用户名: 密码: 验证码:
飞机常见结构原位超声无损检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为五大无损检测手段之一,超声无损检测在工业领域得到了广泛的应用。论文以“十一五”预研项目为依托,围绕外场条件下飞机常见结构的原位超声无损检测,结合仿真和实验,深入研究了超声无损检测系统建模实现、螺栓缺陷的快速检出、铆钉缺陷的定量检测以及起落架缺陷的分类识别等相关问题。其主要内容及创新如下:
     对接触式脉冲回波超声无损检测系统进行了仿真和实验研究。根据外场条件下通用超声检测系统的特点,将传统的电路模型和数学模型结合起来,在改进的电声测量模型的基础上,提出了接触式脉冲回波超声检测系统的仿真模型。在模型中,耦合剂是不可忽略的因素。对系统回波强度和耦合剂厚度之间的关系进行了研究,定量地解释了实验中的有关现象,即耦合剂所形成的薄层厚度和传递超声波的强度之间存在确定的关系。利用现有的超声探伤仪对传输导线和换能器相关参数进行测试,并代入到模型中,获得了系统超声发射部分中激励脉宽等关键参数的调节趋势和最佳设计值,进而应用于实际系统的设计和实现。
     研究了基于微粒群优化和匹配追踪的超声信号参数估计方法。对经典的超声信号模型进行了仿真和实验研究,在确定该模型可用性的基础上,具体分析了一些典型的超声信号参数估计方法,并对比了这些方法在参数估计精度和速度上的差异。为了在测试中兼顾参数估计精度和参数估计速度,提出一种基于改进微粒群优化和匹配追踪的超声信号参数估计方法,在保持种群微粒数不变的情况下,淘汰适应值最小的微粒并加入新的微粒,有效提高算法的收敛速度和收敛精度。从总体上看,该方法对于超声信号的随机噪声干扰不是非常敏感,并可降低参数估计实际计算量。对该方法的估计特性进行分析,分别在不同深度的缺陷信号参数估计、不同类型的缺陷信号参数估计以及飞机螺栓部件缺陷信号参数估计上进行了实验验证。
     研究了基于瞬时频率熵的超声缺陷检测方法。传统超声探伤仪在检测时通常通过屏幕上不同位置的回波来判断缺陷的位置,但是对于存在于界面附近的缺陷,普通的回波观察法不易获得缺陷位置的准确信息。针对此类问题,论文从时频分析的角度,根据缺陷回波(包括界面回波)和系统噪声瞬时频率存在的差别,提出一种基于瞬时频率熵的超声缺陷检测方法,结合瞬时频率熵曲线求解过程中相对极值点以及窗的宽度参数确定方法,对不同时频分析方法所计算的瞬时频率熵,分别采用仿真和实验信号进行测试精度的对比。该方法利用基于时序多相关预处理的经验模式分解实现了瞬时频率和瞬时频率熵的计算,克服了普通经验模式分解过程中产生虚假固有模式函数分量的问题,有效降低了检测中系统噪声的影响,提高了飞机铆钉缺陷位置信息的检测精度。
     研究了基于最小二乘支持向量机(LSSVM)的超声缺陷分类识别技术。在飞机部件的检测中,不同类型的缺陷对飞机结构有着不同的影响,需要加以有效区分。但是外场检测中可获得的信号样本有限,基于此,论文以适用于小样本机器学习的LSSVM为基础,提出一种基于保持种群多样性微粒群优化(ARPSO)的LSSVM分类识别方法,通过ARPSO算法实现LSSVM关键参数的寻优,在保持特征可分性的前提下,利用距离评价因子对超声信号特征向量进行约简,以提高LSSVM的训练速度。分别在标准试块缺陷分类识别和起落架典型缺陷分类识别上进行了核参数选择、多类分类器设计等方面的实验验证。和其他LSSVM方法相比,该方法兼顾了缺陷单类分类准确率、总体分类准确率和总体训练时间,可有效应用于外场飞机原位检测。
As one of the five major nondestructive test (NDT) methods, ultrasonic NDT has been applied in the industry field extensively. Relying on the advanced project of Eleventh Five-Year Plan, we combine the simulation and experimental study on the base of the in-situ ultrasonic NDT of common structures of the aircraft. On the basis of survey on the state of the art of ultrasonic NDT technique, we launch our studies on severel key techniques such as the simulation and realization of ultrasonic NDT system, method of rapid checkout of cracks in bolts, method of quantitative measurement on flaws in rivets and classification of defects in gear in this paper. Our contributions are summarized as follows:
     Firstly, we carried out the simulation and experiments on the contact pulse-echo ultrasonic NDT system. Aiming at the characteristics of general ultrasonic test system in outfield, we proposed the simulation model of contact pulse-echo ultrasonic NDT system with the combination of conventional circuit model and mathematical model, which was formed on the base of improved electro-acoustic measurement (EAM) model. The couplant was considered as a factor that could not be ignored in this model. Furthermore, we studied the relationship between the intensity of echo and the thickness of the couplant, which could explain the phenomenon in the experiment that this relationship could be expressed definitely. We used the analog ultrasonic tester to measure the parameters of the transducer and the cable, and then introduced the paremeters into the model. The optimal parameters were obtained by debugging the emitting part of the model, which was applied in the design and realization of the ultrasonic NDT system.
     Secondly, we proposed a parameter estimation method of ultrasonic signal based on particle swarm optimization (PSO) and matching pursuit (MP). Simulations and experiments were studied on the classical model of ultrasonic signal. On the base of the availability of this model, we gave the detailed analysis on some conventional methods of parameter estimation. The difference of accuracy and speed of these parameter estimation methods was compared. Considering the precision and speed of estimation in the test, we introduced a method of parameter estimation of ultrasonic signal based on improved PSO and MP. Particle of smallest adaptive value was obsoleted and new particle was added in the swarm, which retained the number of total particles unchanged. The convergence speed and convergence accuracy of the algorithm was improved effectively. Meanwhile, this method was not so sensitive to the random noise in the ultrasonic signal, and could reduce the calculated amount in parameter estimation. As was shown in the results of experiments, this method can not only deal with the ultrasonic signals of different types, but also with those in different positions.
     Thirdly, we proposed a new method, entropy of instantaneous frequency (IF), to detect the position of the flaw. Generally speaking, the flaw positon is often confirmed by the observation of different echoes in the screen of ultrasonic tester. However, this method of observation can not distingwish the flaws near the interface. Therefore, from the view of time-frequency analysis (TFA), this paper presented a method based on the entropy of IF in the detection of flaw position. Using the methods for calculating the relative extreme points and determining the window width in the process of solving the entropy curve of IF, we compared the precision of entropies measured by this method and other different time-frequency methods. This method calculated the IF and entropy of IF based on empirical module decomposition (EMD) with the pre-processing of multi-correlation time sequence (MCTS), which overcame the problems of fault intrinsic mode function (IMF) created by EMD. This method reduced the influence of system noise in the test and improved the test accuracy at the same time.
     Finally, we studied the classification method of ultrasonic defects based on least square support vector machine (LSSVM). In the detection of aircraft parts, different defect leads to different influence. Therefore, it is necessary to distinguish them quickly and accurately. But the signal samples are limited in the outfield test. According to this, we proposed a classification method of least square support vector machine (LSSVM) based on attractive and repulsive particle swarm optimization (ARPSO), which could find the optimal parameters of LSSVM by ARPSO. Under the prerequisite conditions of feature discriminability, the features were reduced by the distance evaluation factor, which could improve the training speed. In the test of flaws in the standard samples and the gear, this method was applied respectively. The selection of kernel parameters and design of multi-class classifier were verified in the experiments. Comparing with other method of LSSVM, this method could combine the merits of classification accuracy of single class, classification accuracy of universal class and the total traing time, which could apply in the in-situ test of aircraft outfield.
引文
[1]美国无损检测学会.美国无损检测手册(超声卷)[M].北京:世界图书出版公司,1996:28~38
    [2]Humphrey, V. F. Ultrasound and matter—Physical interactions[J]. Progress in Biophysics and Molecular Biology.2007,93:195~211
    [3]R.Bruce Thompson, Donald O.Thompson. Ultrasonics in Nondestructive Evaluation[J]. PROCEEDINGS OF THE IEEE.1985,73(12):1716~1755
    [4]Stephen P.Kelly, G. H. Applications of Through-Air Ultrasound for Rapid NDE Scanning in the Aerospace Industry[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL. 1996,43(4):581~591
    [5]杨剑.飞机环形结构件的超声检测方法探讨[J].无损检测,2000,22(3):119~121
    [6]郭海鸥.某飞机发动机连接螺管的超声横波检测[J].无损检测2005,27(11):606~608
    [7]袁英民,孙金立,陈新波,张海兵.某型飞机轮毂原位检测[J].无损检测.2006,28(9):458~459
    [8]邓延.Y7-200A进气道的超声波探伤[J].无损检测2000,22(10):461~463
    [9]郭海鸥.飞机某型发动机高压压气机转子叶片的超声波检测[J].无损检测2004,26(7):367~369
    [10]Z. Hameeda, Y. S. H., Y.M. Choa, S.H. Ahnb, C.K. Song. Condition monitoring and fault detection of wind turbines and related algorithms:A review[J]. Renewable and Sustainable Energy Reviews.2009,13:1~39
    [11]Victor Giurgiutiu, Andrei Zagrai and Jingjing Bao. Damage identification in aging aircraft structures with piezoelectric wafer active sensors[J]. Journal of intelligent material systems and structures.2004,15:673~687
    [12]Eric Keller and Asok Ray. Real-time nondestructive evaluation of airframe structures for health monitoring and residual life prediction[J]. Structural Health Monitoring. 2004,3(3):245~263
    [13]Abid Ali Shah, Y. R. Non-destructive measurements of crack assessment and defect detection in concrete structures [J]. Materials and Design.2008,29:61~69
    [14]郭海鸥.飞机发动机燃烧室外套纵向焊缝的超声波检测[J].无损检测.2000,22(10):464~465
    [15]魏桂生.某型飞机主起落架斜撑作动筒耳座的超声检测[J].无损检测.2006,28(12):668~669
    [16]安治永,李应红,梁华,张百灵.无损检测在航空维修中的应用[J].无损检测. 2006,28(11):598~601
    [17]谢小荣,杨小林.飞机损伤检测[M].北京:航空工业出版社,2006:27~29
    [18]王震,米东,徐章遂,陈志伟.装备中的无损检测技术[J].仪表技术.2006,5:59~61
    [19]宁宁,袁慎芳,沈真,张积广.在役航空复合材料结构的无损检测技术[J].航空制造技术.2008,15:50~52.
    [20]徐丽,张幸红,韩杰才.航空航天复合材料无损检测研究现状[J].材料导报.2005,19(8):79~84
    [21]李国华,吴淼.现代无损检测与评价[M].北京:化学工业出版社,2009:24~28
    [22]刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测,2000,22(9):403~405
    [23]罗雄彪,陈铁群.超声无损检测的发展趋势[J].无损检测,2005,27(3):148~152
    [24]吴朝晖.超声无损检测的应用与探讨[J].宁波工程学院学报,2005,17(4):22~24
    [25]Andrew K.S. Jardine, D. L., Dragan Banjevic. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing.2007,20:1483-1510.
    [26]Bernard Masserey, Edoardo Mazza. Ultrasonic sizing of short surface cracks[J]. Ultrasonics.2007 (46):195-204
    [27]徐西刚,施克仁,陈以方,彭雪莲.数字化超声探伤仪中超声信号高速采集技术[J].传感器技术.2003,22(10):16-19
    [28]宋光德,胡宏波,梁磊.一种基于FPGA的A超数字式探伤系统的研究[J].电子技术应用.2003,10:29-30
    [29]王雪.智能测试信息处理[M].北京:清华大学出版社,2008:221~235
    [30]S.I. Rokhlin, J.-Y. K., B. Xie, B. Zoofan. Nondestructive sizing and localization of internal microcracks in fatigue samples[J]. NDT&E International.2007,40:462-47
    [31]Sekhar, A. S. Multiple cracks effects and identification[J]. Mechanical Systems and Signal Processing.2008,22:845-878.
    [32]S Yella, M. S. D. a. N. K. G. Artificial intelligence techniques for the automatic interpretation of data from non-destructive testing[J]. Insight.2006,48(1):10-20
    [33]Badidi B A, Lebaili S and Benchaala A. Grain size influence on ultrasonic velocities and attenuation[J]. NDT&E International.2003,36:1-5
    [34]Drai R, Sellidj F and Khelil M. Elaboration of some signal processing algorithms in ultrasonic techniques:Application to materials NDT[J]. Ultrasonics,2000, 38:503-507
    [35]陈建忠,史耀武,史淑.粗晶材料超声检测信号处理[J].核动力工程.2000,21:183-187
    [36]梁宏宝,朱安庆,赵玲.超声检测技术的最新研究与应用[J].无损检测,2008,30(3):174~177
    [37]陈文革,魏劲松.超声无损检测的应用研究与进展[J].无损探伤,2001(4):1~3
    [38]孙金立,肖兴明,袁英民,陈新波,张海兵.基于虚拟仪器的综合式无损检测系统[J].无损检测.2005,27(11):580-583
    [39]张伟志,刚铁,王军.超声波检测计算机模拟和仿真的研究及应用现状[J].应用声学,2003,22(3):39~44
    [40]Takashi F, Kazuhiro D. Simple modeling of ultrasonic testing[J]. Materials Evaluation, 1994,52(9):1108~1111
    [41]Takashi F.Gouki Y.Kazuhiro D. Simple modeling of ultrasonic beam incidence in immersion testing[J]. Materials Evaluation,1995,53(6):747~749
    [42]Wen J.J., Breazeale M.A. A diffraction beam field expressed as superposition of Gaussian beams[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1988,83:1752~1756.
    [43]M. Spies. Modeling of Transducer Fields in Inhomogeneous Anisotropic Materials Using Gaussian Beam Superposition[J]. NDT&E International,2000,33:155~162
    [44]Georgiou G A, Blakemore M, Chapman RK. The application of the geometrical theory of diffraction to modelling pulsed ultrasonic inspection:a system model[J]. British Journal of NDT,1989,31(10):551~561
    [45]A. S. Eriksson, J. Mattsson, A. J. Niklasson. Modelling of ultrasonic crack detection in anisotropic materials[J]. NDT & E International,2000,33(7):441~451
    [46]Issa C A, Iyer K S, Blasubramaniam K. Numerical modelling of ultrasonic wave propagation using the efficient p-version finite element method[J]. ultrasonics, 1994,32(1):13~20
    [47]N.N. Kishore, I. Sridhar, N. G. R. Iyengar. Finite element modelling of the scattering of ultrasonic waves by isolated flaws[J]. NDT & E International,2000,33(5):297~305
    [48]D. Datta, N. N. Kishore. Features of ultrasonic wave propagation to identify defects in composite materials modelled by finite element method[J]. NDT & E International, 1996,29(4):213~223
    [49]R. S. Schechter, K. E. Simmonds, R. B. Mignogna. Computational and experimental investigation of the fields generated by a 1-3 piezocomposite transducer[J]. Ultrasonics,2001,39(3):163~172
    [50]S. Halkj(?)r, M. P. Sφrensen, W. D. Kristensen. The propagation of ultrasound in an austenitic weld[J]. Ultrasonics,2000,38(1-8):256~261
    [51]C Dang, L W Schmerr, Jr. A Sedov. Modeling and Measuring All the Elements of an Ultrasonic Nondestructive Evaluation system Ⅰ:Modeling Foundations[J]. Res. Nondestr. Eval.2002,14:141~176
    [52]C Dang, L W Schmerr, Jr. A Sedov. Modeling and Measuring All the Elements of an Ultrasonic Nondestructive Evaluation system Ⅱ:Modeling Foundations[J]. Res. Nondestr. Eval.2002,14:177~201
    [53]Ana Lilia Lopez-Sanchez. Ultrasonic system models and measurements[D]. Iowa: Iowa State University,2005:99~128
    [54]Saniie J. Ultrasonic Signal Processing:System Identification and Parameter Estimation of Reverberant and Inhomogeneous Targets[D]. Purdue University,1981: 63~75
    [55]Rmamzan Demirli, Jafar Saniie. Model-Based Estimation of Ultrasonic Echoes Part Ⅰ: Analysis and Algorithms[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL,2001,48(3):787~802
    [56]Guilherme Cardoso and Jafar Saniie. Ultrasonic Data Compression via Parameter Estimation[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL.2005,52(2):313~325
    [57]Ervin Sejdi'c, I. D. c., Jin Jiang. Time-frequency feature representation using energy concentration: An overview of recent advances[J]. Digital Signal Processing.2009,19: 153~183
    [58]罗斌,黄天戌.基于瞬时频率的超声信号数字处理方法[J].武汉大学学报(工学版),2005,38(5):128~130
    [59]杜秀丽,沈毅,王艳,徐止铎.基于瞬时频率熵的超声缺陷检测[J].中国机械工程,2006,17(18):1899~1902
    [60]李舜酩,李香莲.振动信号的现代分析技术与应用[M].北京:国防工业出版社,2008:165~220
    [61]Vapnik V. Statistical Learning Theory[M]. New York: Springer,1998:133~184
    [62]李晓宇,张新峰,沈兰荪.支持向量机(SVM)的研究进展[J].测试技术,2006,25(4):7~12
    [63]Schlkopf B, Plat J C, Shawe Taylor J, et al. Estimating the support of a high-dimensional distribution Neural Computation[J].2001,12(7):1443~1471
    [64]李蓉,叶世伟,史忠植.SVM KNN分类器---一种提高SVM分类精度的新方法[J].电子学报,2002(5);745~749
    [65]范红波,张英堂,任国全,罗鸿飞.基于模糊支持向量机的发动机故障诊断方法[J].军械工程学院学报,2006,18(6):24~28
    [66]Bruce W. Drinkwater, P. D. W. Ultrasonic arrays for non-destructive evaluation: A review[J]. NDT&E International.2006,39:525-541
    [67]陈清明,蔡虎,程祖海.激光超声技术及其在无损检测中的应用[J].激光与光电子学进展.2005,42(4):53-57
    [68]张勇,陈强,孙振国,汤晓华.用于无损检测的电磁超声换能器研究进展[J].无损检测.2004,26(6):275-279
    [69]钟志民,梅德松.超声相控阵技术的发展及应用[J].无损检测.2002,24(2):69-71
    [70]杨奕,陈以方,曾阳.阵列超声场的信号采集与处理系统[J].电子技术应用.2003,4:41-43
    [71]李衍.管道环缝相控阵超声探伤技术的应用—国外超声检测动态[J].无损检测.2002,24(9):386-390
    [72]Ping He, Kefu Xue, Qun Chen, Paul Murka and Scott Schall. A PC-Based Ultrasonic Data Acquisition System for Computer-Aided Prosthetic Socket Design. IEEE Transactions on rehabilitation engineering.1996,4(2):114-119
    [73]W.Marshall Leach. Controlled-source analogous circuits and SPICE models for piezoelectric transducers [J]. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control.1994,41(1):60~66
    [74]W.H.Chen, P.J.Cao, E.Maione, T.Ritter and K.K.Shung. Optimization of Pulse Transmission in a High-Frequency Ultrasound Imaging System[J]. IEEE Ultrasonics Symposium.2001:995~998
    [75]Long Wu, Yeong-Chin Chen. PSPICE approach for designing the ultrasonic piezoelectric transducer for medical diagnostic applications[J]. Sensors and Actuators. 1999,(75):186~198
    [76]A.Ramos, A.Ruiz, J.L.San Emeterio, P.T.Sanz. PSpice circuital modeling of ultrasonic imaging transceivers including frequency-dependent acoustic losses and signal distortions in electronic stages[J]. Ultrasonics.2006,(44):995~1000
    [77]A.Ramos, J.L.San Emeterio and P.T.Sanz. Dependence of pulser driving responses on electrical and motional characteristics of NDE ultrasonic probes[J]. Ultrasonics. 2000,38(1):553~558
    [78]CHEN YeongChin, WU MenqJiun, LIU WeiKuo. PSPICE controlled-source models of analogous circuit for Langevin type piezoelectric transducer[J]. Sci China-Phys Mech Astron.2007,50(1):87~96
    [79]G.Caliano, A.Caronti, M.Baruzzi, A.Rubini, A.Iula, R.Carotenuto, M.Pappalardo. PSpice modeling of capacitive microfabricated ultrasonic transducers[J]. Ultrasonics. 2002,(40):449~455
    [80]Emiliano Maione, Piero Tortoli, Grazyna Lypacewicz, Andrzej Nowicki, John M.Reid. PSpice Modelling of Ultrasound Transducers:Comparison of Software Models to Experiment[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL.1999,46(2):399~406
    [81]L.W.Schmerr, A.Sedov. Modeling ultrasonic problems for the 2002 benchmark problem[C]. Review of Quantitative Nondestructive Evaluation. American Institute of Phsics, N.Y.,22B,2003:1776~1783
    [82]Ruiz. A, Ramos. A, San Emeterio.J.L, Sanz.P.T. PSpice simulation of transient responses of transducers and spike generators included in E/R ultrasonic systems[C]. Sevilla: Forum Acusticum,2002:43.35~43.38
    [83]Jan van Deventer, Torbjorn Lofqvist and Jerker Delsing. PSpice Simulation of Ultrasonic Systems[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL.2000,47(4):1014~1024
    [84]P.Acevedo-Contla and D.K.Das-Gupta. Simple Model for the Design of Ultrasonic Transducers Using Composite Piezoelectric Materials[J]. IEEE Ultrasonics Symposium.1995,1029~1032
    [85]Alf Puttemer, Peter Hauptmann, Ralf Lucklum, Olaf Krause and Bernd Henning. SPICE Model for Lossy Piezoceramic Transducers[J]. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL. 1997,44(1):60~66
    [86]张维蕴,阙沛文,宋寿鹏.超声检测系统的建模研究[J].计算机仿真.2006,23(1):78~80
    [87]赵新玉,刚铁,张碧星.基于平底孔反射体的双晶直探头测量模型[J].物理学报.2008,57(8):5049~5055
    [88]冯若.超声手册[M].南京:南京大学出版社,·1997:34~78
    [89]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1981:65~87
    [90]Jeong K. Naa, James L. Blackshireb, Samuel Kuhra. Design, fabrication, and characterization of single-element interdigital transducers for NDT applications[J]. Sensors and Actuators A:Physical.2008,148:359-365
    [91]Achenbach, J. D. Modeling for quantitative non-destructive evaluation[J]. Ultrasonics. 2002,40:1-10.
    [92]C Dang, L W Schmerr, Jr. A Sedov. Ultrasonic Transducer Sensitivity and Model-Based Transducer Characterization[J]. Res. Nondestr. Eval,2002,14:203-228.
    [93]M.Greenspan. Piston radiator: some extensions of the theory[J]. J.Acoustic.Am, 1979,65:608-621
    [94]C.J.Dang. Electromechanical Characterization of Ultrasonic NDE Systems[D]. Iowa State University,2001:92~133
    [95]Y.H. Kim, S.J. Song, S.S. Lee, J.K. Lee, S.S. Hong and H.S. Eom, A study of the couplant effects on contact ultrasonic testing[J]. Korean Soc. Nondestruct. Test. 2002,22(6):621-626
    [96]R.A.Roberts. Ultrasonic beam transmission at the interface between an isotropic and a transversely isotropic solid half-space [J]. Ultrasonics.1988(26):139~147
    [97]Hayward, Y. G. a. G. A HARDWARE DIGITAL CORRELATION SCHEME FOR ULTRASONIC NON-DESTRUCTIVE TESTING IN EXPLOSIVE ENVIRONMENTS[J]. IEEE ULTRASONICS SYMPOSIUM.1986
    [98]徐西刚,陈以方,彭雪莲.数字化超声探伤仪中超声信号高速采集技术[J].传感器技术.2003,22(10):16-18
    [99]王晔,赵兴群.基于DSP的超声检测系统高速数据采集压缩卡设计[J].工业控制计算机.2007,20(10):24-26
    [100]刘贵杰,王强,梅宁.海底油气管道检测数据采集系统研究[J].仪器仪表学报.2006,27(6):1379-1380
    [101]李帆.海底管道缺陷超声波检测数据采集处理方法研究[D].中国海洋大学,2007:42~47
    [102]罗飞路,李勇,沈国际.利用ADSP2105的超声探伤系统[J].无损检测.2000,22(1):23-24.
    [103]张世雄,陈以方.超声检测系统中消除电磁干扰的电路设计[J].仪表技术与传感器.2008,10:74-75
    [104]Rmamzan Demirli, Jafar Saniie. DENOISING AND COMPRESSION OF ULTRASONIC SIGNALS USING MODEL-BASED ESTIMATION TECHNIQUES[C]. Montreal:IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference.2004:2306~2309
    [105]Guilherme Cardoso and Jafar Saniie. Performance Evaluation of DWT, DCT, and WHT for Compression of Ultrasonic Signals[C]. Montreal:IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference. 2004:2314-2317
    [106]Rmamzan Demirli, J. S. Model-Based Estimation of Ultrasonic Echoes Part Ⅱ: Nondestructive Evaluation Applications[J]. ieee transactions on ultrasonics, ferroelectrics, and frequency control.2001,48(3):803~811
    [107]Guilherme Cardoso. Compression, estimation, and analysis of ultrasonic signals[D]. Illinois institute of technology,2005:86~88
    [108]武良丹,贺西平,张小凤,胡景勤.高斯回波模型在超声回波模拟中的应用及其迭代算法的讨论[J].应用声学.2007,26(2):119~124
    [109]武良丹,张小凤,贺西平.基于模拟退火算法的超声回波参数估计[J].应用声学,2007,26(5):313~317
    [110]韩文花,阙沛文,梁巍.改进的遗传局部搜索算法在漏磁逆问题中的应用研究[J].上海交通大学学报.2007,41(5):751~754
    [111]施克仁.无损检测新技术[M].北京:清华大学出版社,2007:130~137
    [112]Mallat S, Zhang Z. Matching Pursuit with Time-frequency Dictionaries[J]. IEEE Trans. On PAMI,1993,15(12):3397-3415.
    [113]N. Ruiz-Reyes, P. V.-C., J. Curpia'n-Alonso, R. Mata-Campos, J.C. Cuevas-Marti'nez. New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT[J]. NDT&E International.2005,38:453~458
    [114]王胜春,韩捷,李志农,李剑峰.一种自适应Chirplet分解方法及在故障诊断中 应用[J].振动工程学报.2007,20(6):606-612
    [115]朱启兵,赵文礼,刘杰,陈立平.基于信号匹配追踪的模态参数提取[J].振动与冲击,2007,26(7):149~151
    [116]朱明,金炜东,胡来招.一种基于Spectrum原子的雷达辐射源信号识别方法[J].电子与信息学报.2009,31(1):188-191
    [117]聂祥飞,李春光,郭军.基于经验模式分解和匹配追踪的人脸检测[J]计算机工程.2007,33(14):30-32
    [118]李宏亮,黄润华,韩国明,傅汝楫.基于遗传算法的匹配追踪小波分析及其在非平稳故障信号中的应用[J].机械强度.2001,23(3):268-272
    [119]孟庆丰,张优云,冯武卫,高强,范虹.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报.2007,43(7):115-119
    [120]Liang Wei, Z.-y. H., Que Pei-wen. Sparse deconvolution method for improving the timeresolution of Ultrasonic NDE signals[J]. NDT&E International.2009, 42(5):430-434
    [121]刘继忠.CFRP孔隙率超声无损检测研究与系统实现[D].浙江大学,2005:71~89
    [122]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:北京邮电大学出版社,2008:262~293
    [123]Shi, Y. H., Eberhart. R. C. A Modified Particle Swarm Optimizer[J], IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, May 4-9, 1998
    [124]Carlisle A, Dozier G. An off the shelf PSO[J]. Proceedings of the workshop on particle swarm optimization. Indianapolis. Purdue School of Engineering and Technology,2001
    [125]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.
    [126]MAO Yi-mei, Que. Pei.-wen. Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines[J]. Journal of Zhejiang University SCIENCE A.2006,7(2):130-134
    [127]毛义梅.海底管道超声检测信号的时频分析及缺陷评估研究[D].上海交通大学.2006:41~57
    [128]熊良才.自适应时频分析技术及其在故障诊断中应用的研究[D].华中科技大学.2002:39~82
    [129]Murat Yasar, Asok Ray. Trend Detection and Data Mining via Wavelet and Hilbert-Huang Transforms[C]. Seattle, Washington: American Control Conference. 2008:4292~4297
    [130]A.M. Bassiunya, X. L. Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator[J]. International Journal of Machine Tools & Manufacture.2007,47:1011-1020
    [131]H.B. Dong, X. F. C., B. Li, K.Y. Qi, Z.J. He. Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model[J]. Mechanical Systems and Signal Processing.2009,33(3):869~883
    [132]Yang, W.-X. Interpretation of mechanical signals using an improved Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing.2008,22:1061~1071.
    [133]R. Kazvys, O. T. y., D. Pagodina. Ultrasonic detection of defects in strongly attenuating structures using the Hilbert-Huang transform[J]. NDT&E International. 2008,41:457~466
    [134]Po-Hsiang Tsui, C.-C. C., Chien-Chung Chang. An adaptive threshold filter for ultrasound signal rejection[J]. Ultrasonics,2009,49(4-5):413~418
    [135]郝大海.基于Hilbert-Huang变换的发动机振动信号特征提取[J].兵工自动化.2007,26(12):81-83
    [136]贾继德.往复机械非平稳信号的特征提取及诊断研究[D].中国科学技术大学.2004:81~94
    [137]李萍,李喜孟,王来.一种适用于超声回波信号统计特性分析的方法[C].苏州:江苏电子音像出版社,2003:217~222
    [138]徐自励,王一扬,周激流,何培宇.房间声学系统非线性确定性的替代数据法检测[J].四川大学学报(工程科学版).2007,39(5):155~158
    [139]宋寿鹏,阙沛文.超声信号的非线性行为及应用[J].传感技术学报,2007,20(1):128~131
    [140]Theiler J, Eubank S, Longtin A, te al. Testing for nonlinearity in time series:the method of surrogate data[J]. Physica D.1992,58:77~94
    [141]Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests[J]. Phys Rev Lett.1996,77:635~638
    [142]舒畅,宋叔飚,李中群,裴承呜,谭申刚.基于先验估计的自适应Chirplet信号展开[J].电子与信息学报.2005,27(1):21-25
    [143]李刚,石立华,王鑫伟.经验模态分解去噪技术及其在兰姆波检测中的应用[J].计量学报,2006,27(2):149~152
    [144]罗斌,罗宏建,刘一舟.粗晶材料超声检测中的非线性信号处理[J].中国机械工程,2005,16(3):212~214
    [145]龙源,黎丹.基于Hilbert-Huang变换和时频域参数的机车轴承故障诊断[J].轴承.2007,9:44~47.
    [146]李传习,陈富强.基于HHT的结构损伤特征量与异常诊断[J].长沙理工大学学报(自然科学版).2007,4(3):29~33
    [147]赵永林,刘桂雄,周德光,陈铁群.应用经验模式分解法处理超声无损检测信号 [J].现代制造工程.2006,4:90~92
    [148]史玉峰,靳奉祥.数字信息模式识别理论与应用[M].北京:科学出版社,2007:52~56
    [149]王保平,刘升虎,范九伦,谢维信.基于模糊熵的自适应图像多层次模糊增强算法[J].电子学报.2005,33(4):730-734
    [150]Yaguo Lei, Zhengjia He, Yanyang Zi. Application of an intelligent classification method to mechanical fault diagnosis[J]. Expert systems with Applications 36(2009):9941-9948
    [151]Kuo, C.-C. Artificial recognition system for defective types of transformers by acoustic emission[J]. Expert Systems with Applications.2009,36:10304-10311
    [152]褚福磊,袁福生.支持向量机及其在机械故障诊断中的应用[J].振动与冲击.2007,26(11):29-34
    [153]E.Avci. A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier[J]. Expert Systems with Applications 36(2009) 10618-10626
    [154]Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Trans. On Neural Networks,2002,13:415-425
    [155]Chang C C, Lin C J. LIBSVM: a library for support vector machines.2001. http://www.csie.ntu.edu.-tw/~cjlin/libsvm
    [156]Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Trans. On Neural Networks,2002,13:415~425
    [157]卜艳萍,俞金寿.基于微粒群优化算法和支持向量机的软测量建模[J].华东理工大学学报(自然科学版),2008,34(1):131~134
    [158]白鹏,张喜斌,张斌,李彦,谢文俊,刘君华.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008:48~53
    [159]周辉仁,郑丕谔,赵春秀.基于遗传算法的LS-SVM参数优选及其在经济预测中的应用[J].计算机应用.2007,27(6):1418~1419
    [160]蔡振华,张丽,罗兴铸,贾嵘.基于最小二乘支持向量机回归的HHT在水轮发电机组故障诊断中的应用[J].中国电机工程学报.2006,26(22):128-133
    [161]许亮.融合先验知识的模糊最小二乘支持向量机模型及其应用[J].计算机应用.2008,28(9):2423~2426
    [162]李功,黄民.基于小波包变换的超声回波信号特征提取[J].合肥工业大学学报(自然科学版),2006,29(2):246~249
    [163]刘旭,夏金东,吴淼.超声检测缺陷分类的降噪及特征提取问题研究[J].中国矿业大学学报(自然科学版).2001,30(3):248~251
    [164]张海燕,周全,夏金东.超声缺陷回波信号的小波包降噪及特征提取[J].仪器仪表学报.2006,27(1):94~97
    [165]吴淼,张海燕,孙智,刘旭.超声检测缺陷分类的小波分析与神经网络方法[J].中国矿业大学学报.2000,29(3):239~243
    [166]张道富,曾燕,周晓车,程耀东.基于信息融合技术的无损检测缺陷模式识别[J].仪器仪表学报.2003,24(5):449~452
    [167]李雷,朱杰.超声探伤信号的神经网络识别[J].电子测量技术.2006,29(2):23~24
    [168]张海燕,樊仕轩,周全,刘旭.超声频率一致性分析及其在缺陷分类中的应用[J].声学技术.2007,26(1):51~55
    [169]刘旭,夏金东,弓乐,吴淼.超声检测缺陷分类中信号处理方法的探讨[J].仪器仪表学报.2002,23(6):638~641
    [170]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社,2007:75~79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700