用户名: 密码: 验证码:
基于超声显微镜的薄层材料多参量一体化定征关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄层材料作为一种对现代工业和国民经济产生巨大影响的功能性材料,在其研发、制备和应用等过程中一直以来对无损定征技术具有强烈的需求。而超声无损检测技术由于具有其它方法难以媲美的优势,在薄层材料性能定征和质量监控中得到了广泛应用,呈现出定征内容日益丰富、多参量一体化定征成为主流的发展态势,特别是随着超声显微镜技术的飞速发展,由于其高分辨率的特点,使得精细化定征成为可能,并十分适合于薄层材料性能定征和质量监控中应用。因此,基于超声显微镜的薄层材料定征技术必将是该领域发展的主流,显示出巨大的发展潜力。基于以上背景,本论文结合国家自然科学基金资助项目,开展基于超声显微镜的薄层材料多参量一体化无损定征关键技术研究,根据薄层材料的结构特点以及超声波在薄层材料中的传播规律,在建立薄层材料反射系数理论模型、发展一种基于超声显微镜的二维反射系数测量技术的基础上,利用垂直入射的反射系数谱和双入射角的反射系数谱,通过多参量辨识技术同时确定薄层材料的厚度、密度、波速和衰减等特性参数,实现薄层材料的多参量一体化定征。具体的研究内容和创新成果体现在:
     第一章,阐述薄层材料及其研发、制备和应用过程中实施无损定征技术的重要意义,系统总结薄层材料无损定征技术的研究现状及其发展趋势,全面概括基于超声显微镜的薄层材料定征技术的研究现状,明确目前该技术所存在的问题,为本文指明了研究方向。同时,对论文的研究内容及各章节进行了安排。
     第二章,建立了超声波在均匀介质叠层结构中的传播模型,分别推导垂直入射和斜入射情况下任意结构的叠层材料声反射系数理论计算公式。在介绍传统Thomson-Haskell算法及其高频精度损失问题的基础上,提出了一种改进型Thomson-Haskell算法用于声反射系数的理论计算,建立了声反射系数与薄层材料属性及其结构参数,包括厚度、密度、声速和衰减等特性参量之间的定量关系,为薄层材料的特性定征奠定了必要的理论基础。
     第三章,在建立超声显微镜声波传播模型的基础上,详细分析基于脉冲超声显微镜的二维反射系数测量原理,创建了一种基于宽频脉冲超声显微镜的二维反射系数测量方法,并简要描述了Z轴采样步距对测量结果的影响,为采样步距优化选择提供理论依据。然后,分别实测铝、有机玻璃和四种不同厚度薄钢片以及两类典型多层结构的声反射系数,并与利用第二章方法所计算的理论声反射系数进行比较,验证了该测量方法的有效性和可行性,为本文的后续工作提供了共性的技术保障。
     第四章,提出了一种基于垂直入射超声反射系数谱的薄层材料多参量一体化定征方法。首先,根据聚焦探头和薄层的几何关系推导薄层材料厚度理论表达式,建立薄层材料厚度与探头聚焦在相应薄材上、下表面时回波信号之间的定量关系。其次,通过第三章所述V(z,t)技术测量薄层材料的声反射系数,并拾取探头聚焦在待检薄材上、下表面时的声回波信号,进而根据薄层材料的厚度表达式确定薄材的厚度。然后,在厚度已知的情况下,通过提取所测反射系数的垂直分量,并根据最小二乘反演算法确定其余参量,实现了薄层材料的多参量一体化定征。最后,使用50MHz的聚焦探头,对250μm厚度的不锈钢薄片属性进行定征,相关参数定征误差均在5%以内,验证了该方法的可行性和有效性。
     第五章,提出了一种基于双入射角超声反射系数谱的薄层材料多参量一体化定征技术。首先,建立薄层结构声波传播模型,利用改进型Thomson-Haskell算法确定二维声反射系数与所需定征参量,即材料的密度和厚度、纵波和横波波速以及纵波和横波衰减等,之间的定量关系。其次,通过基于超声显微镜的V(z,t)技术测量薄层材料样本的反射系数,提取垂直入射和较优斜入反射系数谱,并引入两步逆解算法,将六维空间中的参数逆求问题转换为两步三维空间参数逆求问题,实现薄层材料特性参数的完整定征。然后,还对该方法进行了灵敏度函数分析和抗噪声的稳定性分析。最后,使用25MHz聚焦探头将该方法应用于250μm厚度不锈钢薄片的定征,所定征全部参数误差均在4%以内,验证了该方法的可行性和有效性。
     第六章对本文的研究工作进行概括总结,并对以后的工作进行展望,明确未来的主要研究内容和方向。
As a functional material, thin layer plays an enormous impact on the modern industry and the national economy, thus the non-destructive characterization of thin layer has been strongly demanded during the processes of thin layer development, preparation and application. Ultrasonic nondestructive testing is widely used in the field of material property characterization and quality control of thin layer due to its unique advantages, and shows the trends of simultaneous characterization. With the rapid development of acoustic microscope technique, the high resolution characterization has been possible and it is very suitable for the characterization of thin layer. Therefore, the characterization technique based on the acoustic microscopy has shown great potential and would be the mainstream. Thus, with the support of National Natural Science Foundation-funded project, the simultaneous characterization of material and geometrical properties of thin layer with acoustic microscopy is studied.On the basis of theoretical model of wave propagation and the proposed reflection coefficient measurement technique, the material properties, including thickness, density, longitudinal and transverse velocities, and attenuation, are determined with an inverse algorithm utilizing least square method to minimize the sum of squared deviations between theoretical and measured reflection spectrum at normal and oblique incidence. The detailed context and innovative points of this dissertation are as following:
     In chapter one, the importance of non-destructive testing on the development, preparation and application of thin layer is briefly described. Then, The current research status of non-destructive testing associating with thin layer and its development in the further are summarized. Finally, the characterization of thin layer with acoustic microscopy is systematically generalized. Meanwhile, the problems are clarified and the research direction is pointed out. The content and chapter arrangement of the dissertation are also given.
     In chapter two, the theoretical reflection spectrum of layered structure at normal incidence is firstly established by analyzing wave propagation. A reformulation of the Thomson-Haskell method is presented to calculate the acoustic reflection coefficients of layered structures of arbitrary configurations. Finally, the simulation studies verify the validity and feasibility of the proposed method.
     In Chapter three, the spatial and temporal structure of the acoustic field is analyzed on the basis of wave propagation model, and an experimental method based on angular spectrum to evaluate the acoustic coefficient as a function of the incident angle θ and frequency co is presented with acoustic microscopy. Then, the Z-axis sampling interval is briefly discussed. The measurements of the reflection coefficients of the layered structures based on the proposed technique with self-developed scanning acoustic microscopy are performed. Two substrates of aluminum and Plexiglas, four stainless plates with various thicknesses of100μm,150μm,200μm, and250μm, and two typical multilayer structure are applied. The measured results are consistent with the corresponding theoretical calculations to verify the validity and feasibility of the proposed technique.
     In chapter four, a kind of simultaneous measurement method for the thickness, density, sound velocity and attenuation using V(z,t) data recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(θ,ω) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens focusing on the front and back surface of thin layer, which are picked up from the V(z,t) data.The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. Thus, the proposed method allows to simultaneously measuring the thickness, density, sound velocity and attenuation of thin layer. An experimental example using a point-focusing transducer with nominal frequency of around50MHz is conducted with250μm stainless steel plate. The measurement results validate the proposed method. The results demonstrate that the thickness, density and sound velocity can be measured with a percentage biases less than5%and the sound attenuation is close to true value.
     In chapter five, an ultrasonic technique for simultaneous determination of the complete set of acoustical and geometrical properties of thin layer using two incident angles is presented.The theoretical model of the two-dimensional spectrum of the thin layer is calculated as a function of six parameters:thickness, density, longitudinal and transverse velocities and attenuation, using the reformulation of Thomson-Haskell method.Then, The experimental spectrum can be measured by V(z,t) technique with acoustic microscopy. The full set of the properties can be derived inversely with minimization of the difference between the calculated and experimentally measured reflection spectrum of the thin layer at two angles:one at normal incidence and the other at oblique incidence. By introducing a two-step inversion algorithm, the searching process in six-dimensional space is transformed to two searching processes in three-dimensional space. The sensitivity of the two-dimensional spectrum to individual properties and its stability against experimental noise are studied. Meanwhile, an experimental example is performed with250μm stainless steel plate. The measured errors are less than4%, validating the proposed method.
     In chapter six, the research results and the innovative points of this dissertation were summarized, and the future research works are also forecast.
引文
[1]戴达煌,刘敏,余志明,王翔.薄膜与涂层:现代表面技术[M].长沙:中南大学出版,2008
    [2]陈学定,韩文政,表面涂层技术[M].1994,北京:机械工业出版社
    [3]曹学强,热障涂层材料[M].2007,北京:科学出版社
    [4]Peters M., Leyens C., Schulz U. EB-PVD Thermal barrier coating for aero engines and gas turbines[J], Advanced Engineering Materials [J].2001,3(4):193-204
    [5]郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26
    [6]Seraffon M., SimmsNJ., Nicholls J.R. Performance of thermal barrier coatings in industrial gas turbine conditions [J]. Materialat High Temperatures,2011,28(4):309-314
    [7]Shin I.H., Koo J.M.,Seok C.S. Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test [J]. Surface& Coatings technology,2011,205(2): 157-160
    [8]陈文戚等.金属表面涂层技术及应用[M].1996,北京:人民交通出版社
    [9]胡传忻.隐身涂层技术[M].2004,北京:化学工业出版社
    [10]李金桂.现代表面工程技术的新进展[J].航空工程与维修,1998(188):13-15
    [11]Cao M., Qin R., Qiu C. Matching design and mismatching analysis towards radar absorbing coating based on conducting plate [J]. Materials & Design,2003,24(5):391-396
    [12]宋贵宏,杜昊,贺春林.硬质与超硬涂层:结构、性能、制备与表征[M].2007,北京:化学工业出版社
    [13]陈明,孙方宏,马玉平.金刚石涂层工具制备及其应用[M].2010,北京:科学出版社
    [14]胡鹏飞,张华.刀具硬质涂层的发展现状及展望[J].工具技术,2009,43(11):29-33
    [15]李凌,蒋百灵,白力静.CrAlTiN镀层在精密铣刀上的应用研究[J].材料保护,2007,40(1):56-59
    [16]KhannaA.S., KumariS., KanungoS.,etal. Hard coatings based on thermal spray and laser cladding [J]. International Journal of Refractory Metals and Hard Materials,2009, 27(2):485-491
    [17]王树群,黄新章.高Ni-Cr合金涂层防护锅炉受热面高温腐蚀的性能研究[J].沈阳工程学 院学报(自然科学版),4(1):23-27
    [18]刘培生.钴基合金铝化物涂层的高温氧化行为[M].2008,北京:冶金工业出版社
    [19]Huang J., Zhang P., Wu H. Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer [J]. Journal of Wuhan University of Technology-Materials Science Edition,2012, 27(1):33-37
    [20]邓世均.高性能陶瓷涂层[M].2004,北京:化学工业出版社
    [21]王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷,1998,34(5):26-30
    [22]Sehwarz S., Rottmair C., Hirmke J., etal. CVD-diamond single-crystal growth.Journal of Crystal Growth [J].2004,271(3-4):425-434
    [23]Johnson, J.R. Primary cause of coating failure [J]. Materials Performance,1999,38(6):48-49
    [24]Stoltenboff T. An analysis of the cold spray process and its coatings [J]. Journal of thermal spray technology,2002,11(4)
    [25]杜新明.秦岭发电厂近10年锅炉四管爆漏情况分析及对策[J].西北电力技术,1997(5):49-53
    [26]徐滨士,李长久,刘世参等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,7:3-9
    [27]Perry A.J. Scratch Adhesion Testing:A Critique, Surface Engineering [J].1986,2:183-185
    [28]Marshall D.B., Evans A.G. Measurement of Adherence of Residually Stressed Thin Films by Indentation [J]. Journal of Applied Physics,1984,56(10):2632-2639
    [29]Vossen J.L. Measurements of Film-Substrate Bond Strength by Laser Spallation [J]. ASTM STP,1978,640:122-133
    [30]杨克己,基于神经网络的检测声学信号处理理论与实践[D],浙江大学博士论文,1997
    [31]Lemons R.A., Quate C.F.Acoustic microscope-scanning version [J]. Applied Physics Letters, 1974,24(2):163-165
    [32]Quate C.F., Atalar A., Wickramasinghe H.K. Acoustic microscope with mechanical scanning-a review [J]. Proc. IEEE,1979,67(8):1092-1113
    [33]Chang J.C., Yun Y.H., Choi C., etal.Failure analysis of gas turbine buckets [J]. Engineering Failure Analysis,2003,10(5):559-567
    [34]Yuan H., Chen J. Computation analysis of thin coating layer failure using a cohesive model and gradientplasticity [J]. Engineering Fracture Mechanics,2003,70(14):1929-1942
    [35]段忠清,张宝霞,王泽华.等离子喷涂NICrAI涂层性能与厚度关系研究[J].热加工工艺, 2009,38(8):104-109
    [36]Wang Z, Kulkarni A., Deshpande S., etal. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings [J]. Acta Materialia,2003,51 (18):5319-5334
    [37]Parthasarathi S., Aesoph M.D., Sampath K., Tittmann, B.R. Thermal Wave Imaging and Ultrasonic Characterization of Defects in Plasma Sprayed Coatings [J]. Journal of Materials and Manufacturing Processes,1995,10(5):1077-1086
    [38]Marinetti S.,Robba D., Cernuschi F., etal. Thermographic inspection of TBC coated gas turbine blades:Discrimination between coating over-thicknesses and adhesion defects [J]. Infrared physics&Technology,2007,49(3):281-285
    [39]Piotrkowski R., Gallego A., Ruzzante J. E., Garcia-Hernandez M. T.Adherence of Nitride Coatings Analyzed by Acoustic Emission Signals Comingfrom Scratch Tests [J].The Journal Of Nondestructive Ultrasonics,2002
    [40]Fregonese M., Jaubert L., Cetre Y. Contribution of Acoustic Emission technique for Monitoring Damage of Rubber Coating on Metallic Surfaces Comparison with Electrochemical Measurements [J]. Progress in Organic Coatings,2007,59(3):239-243
    [41]Berndt C. C. Failure Processes within Ceramic Coating at High Temperatures [J]. Journal of Materials Science,1983,24:3511-3520
    [42]Shankar N. R., Berndt C. C., Herman H., Rangaswamy S. Acoustic Emission from Thermally Cycled Plasma-Sprayed Oxides [J]. American Ceramic Society Bulletin,1983, 62(5):614-619
    [43]Steffens H. D., Crostack H. A.Methods Based on Ultrasound and Optics for the Non-Destructive Inspection of Thermally Sprayed Coating [J]. Thin Solid Films,1981, 83:325-342
    [44]张喜成,孙斐.Hg-Ⅰ型涂层厚度监测系统的监测仪设计[J].南京理工大学学报:自然科学版,1994,6:76-80
    [45]Lee C, Danon Y., Mulligan C. Characterization of Niobium, Tantalum and Chromium Sputtered Coatings on Steel Using Eddy Currents [J]. Surface & Coatings Technology,2005, 200:2547-2556
    [46]Obeid S., Tranjan M., Dogaru T. Eddy Current Testing for Detecting Small Defects in Thin Films [J]. Review of Progress in Quantitative Nondestructive Evaluation,2007,25,340-345, 2007
    [47]Mi B., Zhao G., Bayles R. Nondestructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method [M]. Department of Energy's (DOE) Information Bridge: DOE Scientific and Technical Information
    [48]任家富,庹先国,林娟.在线工业镀层及涂层厚度分析仪[J].中国测试技术,2007,33(3):10-12
    [49]张家骏.超声检测技术的某些新进展[J].无损检测,1993,15(11)
    [50]陈积懋.新材料超声检测[J].无损检测,1994,16(4)
    [51]Almond,D.P., Cox R.L., Moghisi M., Reiter H. Acoustic Properties of Plasma Sprayed Coatings and Their Applications to Nondestructive Evaluation [J]. Thin Solid Films,1981, 83:311-324
    [52]Cox R.L, Almond D.P., Reiter H. Ultrasonic Studies of Plasma Sprayed Coatings [J]. Proceedings of the 9th International Thermal Spraying Conference,1980,133-137
    [53]Steffens H.D., Crostack H.A. Methods Based on Ultrasound and Optics for the Non-Destructive Inspection of Thermally Sprayed Coating [J]. Thin Solid Films,1981, 83:325-342
    [54]Namba Y., Nakazato H., Honma K. An Ultrasonic Method to Study the Adhesion of Thermally Sprayed Coatings [J]. Proceedings of International Thermal Spray Conference and Exposition,1992,241-245
    [55]Francke W. de Gee A.W.J.A Nondestructive Method for the Measurement of the Adhesive Bond Strength of Thermally Sprayed Non-Fused Coatings [J]. Proceedings of the International Conference on Advances in Surface Coating Technology,1978,99-109
    [56]Chatelier J., Ramahefasolo D. Method for Measuring Adherence of a Coating on a Substrate, United Stated Patent 20020162395,2002
    [57]Chatelier J. Method for Measuring Adhesion of a Coating to a Substrate, United Stated Patent 6948370,2005
    [58]Rose J. L., Dale J., Ngoc T.D. Ultrasonic Oblique Incidence Experiments for Interface Weakness, British Journal of NDT [J].1990,32 (9):449-452
    [59]Coste J. F., Lakestani F. Description of a Method for the Measurement of the Rayleigh Wave Velocity:Application to the Thickness Measurement of Metallic Coatings [J]. IEEE Ultrasonics Symposium,1994,1233-1236
    [60]Xu P.C., Lindenschmidt K.E., Meguid S.A. A New High Frequency Analysis of Coatings Using Leaky Lamb Waves [J]. Journal of Acoustic Society of America,1993, 94(5):2954-2962
    [61]Xu P.C., Stranart J.C.E., Meguid S.A. Nondestructive Testing of Coatings Using Ultrasonic Leaky Rayleigh Waves [J], Thermal Spray Industrial Applications,1994,765-769
    [62]Wang Z., Jen C.K. Cheeke J.D.N. Material Characterization Using Leaky Lamb-Waves [J]. IEEE Ultrasonics Symposium,1994,1233-1236
    [63]Lee Y.C., Cheng S.W. Measuring Lamb Wave Dispersion Curves of a Bi-Layered Plate and Its Application on Material Characterization of Coating [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48 (3):830-837
    [64]Abate A., Knight B., Hussain M. A., Frankel, J.Coating-Bond Evaluation Using Dispersion Curves and Laser-Ultrasonics [J]. IEEE Ultrasonics Symposium,2000,721-724
    [65]Tam A.C. Pulsed-laser generation of ultrashort acoustic pulses:Application for thin-film ultrasonic measurements [J]. Applied Physics Letters,1984,45(5):510-512.
    [66]Kushibiki J., Maehara H., Chubachi N. Measurements of acoustic properties for thin films [J]. Journal of Applied physics,1982,53(8):5509-5513.
    [67]Thomsen C, Maris H.J., Tauc, J. Picosecond Acoustics as a Nondestructive Tool for the Characterization of Very Thin Films [J]. Thin Solid Films,1987,154:217-223
    [68]Devos A., Cote R. A Different Way of Performing Picosecond Ultrasound Ultrasonic Measurements in Thin Transparent Films Based on Laser-Wavelength Effects [J]. Applied Physics Letters,2005,86:211903
    [69]Grahn H. T., Maris H. M., Tauc J. Picosecond Ultrasonics [J]. IEEE Journal of Quantum Electronics,1989,25(12):2562-2569
    [70]Gamier V., Comeloup G.Determining the evolution of the elasticity modulus by surface waves according to the depth in anitrided layer [J]. Ultrasonics,1996,34(2-5):401-404
    [71]Sehneider D.,Tueker M.D. Non-destructive charaeterization and evaluation of thin films by laser-induced ultrasonie surfaee waves [J]. Thin Solid Films,1996,290-291:305-311
    [72]Zhang F.F., Krishnaswamy S., Fei D.,etal. Ultrasonic charaeterization of mechanieal properties ofCr-and w-doped diamond-like carbon hard coatings [J].Thin Solid Films,2006, 503(1-2):250-258
    [73]Gupta V., Yuan J. Measurement of Interface Strength by the Modified Laser Spallation Technique.1. Experiment and Simulation of the Spallation Process [J]. Journal of Applied Physics,1993,74(4):2388-2396
    [74]Gupta V., Yuan J. Measurement of Interface Strength by the Modified Laser Spallation Technique.2. Applications to Metal/Ceramic Interfaces [J]. Journal of Applied Physics,1993, 74(4):2397-2404
    [75]Chang F.H., Flynn P.L., Gordon D.E., Bell J.R. Principles and application of ultrasonic spectroscopy in NDE of adhesive bonds [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1976, SU-23,334-338
    [76]Meyer P.A., Rose J.L. Ultrasonic attenuation effects associated with the physical modeling of adhesive bonds [J]. Journal of Applied Physics,1976,48:3705-3712
    [77]Guyott C.C.H., Cawley P. The ultrasonic vibration characteristics of adhesive joints [J]. Journal of Acoustic Society of America,1988,83:632-640
    [78]Kinra V.K., Zhu C. Ultrasonic nondestructive evaluation of thin (sub-wavelength) coating [J]. Journal of Acoustic Society of America,1993,93:2454-2466
    [79]Kinra V.K., Iyer V.R. Ultrasonic measurement of the thickness, phases velocity, density or attenuation of a thin viscoelastic film. Part I:the forward problem [J]. Ultrasonics,1995, 33:95-109
    [80]Kinra V.K., Iyer V.R. Ultrasonic measurement of the thickness, phases velocity, density or attenuation of a thin viscoelastic film. Part II:the inverse problem [J]. Ultrasonics,1995, 33:111-122
    [81]Lavrentyev A.I., Rokhlin S.I. Determination of elastic moduli, density, attenuation and thickness of a layer using ultrasonic spectroscopy at two angles [J]. Journal of Acoustic Society of America,1997,102:3467-3477
    [82]张锐,万明习,陈晓等.超薄弹性层超声反射纵波频域定征方法[J].仪器仪表学报,2001,22(4):376-379
    [83]王杨,毛捷,李明轩等.固体板背覆薄层特性的低频超声反演方法研究[J].声学学报,2009,34(1):11-19
    [84]钱明,万明习.应用恢复函数的超薄层弹性材料低频超声定征方法[J].1999,24(1):71-80
    [85]Yao G.J., Zhang H.R., Wang K.X. A calculation approach for acoustic impedance and time-of-flight of an embedded elastic thin layer by ultrasound [J]. Journal of Physics D: Applied Physics,2006,39:4643-4649
    [86]Lemons R.A., Quate C.F. Acoustic microscopy, in Physical Acoustics, Mason,W.P. and Thurston, R.N., Eds., Academic Press, London,1979,1-92
    [87]Briggs A. Acoustic Microscopy [M]. Clarendon Press, Oxford,1992
    [88]Briggs A. Advances in Acoustic Microscopy [M]. Plenum Press, New York,1995
    [89]Briggs A. and Arnold, W. Advances in Acoustic Microscopy [M]. Plenum Press, New York, 1996
    [90]Gilmore R.S. Industrial ultrasonic imaging/microscopy [J]. In Physical Acoustics, Thurston, R.N., Pierce, A.D., and Papadakis, E., Eds., Academic Press, New York,1999,275-346
    [91]Zinin P.V. Quantitative acoustic microscopy of solids, in Handbook of Elastic Properties of Solids, Liquids, and Gases. Volume I:Dynamic Methods for Measuring the Elastic Properties of Solids, Levy, M., Bass, H., Stern, R., and Keppens, V., Eds., Academic Press, New York,2001,187-226
    [92]Hadimioglu B., Quate C.F. Water acoustic microscopy at suboptical wavelength [J]. Applied Physics Letter,1983,43:1006-1007
    [93]Foster J.S., Rugar D. High resolution acoustic microscopy in superfluid helium [J]. Applied Physics Letters,1983,42:869-871
    [94]Muha M.S., Moulthrop A.A., Kozlowski G.C., Hadimioglu B. Acoustic Microscopy at 15.3 GhzPressurized Superfluid Helium [J]. Applied Physics Letter,1990,56:1019-1021
    [95]Davids D.A., We P.Y., Chizhik D. Restricted aperture acoustic microscope lens for Rayleigh wave imaging [J]. Applied Physics Letter,1989,54(17):1639-1641
    [96]Miyasaka, C, Tittmann, B.R., and Ohno, M. Practical shear wave lens design forimproved resolution with acoustic microscope [J].1999, Res. Nondestructive Evaluation,11,97-116
    [97]Weglein R.D., Wilson R.G. Characteristic material signatures by acoustic microscopy [J]. Electronics Letter,1978,14(12):352-354
    [98]Weglein R.D. A model for predicting acoustic material signature [J]. Applied Physics Letters, 1979,34(3):179-181
    [99]Weglein, R.D. Acoustic microscopy applied to SAW dispersion and film thickness measurement [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1980, SU-27(2):82-96
    [100]Bertoni, H.L., Tamir T. Unified theory of Rayleigh-angle phenomena for beams at liquid-solid interfaces [J]. Journal of Applied Physics,1973,2:157-172
    [101]Parmon W., Bertoni H.L. Ray interpretation of the material signature in the acoustic microscope [J]. Electronics Letter,1979,15(12):684-686
    [102]Bertoni, H.L. Ray-optical evaluation of V (z) in the reflection acoustic microscope [J], IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1984, SU-31(1):105-116
    [103]Kushibiki J., Maehara H., Chubachi N. Measurements of acoustic properties for thin films, Journal of Applied physics,1982,53(8):5509-5513
    [104]Kushibiki I., Ohkubo A., Chubachi N. Theoretical study for V (z) curves obtained by acoustic microscope with line-focus beam [J]. Electronics Letter,1982,18:663-665
    [105]Kushibiki J., Chubachi N. Material characterization by linefocus-beam acoustic microscope [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1985, SU-32(2):189-212
    [106]Kundu T. Inversion of Acoustic Material Signature of Layered Solids [J]. Journal of Acoustic Society of America,91(2),591-600,1992
    [107]Kundu, T.A complete acoustic microscopic analysis of multilayered specimens [J]. Journal of Applied Mechanics,1992,59,54-60
    [108]Lee Y.C., Kim J.O., and Achenbach, J.D. Acoustic Microscopy Measurement ofElastic Constants and Mass Density [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1995,42(2):253-264
    [109]Lee Y.C., Achenbach, J.D., Nystrom M.J., Gilbert S.R., Block B.A. and Wessels B.W. Line-focus Acoustic Microscopy Measurement of Nb2O5/MgO and BaTiO3/LaAlO3 thin-film/substrate configurations [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1995,42(3):376-380,1995
    [110]Bray R.C., Quate C.F., Calhoun J., Koch R. Film Adhesion Studies with the Acoustic Microscope [J]. Thin Solid Films,1980,74:295-392
    [111]Addsion R.C., Somekh K., Rowe J.M., Briggs G.A.D. Characterization of Thin-Film Adhesion with the Scanning Acoustic Microscope [J]. Proceedings of the International Symposium on Pattern Recognition and Acoustical Imaging,1987,768:275-284
    [112]Addison R.C., Marshall D.B. Correlation of Thin-Film Bond Compliance and Bond Fracture Resistance [J]. Review of Progress in Quantitative Nondestructive Evaluation,1998, 7B:1185-1194
    [113]Mal A.K., Weglein A.K. Characterization of Film Adhesion by Acoustic Microscopy [J]. Review of Progress in Quantitative Nondestructive Evaluation,1989,7B:903-910
    [114]Weglein R.D., Mal A.K.A Study of Layer Adhesion by Acoustic Microscopy [J]. IEEE Ultrasonic Symposium,1987,823-827
    [115]Parthasarathi, S., Tittmann, B.R., and Ianno, R J. Quantitative acoustic microscopyfor characterization of the interface strength of diamond-like carbon thin films [J]. Thin Solid Films,1997,300,42-50
    [116]Guo, Z., Achenbach, J.D., Madan, A., Martin, K., and Graham, M.E. Modeling and acoustic microscopy measurements for evaluation of the adhesion between a film and a substrate [J]. Thin Solid Films,2001,394,188-200
    [117]Atalar A.An angular-spectrum approach to contrast in reflection acoustic microscopy [J]. Journal of Applied Physics,1978,49(11):5130-5139
    [118]Atalar A.A physical model for acoustic signatures [J]. Journal of Applied Physics,1979, 50(12):8237-8239.
    [119]Atalar A.A backscattering formula for acoustic transducers [J]. Journal of Applied Physics, 1980,51:3093-3098
    [120]Liang K.K., Kino G.S., Khuri-Yakub B.T. Material characterization by the inversion of V (z) [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1985, SU-32(2):213-234
    [121]Liang, K.K., Kino, G.S., and Khuri-Yakub, B.T. Material characterization by the inversion of V(z) [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1985b, 32,213-224
    [122]Xu W.J. Ourak M., Angular measurement of acoustic reflection coefficient for substrate materials and layered structures by V(z) technique [J]. NDT&E Int.1997,30:75-83
    [123]Duquesne, J.Y. Inversion of complex V(Z) at high-frequencies for acoustic microscopy [J]. Review of Scientific instrument,1996,67,2656-2657
    [124]Daft C.M.W., Briggs G.A.D. Wideband acoustic microscopy of tissue [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1989,36,258-263
    [125]Christopher M.W., Daft M.W., Briggs G.A.D. Wideband Acoustic Microscopy of Tissue [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1989, 36(2):258-263
    [126]Daft M.W., Briggs G.A.D., O'Brien W.D. Frequency Dependence of Tissue Attenuation Measured by Acoustic Microscopy [J]. Journal of Acoustic Society of America,1989, 85(5):2194-2201
    [127]Matikas T.E. Quantitative Short-pulse Acoustic Microscopy and Application to Materials Characterization [J]. Microscopy and Microanalysis,2000,6:59-67
    [128]Hanel V. Measurement of sound velocity and thickness of thin samples by time-resolved acoustic microscopy [J]. Journal of Applied Physics,1997,84(2):668-770
    [129]Li W., Achenbach J.D. V(z) measurement of multiple leaky-wave velocities for elastic constant determination[J]. Journal of Acoustic Society of America,1996,100(3):1529-1537
    [130]Li W., Achenbach J.D. Determination of elastic constants by time-resolved line-focus acoustic microscopy [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1997,44(3):681-687
    [131]Wang L.G. Determination of elastic constants of composites by time-resolved acoustic microscopy [J].Ultrasonics,1999,37(4):283-289
    [132]Thomson W.T. Transmission of elastic waves through a stratifiedsolid media [J]. Journal of Applied Physics,1950,21:89-93
    [133]Haskell N.A. The dispersion of surface waves on multilayered media [J]. Bulltein of Seismology Society of America,1953,43:17-34
    [134]Pestel E., Leckie F.A. Matrix Methods in Elasto-Mechanics [M]. McGraw-Hill, New York, 1963
    [135]Buchen P.W., Ben-Hador R. Free mode surface-wave computations [J]. Geophysical Journal International,1996,124:869-887
    [136]Schwab F.A., Knopoff L. Surface wave dispersion computations [J]. Bulltein of Seismology Society of America,1970,60:321-344
    [137]Abo-Zena A.M. Dispersion function computations for unlimited frequency values [J]. Geophysical Journal Royal Astronomical Society,1979,58:91-105
    [138]Kennett B.L.N. Reflection, rays and reverberations [J]. Geophysical Journal Royal Astronomical Society,1974,64:1685-1696
    [139]Knopoff L. A matrix method for elastic wave problems [J]. Bulltein of Seismology Society of America,1964,45:431-438
    [140]Kausel E., Roesset J.M. Stiffness matrices for layered solids [J]. Bulltein of Seismology Society of America,1981,71:1743-1761
    [141]Wang Y., Rajapakse P.K.N.D.An exact stiffness method for elastodynamics of a layered orthotropic half-space [J]. Jorrnal of Applied Mechanics,1994,61:339-347
    [142]Wang L., Rokhlin S.I. Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media [J]. Ultrasonics,2001,39:413-424
    [143]Pei D.H., Louie J.N., Pullammanappallil S.K. Improvements on computation of phase velocities of Rayleigh waves based on the generalized R/T coefficient method [J]. Bulltein of Seismology Society of America,2008,98:280-287
    [144]Kim K.Y., Zou W., Holland S., Sachse W. Measurements of the longitudinal wave speed in thin materials using a wideband PVDF transducer [J]. Journal of Acoustic Society of America,2003,114(3):1450-1453
    [145]Kannajosyula S.P., Chillara V.K., Balasubramaniam K., Krishnamurthy C.V. Simultaneous measurement of ultrasonic longitudinal wave velocities and thicknesses of a two layered media in the absence of an interface echo [J]. Reviewer of Scientific Instrument,2010, 81:105101
    [146]Tohmyoh H., Imaizumi T., Saka M. Acoustic resonant spectroscopy for characterization of thin polymer films [J]. Reviewer of Scientific Instrument,2006,77:104901
    [147]Raum K., Brandt J. Simultaneous determination of acoustic impedance, longitudinal and lateral wave velocities for the characterization of the elastic microstructure of cortical bone [J]. Proc. World Congress Ultrasound (Paris),2003,321-324
    [148]Zinin P., Lefeuvre O., Briggs A., Zeller B.D., Cawley P., Kinloch A., Zhou X., Thompson G. Determination of density and elastic constants of a thin phosphoric acid-anodized oxide film by acoustic microscopy [J]. Journal of Acoustic Society of America,1999,106(5): 2560-2567
    [149]Titov S.A., Maev R.G., Bogachenkov A.N. Measurement of the velocity and attenuation of leaky surface acoustic waves by an ultrasonic microscope with two focusing transducers [J]. Russ. Ultrason.2000,30(6):269-274
    [150]Titov S.A., Maev R.G., Bogachenkov A.N. Wide-aperture line-focused ultrasonic material characterization system based on lateral scanning [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50:1046-1056

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700