Discov Technol.2010,7(2):76-85
    69. Jarver P, Langel U. Cell-penetrating peptides-a brief introduction. Biochim Biophys Acta.2006,1758(3):260-263
    70. Wang W, Tang N, Zhang CL, Liu XJ, Hu H, Zhang ZX, Liang W. Cell penetrating peptides enhance intracellular translocation and function of siRNA encapsulated in Pegylated liposomes. Yao Xue Xue Bao.2006,41(2):142-148
    71. Bourre L, Giuntini F, Eggleston IM, Mosse CA, Macrobert AJ, Wilson M. Effective photoinactivation of Gram-positive and Gram-negative bacterial strains using an HIV-1 Tat peptide-porphyrin conjugate. Photochem Photobiol Sci.2010, 9(12):1613-1620
    72. Lee JY, Choi YS, Suh JS, Kwon YM, Yang VC, Lee SJ, Chung CP, Park YJ. Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int J Cancer.2011,128(10):2470-2480
    73. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev.2008,60(4-5):548-558
    74. Yin H, Moulton HM, Betts C, Merritt T, Seow Y, Ashraf S, Wang Q, Boutilier J, Wood MJ. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol Ther.2010,18(10):1822-1829
    75. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake:peptoid molecular transporters. Proc Natl Acad Sci U S A.2000, 97(24):13003-13008
    76. Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment:current perspective and future promise. Pharmacol Ther.2010, 128(2):324-335
    77. Sakuma S, Suita M, Masaoka Y, Kataoka M, Nakajima N, Shinkai N, Yamauchi H, Hiwatari K, Tachikawa H, Kimura R. Oligoarginine-linked polymers as a new class of penetration enhancers. J Control Release.2010,148(2):187-196
    78. Ma WY, Murata E, Ueda K, Kuroda Y, Cao MH, Abe M, Shigemi K, Hirose M. A synthetic cell-penetrating peptide antagonizing TrkA function suppresses neuropathic pain in mice. J Pharmacol Sci.2010,114(1):79-84
    79. Mern DS, Hasskarl J, Burwinkel B. Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer.2010, 103(8):1237-1244
    80. Ohno A, Inomata K, Tochio H, Shirakawa M. Application of NMR spectroscopy in medicinal chemistry and drug discovery. Curr Top Med Chem.2011, 11(1):68-73
    81. Olson ES, Aguilera TA, Jiang T, Ellies LG, Nguyen QT, Wong EH, Gross LA, Tsien RY. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol (Comb).2009, 1(5-6):382-393
    82. Whitney M, Crisp JL, Olson ES, Aguilera TA, Gross LA, Ellies LG, Tsien RY. Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides. J Biol Chem.2010, 285(29):22532-22541
    83. Levi J, Kothapalli SR, Ma TJ, Hartman K, Khuri-Yakub BT, Gambhir SS. Design, synthesis, and imaging of an activatable photoacoustic probe. J Am Chem Soc.2010, 132(32):11264-11269
    84. Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, Tsien RY. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA. 2010,107(9):4317-4322
    85. Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci U S A.2010, 107(9):4311-4316
    86. Ferrer-Miralles N, Vazquez E, Villaverde A. Membrane-active peptides for non-viral gene therapy:making the safest easier. Trends Biotechnol.2008, 26(5):267-275
    87. Vazquez E, Ferrer-Miralles N, Villaverde A. Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov Today.2008,13(23-24):1067-1074
    88. Saccardo P, Villaverde A, Gonzalez-Montalban N. Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnol Adv.2009,27(4):432-438
    89. Suzuki MM, Matsumoto M, Yamamoto A, Ochiai M, Horiuchi Y, Niwa M, Omi H, Kobayashi T, Takagi T. Molecular design of LPS-binding peptides. J Microbiol Methods.2010,83(2):153-155
    90. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A.1995, 92(20):9363-9367
    91. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature.2001,412(6849):822-826
    92. Li Y, Wu J, Zhang W, Zhang N, Guo H. Identification of serum CCL15 in hepatocellular carcinoma. Br J Cancer.2013,108(1):99-106
    93. Dalamaga M, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A. Serum resistin:A biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem.2013,46(7-8):584-590
    94. Lin YL, Li ZG, He ZK, Guan TY, Ma JG. Clinical and Prognostic Significance of Protocadherin-10 (PCDH10) Promoter Methylation in Bladder Cancer. J Int Med Res.2012,40(6):2117-2123
    95. Raja UM, Gopal G, Rajkumar T. Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker. Asian Pac J Cancer Prev.2012,13(11):5563-5568
    96. Haas M, Heinemann V, Kullmann F, Laubender RP, Klose C, Bruns CJ, Holdenrieder S, Modest DP, Schulz C, Boeck S. Prognostic value of CA 19-9, CEA, CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer: results from a multicenter, pooled analysis of patients receiving palliative chemotherapy. J Cancer Res Clin Oncol.2013,139(4):681-689
    97. Zhou J, Yan T, Bi X, Zhao H, Huang Z, Zhang Y, Li Y, Feng L, Wang J, Cai J. Evaluation of seven different staging systems for alpha-fetoprotein expression in hepatocellular carcinoma after hepatectomy. Tumour Biol 2013,34(2):1061-1070
    98. So JY, Smolarek AK, Salerno DM, Maehr H, Uskokovic M, Liu F, Suh N. Targeting CD44-STAT3 Signaling by Gemini Vitamin D Analog Leads to Inhibition of Invasion in Basal-Like Breast Cancer. PLoS One.2013,8(1):e54020
    99. Zhang J, Zhang B, Zhang X, Sun Y, Wei X, McNutt MA, Lu S, Liu Y, Zhang D, Wang M. SATB1 Expression Is Associated with Biologic Behavior in Colorectal Carcinoma In Vitro and In Vivo. PLoS One.2013,8(1):e47902
    100.Kashyap MK, Pawar HA, Keerthikumar S, Sharma J, Goel R, Mahmood R, Kumar MV, Kumar KV, Pandey A, Kumar RV. Evaluation of protein expression pattern of stanniocalcin 2, insulin-like growth factor-binding protein 7, inhibin beta A and four and a half LIM domains 1 in esophageal squamous cell carcinoma. Cancer Biomark. 2012,12(1):1-9
    101. Yang ZL, Miao X, Xiong L, Zou Q, Yuan Y, Li J, Liang L, Chen M, Chen S. CFL1 and Arp3 are Biomarkers for Metastasis and Poor Prognosis of Squamous Cell/Adenosquamous Carcinomas and Adenocarcinomas of Gallbladder. Cancer Invest.2013,31(2):132-139
    102.Zhang Z, Bast RC, Jr., Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res.2004,64(16):5882-5890
    103.Kontos CK, Scorilas A:Kallikrein-related peptidases (KLKs). a gene family of novel cancer biomarkers. Clin Chem Lab Med 2012,50(11):1877-1891
    104.Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res.2008,18(10):997-1006
    105.Srivastava S, Bhardwaj A, Leavesley S, Grizzle W, Singh S, Singh A. MicroRNAs as potential clinical biomarkers:emerging approaches for their detection. Biotech Histochem.2013
    106.Gailhouste L, Gomez-Santos L, Ochiya T. Potential applications of miRNAs as diagnostic and prognostic markers in liver cancer. Front Biosci.2013,18:199-223
    107.Avgeris M, Mavridis K, Scorilas A. Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biol Chem.2010, 391(5):505-511
    108.Yousef GM, Diamandis EP. Expanded human tissue kallikrein family--a novel panel of cancer biomarkers. Tumour Biol.2002,23(3):185-192
    109.Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgono CA, Kishi T, Memari N, Michael 1 P, Sidiropoulos M, Kurlender L. Human tissue kallikreins:from gene structure to function and clinical applications. Adv Clin Chem.2005,39:11-79
    110.Gronberg M, Fjallskog ML, Jirstrom K, Janson ET. Expression of ghrelin is correlated to a favorable outcome in invasive breast cancer. Acta Oncol.2012, 51(3):386-393
    111.Henderson G, Ulsemer P, Schober U, Loffler A, Alpert CA, Zimmermann-Kordmann M, Reutter W, Karsten U, Goletz S, Blaut M. Occurrence of the human tumor-specific antigen structure Galbetal-3GalNAcalpha- (Thomsen-Friedenreich) and related structures on gut bacteria:prevalence, immunochemical analysis and structural confirmation. Glycobiology.2011, 21(10):1277-1289
    112.Mead GM, Stenning SP. The International Germ Cell Consensus Classification:a new prognostic factor-based staging classification for metastatic germ cell tumours. Clin Oncol (R Coll Radiol).1997,9(4):207-209
    113.Xu XS, Qu K, Liu C, Zhang YL, Liu J, Song YZ, Zhang P, Liu SN, Chang HL. Highlights for alpha-fetoprotein in determining prognosis and treatment monitoring for hepatocellular carcinoma. World J Gastroenterol.2012,18(48):7242-7250
    114.Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. NEngl JMed.1987, 317(15):909-916
    115.Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M. Screening and prostate-cancer mortality in a randomized European study. NEngl JMed 2009,360(13):1320-1328
    116.Tamburini E, Tassinari D, Nicoletti S, Ravaioli A. Liver resection of colorectal metastases and adjuvant chemotherapy:can published data really support clinicians in clinical practice? Clin Oncol (R Coll Radiol).2010,22(1):84-85
    117.Luna Coronell JA, Syed P, Sergelen K, Gyurjan I, Weinhausel A. The current status of cancer biomarker research using tumour-associated antigens for minimal invasive and early cancer diagnostics. JProteomics.2012,76 Spec No.:102-115
    118.Delcommenne M, Klingemann HG. Detection and characterization of syndecan-1-associated heparan sulfate 6-O-sulfated motifs overexpressed in multiple myeloma cells using single chain antibody variable fragments. Hum Antibodies.2012,21(1-2):29-40
    119.Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, Depinho RA, Mahmood U, Weissleder R. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med.2008,5(4):e85
    120.Zayakin P, Ancans G, Silina K, Meistere I, Kalnina Z, Andrejeva D, Endzelins E, Ivanova L, Pismennaja A, Ruskule A. Tumor-associated autoantibody signature for the early detection of gastric cancer. Int J Cancer.2013,132(1):137-147
    121.Kelly KA, Setlur SR, Ross R, Anbazhagan R, Waterman P, Rubin MA, Weissleder R:Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res.2008,68(7):2286-2291
    122.Qi HL, Wang C, Qiu XY, Gao Q, Zhang CX. Reagent-less electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen. Talanta.2012,100:162-167
    123.Marr A, Markert A, Altmann A, Askoxylakis V, Haberkorn U. Biotechnology techniques for the development of new tumor specific peptides. Methods.2011, 55(3):215-222
    124.Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science.1985,228(4705):1315-1317
    125.Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990,249(4967):386-390
    126.McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies:filamentous phage displaying antibody variable domains. Nature.1990,348(6301):552-554
    127.Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G By-passing immunization. Human antibodies from V-gene libraries displayed on phage. JMol Biol.1991,222(3):581-597
    128.Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol.1994,12:433-455
    129.Barbas CF,3rd, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces:the gene Ⅲ site. Proc Natl Acad Sci U S A. 1991,88(18):7978-7982
    130.Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage:methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res.1991, 19(15):4133-4137
    131.Bass S, Greene R, Wells JA. Hormone phage:an enrichment method for variant proteins with altered binding properties. Proteins.1990,8(4):309-314
    132.Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol.2005,23(9):1126-1136
    133.Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature.1996,380(6572):364-366
    134.Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science.1998,279(5349):377-380
    135.Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol.1997,15(6):542-546
    136.Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. JBiol Chem.1997,272(10):6525-6533
    137.Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature. 2000,405(6787):665-668
    138.Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater.2003,2(9):577-585
    139.Wang T, Kulkarni N, D'Souza GG, Petrenko VA, Torchilin VP. On the mechanism of targeting of phage fusion protein-modified nanocarriers:only the binding peptide sequence matters. Mol Pharm.2011,8(5):1720-1728
    140.Cui Y, Kim SN, Naik RR, McAlpine MC. Biomimetic peptide nanosensors. Acc Chem Res.2012,45(5):696-704
    141.Yi H, Ghosh D, Ham MH, Qi J, Barone PW, Strano MS, Belcher AM. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett.2012, 12(3):1176-1183
    142.Gray BP, Li S, Brown KC. From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug Chem.2013,24(1):85-96
    143.Thomas S, Waterman P, Chen S, Marinelli B, Seaman M, Rodig S, Ross RW, Josephson L, Weissleder R, Kelly KA. Development of Secreted Protein and Acidic and Rich in Cysteine (SPARC) Targeted Nanoparticles for the Prognostic Molecular Imaging of Metastatic Prostate Cancer. J Nanomed Nanotechnol.2011,2(112)
    144.Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev. 2005,105(11):4056-4072
    145.Kay BK, Kasanov J, Yamabhai M. Screening phage-displayed combinatorial peptide libraries. Methods.2001,24(3):240-246
    146.Lowman HB:Bacteriophage display and discovery of peptide leads for drug development. Annu Rev Biophys Biomol Struct.1997,26:401-424
    147.Zani ML, Moreau T. Phage display as a powerful tool to engineer protease inhibitors. Biochimie.2010,92(11):1689-1704
    148.Marvin DA. Filamentous phage structure, infection and assembly. Curr Opin Struct Biol.1998,8(2):150-158
    149.Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W. Biopanning and rapid analysis of selective interactive ligands. Nat Med.2001,7(11):1249-1253
    150.Ferraro DJ, Bhave SR, Kotipatruni RP, Hunn JC, Wildman SA, Hong C, Dadey DY, Muhoro LK, Jaboin JJ, Thotala D. High-throughput identification of putative receptors for cancer-binding peptides using biopanning and microarray analysis. Integr Biol (Camb).2013,5(2):342-350
    151.Rangel R, Guzman-Rojas L, le Roux LG, Staquicini FI, Hosoya H, Barbu EM, Ozawa MG, Nie J, Jr KD, Langley RR. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun.2012,3:788
    152.Serdons K, Verbruggen A, Bormans GM. Developing new molecular imaging probes for PET. Methods.2009,48(2):104-111
    153.Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science.2004,306(5696):640-643
    154.Rudin M, Mueggler T, Allegrini PR, Baumann D, Rausch M. Characterization of CNS disorders and evaluation of therapy using structural and functional MRI. Anal Bioanal Chem.2003,377(6):973-981
    155.Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD 13 receptor expression. Mol Pharm.2013, 10(1):417-427
    156.Tang B, Li Z, Huang D, Zheng L, Li Q. Screening of a specific peptide binding to VPAC1 receptor from a phage display peptide library. PLoS One.2013, 8(1):e54264
    157.Kimura R.H., Teed R., Hackel B.J., Pysz M.A., Chuang C.Z., Sathirachinda A., Willmann J.K., Gambhir S.S. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin Cancer Res.2012,18(3):839-849
    158.Joshi BP, Liu ZY, Elahi SF, Appelman HD, Wang TD. Near-infrared-labeled peptide multimer functions as phage mimic for high affinity, specific targeting of colonic adenomas in vivo. Gastrointest Endosc.2012,76(6):1197-1253
    159.Jie LY,Cai LL,Wang LJ,Ying XY,Yu RS, Zhang MM,Du YZ. Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging. IntJNanomedicine.2012,7(2):3981-3989
    160.Kim MY, Kim OR, Choi YS, Lee H, Park K, Lee CT, Kang KW, Jeong S. Selection and characterization of tenascin C targeting peptide. Mol Cells.2012,33(1):71-77
    161.Li B, Gao MH, Chu XM, Xu YJ, Yang F. Identification of a novel short peptide seal specific to CD59 and its effect on HeLa cell growth and apoptosis. Cell Oncol (Dordr).2012,35(5):355-365
    162.Wang W, Chen X, Li T, Li Y, Wang R, He D, Luo W, Li X, Wu X. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer. Exp Cell Res.2013,319(8):1156-1164
    163.Paduano F, Ortuso F, Campiglia P, Raso C, Iaccino E, Gaspari M, Gaudio E, Mangone G, Carotenuto A, Bilotta A. Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity. ACS Chem Biol.2012,7(10):1666-1676
    164.Mier W, Kramer S, Zitzmann S, Altmann A, Leotta K, Schierbaum U, Schnolzer M, Eisenhut M, Haberkorn U. PEGylation enables the specific tumor accumulation of a peptide identified by phage display. Org Biomol Chem.2013, 11(16):2706-2711
    165.Levine RM, Scott CM, Kokkoli E. Peptide functionalized nanoparticles for nonviral gene delivery. Soft Matter.2013,9(4):985-1004
    166.Newton JR, Kelly KA, Mahmood U, Weissleder R, Deutscher SL. In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia.2006,8(9):772-780
    167.Wang KR, Zhang BZ, Zhang W, Yan JX, Li J, Wang R. Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides.2008,29(6):963-968
    168.Huang YB, He LY, Jiang HY, Chen YX. Role of helicity on the anticancer mechanism of action of cationic-helical peptides. Int J Mol Sci.2012, 13(6):6849-6862
    169.Huang YB, Wang XF, Wang HY, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther. 2011,10(3):416-426
    170.De Bolle X, Laurent T, Tibor A, Godfroid F, Weynants V, Letesson JJ, Mertens P. Antigenic properties of peptidic mimics for epitopes of the lipopolysaccharide from Brucella. JMol Biol.1999,294(1):181-191
    171.Chen K, Chen X. Design and development of molecular imaging probes. Curr Top Med Chem.2010,10(12):1227-1236
    172.Buvat I, Necib H, Garcia C, Wagner A, Vanderlinden B, Emonts P, Hendlisz A, Flamen P. Lesion-based detection of early chemosensitivity using serial static FDG PET/CTin metastatic colorectal cancer. Eur J Nucl Med Mol Imaging.2012, 39(10):1628-1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700