用户名: 密码: 验证码:
超声体波声压反射系数谱表征表面涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面涂层质量和性能的超声无损检测与表征技术研究,对于表面涂层技术的应用与发展具有重要意义。目前,研究工作遇到的难点问题集中于两个方面:(1)涂层厚度较小(几十至几百微米),致使涂层前后表面的超声反射回波发生混叠;(2)对于非均匀涂层,其内部随机分布着一定数量的孔隙和微裂纹,超声波在该结构中传播时发生了频散。
     本研究针对难点问题(1):根据超声波在三层介质中的传播模型,利用涂层前后表面反射回波混叠所产生的干涉现象,提取涂层的声压反射系数幅度谱和相位谱,来分别表征涂层的厚度和密度。进而引入反演技术,实现了涂层纵波声速和厚度的同时测定。与此同时,声压反射系数幅度谱幅值和谐振频率出现规律等特征,受涂层与其相邻介质声阻抗匹配关系变化的影响十分敏感,据此可用于检测涂层界面处的缺陷,如脱粘及TGO (thermal grown oxide)的存在。
     针对难点问题(2):建立了非均匀涂层物理模拟模型,进而分别借助于超声检测数值模拟技术和实验测试,研究非均匀涂层结构对声波传播规律的影响。发现窄脉冲超声信号在非均匀涂层中传播时,声波发生了频散现象。据此对均匀涂层的反射系数相位谱与幅度谱表达式进行了修正,并引入谐振频率偏离系数来定量描述涂层中的频散程度,研究成果为非均匀涂层的超声无损检测与表征提供了理论依据。
     依据建立的均匀及非均匀涂层的超声表征原理,分别对均匀的铝质涂层、环氧树脂涂层和非均匀的TBC (thermal barrier coating)进行了超声检测与表征,主要结果如下:
     1.利用声压反射系数幅度谱,测量了聚氯乙烯基体上铝质涂层的厚度(404-425μm),所得结果与金相观察结果之间绝对误差范围为±7μm,相对误差范围为±2%,满足工程需要。利用声压反射系数相位谱极值与涂层密度之间的函数关系,对铝质涂层的密度进行了测量,测量结果与阿基米德法测量结果的最大相对误差为5.8%。
     2.以声压反射系数幅度谱为目标函数,利用高斯-牛顿法对环氧树脂涂层的纵波声速和厚度两个未知参数同时反演,其结果与参考值之间的最大相对误差分别为2.67%和2.35%,均满足工程需要。
     3.利用涂层及与其相邻介质声阻抗的匹配关系对涂层声压反射系数幅度谱的影响,对铝质涂层/环氧树脂粘结层/有机玻璃基体试样,测定其脱粘及未脱粘状态下的声压反射系数幅度谱,谱线极值变化规律与理论预测结果相符。
     4.以GH33为基体材料,利用EB-PVD (electron beam physical vapor deposition)法依次沉积了NiCoCrAlY粘结层和YSZ涂层,从而获得了TBC试样。将TBC试样在1050℃×1 h条件下经15次循环氧化后,进行超声检测。由于氧化后YSZ涂层与NiCoCrAlY粘结层界面生成了约3μm的TGO(主要成分为Al2O3),因而改变了涂层与相邻介质之间的声阻抗匹配关系,使得氧化前后涂层声压反射系数幅度谱极值出现的规律发生了改变,实验结果与理论预测相符。
     5.针对分别由等离子喷涂法及EB-PVD法制备的非均匀涂层,基于随机介质理论和统计学方法,提出了非均匀涂层物理模拟模型,进而利用时域有限差分法进行了超声传播的数值模拟。数值模拟结果发现,随着孔隙率的增加,涂层的非均匀程度增加,导致声波的谐振频率偏离系数增大。在推导出均匀涂层的声压反射系数幅度谱与相位谱表达式的基础上,将式中的超声纵波声速和衰减系数修正为随频率变化的函数形式,创建了非均匀涂层的声压反射系数幅度谱与相位谱表达式。
     6.利用声压反射系数相位谱,对1Cr18Ni9Ti基体上等离子喷涂的YSZ涂层厚度(256-330μm)进行了超声测量,测量结果与金相观察结果之间的绝对误差范围为±10μm,相对误差范围为±3%,满足工程测试需要。
     7.利用声压反射系数相位谱的相位极值与涂层密度之间的理论关系,对1Cr18Ni9Ti基体上等离子喷涂的Cr2O3涂层(50μm)的密度进行了定性分析,结果表明Cr2O3涂层存在一定程度的非均匀性,超声测试结果与SEM分析结果相符。同理对GH33基体上的EB-PVD法制备的YSZ涂层(150μm)的密度进行了测量,超声法与阿基米德法的测量结果之间的最大相对误差为4.59%。
     8.借助于HIPIB (High-intensity pulsed ion beam)技术,对EB-PVD法制备的TBC试样进行不同束流密度辐照的表面改性处理,继而对辐照和未辐照试样分别进行了超声测试。结果发现,未辐照、100 A/cm2辐照及300 A/cm2辐照后涂层的谐振频率偏离系数范围依次为0.80-0.85、0.85-0.88和0.91-0.93,且声衰减系数依次减小。结果说明,HIPIB辐照后涂层的致密度增大、均匀性得到改善,且300 A/cm2辐照后涂层的致密度增大程度及均匀性改善程度最大,涂层SEM观察结果与超声表征结果相符。
The investigation on the ultrasonic testing and characterization of surface coatings is significant to the development and application of the coatings technique. At present, there are two major problems on the immersion ultrasonic pulse echo method used to test and characterize the properties of the coatings. (1) The coating is so thin (10-8-10-7m) that the ultrasonic echoes reflected from the front and back surfaces of the coating overlap. (2) For the inhomogeneous coating, ultrasonic wave occurs complex scattering and dispersion when it propagates in such kinds of coating containing the random pores and microcracks.
     To overcome the problem mentioned above, the systematical work is carried out from the views of the theoretical model, signal processing, numerical simulation and experimental tests. For the problem (1), a water/coating/substrate model is established for the homogeneous coating. According to the interference caused by the reflection waves from the interfaces of water/coating and coating/substrate, the thickness and density of the coatings are determined by the ultrasonic reflection coefficient amplitude and phase spectrum (URCAS & URCPS). Then, the velocity and thickness are determined simultaneously by introducing the inversion technique. Meanwhile, the variation of URCAS extreme is very sensitive to the changes of acoustic impedance match between the coating and its adjacent medium, which can be used to test flaws of the interface, such as disbonding and the existence of TGO (thermally grown oxide).
     For the problem (2), the influence of inhomogeneous microstructure on propagation of ultrasonic wave is investigated from the view of experiment and numerical simulation. It is found that dispersion phenomenon occurs when the ultrasonic signals transmits in the inhomogeneous coating. Accordingly, the constant forms of longitudinal velocity and attenuation coefficient in the expressions of URCAS and URCPS of homogeneous coating are modified as the frequency dependent form, so the expressions of URCAS and URCPS of inhomogeneous coating are obtained. Then the resonant frequency deviation coefficient (RFDC) is introduced to quantify the degree of dispersion, which provides the basis on the ultrasonic characterization of the inhomogeneous coating.
     Based on the model and the principle above, ultrasonic testing and characterization of the homogeneous aluminum coating, epoxy coating and inhomogeneous TBC are carried out in this work. The major results are as following:
     1. The thickness of aluminum coating on PVC substrate (404-425μm) is measured by URCAS, and range of absolute error between ultrasonic method and metallographic observations is±7μm, the range of relative error±2%. The density of aluminum coating is determined by the relation of URCPS extreme and coating density, and the relative error maximum of measurement results between ultrasonic and Archimedes method is 5.8%.
     2. The ultrasonic longitudinal velocity, density and thickness of homogeneous epoxy coating (277μm) on the aluminum substrate are characterized by the combination of URCAS and inverse method. The relative errors between the velocity and thickness obtained by two parameters inversion based on Gauss-Newton method and "reference value" are 2.67% and 2.35%, respectively.
     3. The specimens of the aluminum layer/epoxy bonding layer/glass substrate system are tested according to the influence of acoustic impedance match relation between the coating and its adjacent medium on URCAS. Both of the experimental URCAS of disbonding and perfect specimen are obtained, and it is found that the regularity of the experimental URCAS is consistent with the theoretical prediction.
     4. Ultrasonic testing is carried out on the TBC system (YSZ coating/NiCoCrAlY bonding layer/GH33 substrate) before and after aging under the conditions of 1050℃×1 h after 15 cycles. TGO (main component:Al2O3) with thickness of about 3μm generates between the YSZ coating and NiCoCrAlY bond layer due to the oxidation, which changes acoustic impedance match relations between the coating and its adjacent medium. This makes the law of URCAS extreme occurring of the coating before and after aging reverse. The experimental results agree well with the theoretical prediction, which shows the present method can be used to test TGO in the TBC system.
     5. The inhomogeneous coating physical simulation model (ICPSM) is proposed to describe the inhomogeneous coating prepared by plasma sprayed and electron beam physical vapor deposition (EB-PVD) based on the random medium theory and statics method. Then the simulation on the ultrasonic propagation in the ICPSM is fulfilled by the FDTD (Finite-difference time-domain) method. It is found that RFDC increase with the increase of coating porosity, which shows that the dispersion degree increases with the increase of inhomogeneous degree of the coating. The constant forms of velocity and attenuation coefficient in the expressions of URCAS and URCPS of homogeneous coating are modified as the frequency dependent form. Then the expressions of URCAS and URCPS of inhomogeneous coating are obtained first, which are particularly suitable to ultrasonic characterization of inhomogeneous coating.
     6. The thickness of YSZ coating (256-330μm) on 1Cr18Ni9Ti substrate is measured by URCAS, and the range of absolute error between ultrasonic method and metallographic observations is±10μm, the range of relative error±3%.
     7. The density of Cr2O3 coating is determined by the relation of URCPS extreme and coating density. It is shown the microstructure of the Cr2O3 coating is inhomogeneous, and the ultrasonic measurement results agree well with SEM observation. Similarly, the density of YSZ coating the prepared by EB-PVD method is determined by the relation of URCPS extreme and coating density, and the relative error maximum of measurement results between ultrasonic and Archimedes method is 4.59%.
     8. The ranges of RFDC of as-deposited TBC and irradiated TBC by high-intensity pulsed ion beam (HIPIB) with beam densities 100 and 300 A/cm2 are determined by URCPS, and they are 0.80-0.85,0.85-0.88 and 0.91-0.93, respectively. Further, the attenuation coefficients of three kinds of coating are obtained by numerical fitting technique. The attenuation coefficient decreases with increase of beam density. These results indicate that the coating density and uniformity have increased after irradiation and those of coating after 300 A/cm2 irradiation increases most significantly. The ultrasonic results are in agreement with the SEM observation.
引文
[1]徐滨士,李长久,刘世参等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,7:3-9.
    [2]陈学定,韩文政.表面涂层技术[M].北京:化学工业出版社,1994.
    [3]李美姮,孙晓峰,宫声凯等.EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J].中国腐蚀与防护学报,2002,22(2):105-110.
    [4]Moller W, Parascandola S, Telbizova T, et al. Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium [J]. Surface and Coatings Technology,2001,136(1-3): 73-79.
    [5]Georgiev J, Pieczonka T, Stoytchev M, et al. Wear resistance improvement of sintered structural parts by C7H7 surface carburizing [J]. Surface and Coatings Technology,2004,180-181:90-96.
    [6]Konyashin I Y. PVD/CVD technology for coating cemented carbides [J]. Surface and Coatings Technology,1995,71(3):277-283.
    [7]Michel H, Czerwiec T, Gantois M, et al. Progress in the analysis of the mechanisms of ion nitriding [J]. Surface and Coatings Technology,1995,72(1-2):103-111.
    [8]Peters M, Leyens C, Schulz U, et al. EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines [J]. Advanced Engineering Materials,2001,3(4):193-204.
    [9]Raghuveer M S, Yoganand S N, Jagannadham K, et al. Improved CVD diamond coatings on WC-Co tool substrates [J]. Wear,2002,253(11-12):1194-1206.
    [10]Dong Y S, Lin P H, Wang H X. Electroplating preparation of Ni-A12O3 graded composite coatings using a rotating cathode [J]. Surface and Coatings Technology,2006,200(11): 3633-3636.
    [11]Damborenea J. Surface modification of metals by high power lasers [J]. Surface and Coatings Technology,1998,100-101:377-382.
    [12]Zenker R, Sacher G, Buchwalder A, et al. Hybrid technology hard coating-Electron beam surface hardening [J]. Surface and Coatings Technology,2007,202(4-7):804-808.
    [13]Liu C, Han X G, Xu Z C, et al. Surface sealing of electron beam physical vapor deposited thermal barrier coatings by high-intensity pulsed ion beam [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2008,26(6):1439-1442.
    [14]Chen Z, Zhou Y. Surface modification of resistance welding electrode by electro-spark deposited composite coatings:PartⅠ. Coating characterization [J]. Surface and Coatings Technology,2006, 201(3-4):1503-1510.
    [15]Wortman D J, Nagaraj B A, Duderstadt E C. Thermal barrier coatings for gas turbine use [J]. Materials Science and Engineering:A,1989,120-121(Part 2):433-440.
    [16]Cao M, Qin R, Qiu C, et al. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate [J]. Materials & Design,2003,24(5):391-396.
    [17]Kim K, Korsunsky A M. Exponential evolution law of fretting wear damage in low-friction coatings for aerospace components [J]. Surface and Coatings Technology,2008,202 (24): 5838-5846.
    [18]Jehn H A, Rother B. Homogeneity of multi-component PVD hard coatings deposited by multi-source arrangements [J]. Surface and Coatings Technology,1999,112(1-3):103-107.
    [19]Fox-Rabinovich G S, Kovalev A I, Aguirre M H, et al. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials [J]. Surface and Coatings Technology,2009,204(4):489-496.
    [20]Khanna A S, Kumari S, Kanungo S, et al. Hard coatings based on thermal spray and laser cladding [J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 485-491.
    [21]Yu X, Sun Y. The oxidation improvement of Fe3Al based alloy with cerium addition at temperature above 1000℃ [J]. Materials Science and Engineering A,2003,363(1-2):30-39.
    [22]Juzon P, Ziemnicka M, Chevalier S, et al. Improving Fe3A1 alloy resistance against high temperature oxidation by pack cementation process [J]. Applied Surface Science,2007,253(11): 4928-4934.
    [23]Schwarz S, Rottmair C, Hirmke J, et al. CVD-diamond single-crystal growth [J]. Journal of Crystal Growth,2004,271(3-4):425-434.
    [24]He L, Liu H, Chen D, et al. Fabrication of HAP/Ni biomedical coatings using an electro-codeposition technique [J]. Surface and Coatings Technology,2002,160(2-3):109-113.
    [25]Kim S G, Hwang Y H, Kim T G, et al. Failure analysis of J85 Engine turbine blades [J]. Engineering Failure Analysis,2008,15(4):394-400.
    [26]Mayrhofer P H, Mitterer C, Hultman L, et al. Microstructural design of hard coatings [J]. Progress in Materials Science,2006,51(8):1032-1114.
    [27]Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Materialia,2000,48(8):1815-1827.
    [28]Ramachandran K, Selvarajan V, Ananthapadmanabhan P V, et al. Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings [J]. Thin Solid Films,1998,315(1-2):144-152.
    [29]Strangman T, Raybould D, Jameel A, et al. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils [J]. Surface and Coatings Technology,2007,202(4-7):658-664.
    [30]Taylor R, Brandon J R, Morrell P. Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings [J]. Surface and Coatings Technology,1992,50(2): 141-149.
    [31]Voevodin A A, Capano M A, Laube S J P, et al. Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films [J]. Thin Solid Films,1997, 298(1-2):107-115.
    [32]Wang Z, Kulkarni A, Deshpande S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings [J]. Acta Materialia,2003,51(18):5319-5334.
    [33]Wright P K, Evans A G. Mechanisms governing the performance of thermal barrier coatings [J]. Current Opinion in Solid State and Materials Science,1999,4(3):255-265.
    [34]Agarwala R, Agarwala V. Electroless alloy/composite coatings:A review [J]. Sadhana,2003, 28(3):475-493.
    [35]Li Y. Investigation of electroless Ni-P-SiC composite coatings [J]. Plating & Surface Finishing, 1997,84(11):77-81.
    [36]李光玉.镁合金表面有机涂层和化学镀层的研究[D]:吉林大学博士学位论文,2006.
    [37]曹学强.热障涂层材料[M].北京:科学出版社,2007.
    [38]Martena M, Botto D, Fino P, et al.Modelling of TBC system failure:Stress distribution as a function of TGO thickness and thermal expansion mismatch [J]. Engineering Failure Analysis, 2006,13(3):409-426.
    [39]Strunz P, Schumacher G, Vassen R, et al. In situ SANS study of pore microstructure in YSZ thermal barrier coatings [J]. Acta Materialia,2004,52(11):3305-3312.
    [40]Subanovic M, Song P, Wessel E, et al. Effect of exposure conditions on the oxidation of MCrAlY-bondcoats and lifetime of thermal barrier coatings [J]. Surface and Coatings Technology,2009,204(6-7):820-823.
    [41]Traeger F, Ahrens M, VaBen R, et al. A life time model for ceramic thermal barrier coatings [J]. Materials Science and Engineering A,2003,358(1-2):255-265.
    [42]Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerospace Science and Technology,2003,7(1):73-80.
    [43]Clarke D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings [J]. Surface and Coatings Technology,2003,163-164:67-74.
    [44]Chang J C, Yun Y H, Choi C, et al. Failure analysis of gas turbine buckets [J]. Engineering Failure Analysis,2003,10(5):559-567.
    [45]Yuan H, Chen J. Computational analysis of thin coating layer failure using a cohesive model and gradient plasticity [J]. Engineering Fracture Mechanics,2003,70(14):1929-1942.
    [46]李美姮,管恒荣.热障涂层的性能评价[J].中国腐蚀与防护学报,2007,27(5):309-314.
    [47]Reynolds W N. Nondestructive evaluation of protective and thermal barrier coatings:a current survey [J]. NDT International,1987,20(3):153-156.
    [48]Rosler M. Thickness testing of electroplated and related coatings:G.P. Ray [J]. Progress in Organic Coatings,1994,23(4):403-404.
    [49]Celis J P, Drees D, Maesen E, et al. Quantitative determination of through-coating porosity in thin ceramic physically vapour-deposited coatings [J]. Thin Solid Films,1993,224(1):58-62.
    [50]Osborne J H, Blohowiak K Y, Taylor S R, et al. Testing and evaluation of nonchromated coating systems for aerospace applications [J]. Progress in Organic Coatings,2001,41(4):217-225.
    [51]段忠清,张宝霞,王泽华.等离子喷涂NiCrAl涂层性能与厚度关系研究[J].热加工工艺,2009,38(8):104-109.
    [52]Ugas-Carrion R, Sittner F, Ochs C J, et al. Characterization of the porosity of thin zirconium oxide coatings prepared at low temperatures [J]. Thin Solid Films,2009,517(6):1967-1969.
    [53]Hu J, Chou Y K, Thompson R G. Cohesive zone effects on coating failure evaluations of diamond-coated tools [J]. Surface and Coatings Technology,2008,203(5-7):730-735.
    [54]Hess P. Laser diagnostics of mechanical and elastic properties of silicon and carbon films [J]. Applied Surface Science,1996,106:429-437.
    [55]王卫泽,李长久.热喷涂涂层的结构及其表征[J].材料保护,2006,39(11):43-47.
    [56]张红松,王富耻,马壮.等离子喷涂ZrO2涂层孔隙定量分析[J].材料工程,2006,(z1):407-410.
    [57]Li C, Ohmori A. Relationships between the microstructure and properties of thermally sprayed deposits [J]. Journal of Thermal Spray Technology,2002,11(3):365-374.
    [58]Zhu C, Kinra V K. Ultrasonic nondestructive evaluation of thin (subwavelength) coatings [J]. The Journal of the Acoustical Society of America,1993,94(3):1857-1858.
    [59]Parthasarathi S, Tittmann B R, Ianno R J. Quantitative acoustic microscopy for characterization of the interface strength of diamond-like carbon thin films [J]. Thin Solid Films,1997,300(1-2): 42-50.
    [60]Lavrentyev A I, Rokhlin S I. An ultrasonic method for determination of elastic moduli, density, attenuation and thickness of a polymer coating on a stiff plate [J]. Ultrasonics,2001,39 (3): 211-221.
    [61]Bull S J, Berasetegui E G. An overview of the potential of quantitative coating adhesion measurement by scratch testing [J]. Tribology International,2006,39(2):99-114.
    [62]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004.
    [63]Schliekelmann R J. Non-destructive testing of bonded joints:Recent developments in testing systems [J]. Non-Destructive Testing,1975,8(2):100-103.
    [64]Expands Y T. Eddy-current probes measure critical nozzle coatings on NASA's shuttle spacecraft [J].NDT International,1984,17(2):101-103.
    [65]Kim T O, Kim H Y, Kim C M, et al. Non-Contact and In-Process Measurement of Film Coating Thickness by Combining Two Principles of Eddy-Current and Capacitance Sensing [J]. CIRP Annals-Manufacturing Technology,2007,56(1):509-512.
    [66]Nusair Khan A, Khan S H, Ali F, et al. Evaluation of ZrO2-24MgO ceramic coating by eddy current method [J]. Computational Materials Science,2009,44(3):1007-1012.
    [67]Friese,柏清.用涡流法测量涂层厚度[J].国外计量,1984,(02):20-21.
    [68]张喜成,孙斐.Hg-Ⅰ型涂层厚度监测系统的监测仪设计[J].南京理工大学学报:自然科学版,1994,6:76-80.
    [69]Huang P, Zhang G, Wu Z, et al. Inspection of defects in conductive multi-layered structures by an eddy current scanning technique:Simulation and experiments [J]. NDT & E International,2006, 39(7):578-584.
    [70]Marinetti S, Robba D, Cernuschi F, et al. Thermographic inspection of TBC coated gas turbine blades:Discrimination between coating over-thicknesses and adhesion defects [J]. Infrared Physics & Technology,2007,49(3):281-285.
    [71]Maldague X, Cielo P, Poussart D, et al. Thermographic nondestructive evaluation (NDE) of turbine blades:Methods and image processing [J]. Industrial Metrology,1990,1(2):139-153.
    [72]霍雁.涂层涂敷质量的红外热波无损检测[D].北京:首都师范大学,2008.
    [73]李国华,吴淼.现代无损检测与评价[M].北京:化学工业出版社,2009.
    [74]Wang X, Mei J, Xiao P. Non-destructive evaluation of thermal barrier coatings using impedance spectroscopy [J]. Journal of the European Ceramic Society,2001,21(7):855-859.
    [75]Ogawa K, Minkov D, Shoji T, et al. NDE of degradation of thermal barrier coating by means of impedance spectroscopy [J]. NDT & E International,1999,32(3):177-185.
    [76]张春霞,宫声凯,徐惠彬.交流阻抗谱法在热障涂层失效研究中的应用[J].航空学报,2006,27(3):520-524.
    [77]任家富,庹先国,林娟.在线工业镀层及涂层厚度分析仪[J].中国测试技术,2007,33(3):10-12.
    [78]Akker S, Arman J. Ultrasonic investigation on plane interfaces between polymers [J]. Ultrasonics, 1997,35(4):287-295.
    [79]Cox R L, Almond D P, Reiter H. Ultrasonic testing of plasma sprayed coatings [J]. NDT International,1980,13(6):291-295.
    [80]Kato H, Abet S. Ultrasonic evaluation of the bonding strength of dissimilar metal bonds [J]. NDT & E International,1996,29(6):355-361.
    [81]Kim B G, Lee S, Kishi T. Time-domain reflection field analysis for ultrasonic evaluation of thin layered media [J]. NDT & E International,1996,29(5):317-322.
    [82]Leonhardt M, Schneider D, Kaspar J, et al. Characterizing the porosity in thin titanium films by laser-acoustics [J]. Surface and Coatings Technology,2004,185(2-3):292-302.
    [83]Lescribaa D, Vincent A. Ultrasonic characterization of plasma-sprayed coatings [J]. Surface and Coatings Technology,1996,81(2-3):297-306.
    [84]Robert L, Brunet N, Flaherty T, et al. Characterisation of TiN and carbon-doped chromium thin film coatings by acoustic microscopy [J]. Surface and Coatings Technology,1999,116-119: 327-334.
    [85]Schneider D, Schwarz T, Buchkremer H P, et al. Non-destructive characterization of plasma-sprayed ZrO2 coatings by ultrasonic surface waves [J]. Thin Solid Films,1993,224(2): 177-183.
    [86]Tam A C. Pulsed-laser generation of ultrashort acoustic pulses:Application for thin-film ultrasonic measurements [J]. Applied Physics Letters,1984,45(5):510-512.
    [87]Kundu T, Mal A K. Acoustic material signature of a layered plate [J]. International Journal of Engineering Science,1986,24(12):1819-1829.
    [88]Schneider D, Tucker M D. Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves [J]. Thin Solid Films,1996,290-291:305-311.
    [89]Haines N F, Bell J C, McIntyre P J. The application of broadband ultrasonic spectroscopy to the study of layered media [J]. The Journal of the Acoustical Society of America,1978,64(6): 1645-1651.
    [90]林莉,聂颖,李喜孟.基于Marr小波分析的薄层超声检测[J].材料工程,2007,2:39-41.
    [91]Kinra V K, Zhu C. Ultrasonic nondestructive evaluation of thin (sub-wavelength) coatings [J]. The Journal of the Acoustical Society of America,1993,93(5):2454-2467.
    [92]张锐,万明习,陈晓等.超薄弹性层超声反射纵波频域定征方法[J].仪器仪表学报,2001,22(4):376-379.
    [93]Kundu T. Inversion of acoustic material signature of layered solids [J]. Journal of the Acoustical Society of America,1992,91(2):591-600.
    [94]张军,胡思正,倪曼.利用扫描声学显微镜对金属-陶瓷复合涂层亚表层相分布的研究[J].热加工工艺,2002,5:44-46.
    [95]Kushibiki J, Maehara H, Chubachi N. Measurements of acoustic properties for thin films [J]. Journal of Applied Physics,1982,53(8):5509-5513.
    [96]Gamier V, Corneloup G. Determining the evolution of the elasticity modulus by surface waves according to the depth in a nitrided layer [J]. Ultrasonics,1996,34(2-5):401-404.
    [97]Zhang F F, Krishnaswamy S, Fei D, et al. Ultrasonic characterization of mechanical properties of Cr-and W-doped diamond-like carbon hard coatings [J]. Thin Solid Films,2006,503(1-2): 250-258.
    [98]Green R E. Non-contact ultrasonic techniques [J]. Ultrasonics,2004,42(1-9):9-16.
    [99]Zhang F F, Krishnaswamy S, Lilley C M. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films [J]. Ultrasonics, 2006,45(1-4):66-76.
    [100]Levesque D, Blouin A, Neron C, et al. Performance of laser-ultrasonic F-SAFT imaging [J]. Ultrasonics,2002,40(10):1057-1063.
    [101]陈清明,蔡虎,程祖海.激光超声技术及其在无损检测中的应用[J].激光与光电子学进展,2005,42(4):37-44.
    [102]Sugasawa S. Measurements of Elastic Properties of Plasma-Sprayed Coatings Using Bulk Ultrasonic Pulses [J]. Japanese Journal of Applied Physics,2004,43(5B):3109-3114.
    [103]Dixon S, Lanyon B, Rowlands G. Coating thickness and elastic modulus measurement using ultrasonic bulk wave resonance [J]. Applied Physics Letters,2006,88(14):141907.
    [104]Li J C, Lin L, Li X M, et al. Ultrasonic characterization of modified Cr2O3 coatings by reflection coefficient spectroscopy [J]. Transactions of Nonferrous Metals Society of China,2010,20(3): 418-424.
    [105]Parthasarathi S, Tittmann B, Onesto E. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings [J]. Journal of Thermal Spray Technology,1997,6(4): 486-488.
    [106]Roge B, Fahr A, Giguere J, et al. Nondestructive measurement of porosity in thermal barrier coatings [J]. Journal of Thermal Spray Technology,2003,12(4):530-535.
    [107]Baltazar A, Wang L, Xie B et al. Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids [J]. The Journal of the Acoustical Society of America,2003,114(3):1424-1434.
    [108]王杨,毛捷,李明轩等.固体板背覆薄层特性的低频超声反演方法研究[J].声学学报,2009,34(1):11-19:
    [109]王耀俊.固体间界面的物理模型和界面对声波的反射[J].物理,2002,31(12):768-772.
    [110]Crutzen H P, Lakestani L F, Nicholls J R. Ultrasonic Characterisation of Thermal Barrier Coatings [J]. Ultrasonics Symposium,1996,1:657-660.
    [111]Cox R L, Almond D P, Reiter H. Ultrasonic attenuation in plasma-sprayed coating materials [J]. Ultrasonics,1981,19(1):17-22.
    [112]徐志辉.基于频谱分析的材料表面改性层特性超声无损表征[D].大连:大连理工大学,2005.
    [113]李继承.层状介质的超声表征原理与实验研究[D].大连:大连理工大学,2006.
    [114]聂颖.基于时频分析的超声信号处理方法的研究[D].大连:大连理工大学,2006.
    [115]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-12.
    [116]徐国明.反演理论及其应用[M].北京:地震出版社,2003.
    [117]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003.
    [118]奚先,姚姚.二维横各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
    [119]Korn M. Seismic wave in random media [J]. Journal of Applied Geophysics,1993,29:247-269.
    [120]Ikelle L.2-D random media with ellipsoidal autocorrelation function [J]. Geophysics,1993, 58(9):1359-1372.
    [121]何书元.随机过程[M].北京:北京大学出版社,2008.
    [122]刘嘉焜.应用随机过程[M].北京:科学出版社,2004.
    [123]牟云飞,张翔,林莉等.基于随机孔隙模型的CFRP孔隙率超声检测研究[J].机械工程学报,2010,46(4):54-57.
    [124]Yee K S. Numerieal solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE Trans.on Antennas Propagation,1966,14(5):302-307.
    [125]Kudo H, Kashiwa T, Ohiani T. The nonstandard FDTD method for three dimensional acoustic analysis and its numerical dispersion and stability condition [J]. Electronics and Communications in Japan,2002,85(9):15-24.
    [126]李太宝.计算声学[M].北京:科学出版社,2005.
    [127]罗怡珊,汪源源,徐峰.时域有限差分法研究骨传导超声特性[J].声学技术,2007,26(5):877-881.
    [128](英)西拉德J.超声检测新技术[M].北京:科学出版社,1991.
    [129]应崇福.超声学[M].北京:科学出版社,1990.
    [130]P. Droin G B, P. Laugier. Ultrasonic Wave Dispersion and Attenuation in a Periodically Two-Layered Medium [J]. IEEE Ultrasonics Symposium,1998,45:581-592.
    [131]Hosten B. Heterogeneous structure of modes and Kramers-Kronig relationship in anisotropic viscoelastic materials [J]. The Journal of the Acoustical Society of American,1998,104(3): 1382-1388.
    [132]刘臣.强流脉冲离子束辐照的冲击加工与强化作用研究[D].大连:大连理工大学,2009.
    [133]Lin L, Zhao Y, Li X M, et al. Ultrasonic characterization of EB-PVD thermal barrier coatings irradiated by HIPIB [J]. Key Engineering Materials,2008,373-374:386-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700