用户名: 密码: 验证码:
高性能铁基粉末冶金烧结材料制备、性能及超声疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基粉末冶金材料和零件是粉末冶金工业的主导产品,发展高性能低成本铁基粉末冶金材料是粉末冶金的研究重点之一。针对铁基烧结材料低合金化和低成本化的发展趋势,本文采用低成本的锰合金元素替代贵重的Ni、Mo等元素,优化制备出高性能Fe-2Cu-0.5Mn-0.9C烧结材料。研究了材料的力学性能、压制和烧结行为,探讨了锰对材料制备、性能及烧结过程的影响,研究了材料的超高周超声疲劳行为,为含锰铁基烧结材料的应用提供了技术指导,具有重要的学术意义和实用价值。本文的主要研究结果如下:
     锰含量影响Fe-Cu-Mn-C系列材料的性能和烧结行为。采用部分预合金法加入铁锰合金并采用模壁润滑温压,制备得到的Fe-2Cu-0.5Mn-0.9C材料性能较佳。其烧结组织均匀,烧结密度可达到7.3g/cm3以上,抗拉强度达到715MPa,硬度达到97HRB,冲击功达到23J,拉伸断裂类型为韧-脆混合断裂。在冷压和温压压制下,压力增大可提高Fe-2Cu-0.5Mn-0.9C压坯密度。其中,700MPa下进行模壁润滑120℃温压,相对密度达94.9%。高速压制压坯的相对密度达到96.0%。过量的锰在烧结时会造成材料内部氧化,降低材料强度。适量加入锰有良好的合金化效果。烧结中锰在材料中发生转移,主要路径为烧结初期材料中连通的孔隙网络通道。蒸发凝聚是锰的烧结机制,锰蒸汽使材料发生膨胀,造成了烧结密度的轻微下降。烧结时间延长,材料内部的孔隙发生闭合,烧结密度逐渐升高。另外,烧结温度提高时,材料发生轻微的烧结收缩现象,部分抵消由于锰的作用而导致的材料膨胀。
     喷丸对温压Fe-2Cu-0.5Mn-0.9C材料有良好的强化效果,能够提升的材料表面致密度、显微硬度和残余应力,但对抗拉强度和断裂特征影响不大。材料与GCr15滚珠轴承钢的微动磨损试验表明,在油脂润滑下,摩擦表面主要的磨损机制在低载荷时为疲劳剥落,高载荷时为磨粒磨损。干摩擦下表现出多种磨损机制共存,包括磨粒磨损、粘着磨损和氧化磨损,并伴随塑性流动现象。喷丸强化能够降低表面磨损面积,加载载荷较低时,喷丸能够提升材料的微动磨损性能,加载载荷高时,可提升磨损初期的微动磨损性能。喷丸强化前后材料摩擦表面的磨损机制相似,但低载荷下的喷丸材料磨损表面粘着磨损程度要小于未经喷丸材料。
     铁基烧结材料中运用超声疲劳测试技术可以大幅提高疲劳测试效率。材料超声疲劳S-N曲线为连续下降,存在条件疲劳极限。在106,107和108周次下,温压Fe-2Cu-0.5Mn-0.9C材料相应的拉压超声疲劳强度为393MPa,289MPa和213MPa。孔隙或夹杂物为超声疲劳裂纹源,瞬断区特征与材料拉伸断口相似,超高周疲劳断口中出现不规则分布的疲劳辉纹。建立的疲劳断裂模型表明,超声疲劳测试中,疲劳裂纹扩展阶段的振动周次与疲劳载荷的平方成反比,裂纹扩展寿命只占整个超声疲劳断裂中很小一段寿命,而疲劳裂纹形成寿命占了大部分的疲劳寿命。Fe-2Cu-0.5Mn-0.9C的超声疲劳性能略高于Fe-2Cu-2Ni-1Mo-1C烧结材料。在106,107和108周次下,Fe-2Cu-2Ni-1Mo-1C相应的拉压疲劳强度为312MPa,249MPa和199MPa。铁基烧结材料的超声疲劳断口特征相似。在高应力低疲劳循环周次时,疲劳裂纹源区位于靠近试样表面的缺陷处,在低应力和大于107周次的超高循环周次下,裂纹源区主要位于材料内部。疲劳断裂周次与裂纹源缺陷的尺寸大小并没有明显关系,缺陷处应力强度因子随着疲劳周次的提高而降低。在106,107和108周次下,Fe-2Cu-0.5Mn-0.9C材料相应的对称弯曲疲劳强度分别为402MPa,331MPa和273MPa。
Iron-based powder metallurgy sintered material and parts are widely used in powdermetallurgy industry. One of the research targets for powder metallurgy technique isdeveloping the iron-based sintered material with high performance and low cost. In order tocater the dominant trend of manufacturing low alloy, low cost iron-based sintered materials, inthis paper, iron-based powder metallurgy sintered material with high performance and lowcost was studied. The purpose of this study is to replace Ni, Mo and other expensive elementsby using low cost Mn element and then high density Fe-2Cu-0.5Mn-0.9C sintered materialwas optimized. The mechanical properties, densification mechanism,sintering behaviour andultrasonic fatigue behaviours of high density iron-based powder metallurgy materials werestudied, as well as the influence of Mn addition on the preparation, properties and sinteringprocess. Our research provides technical guidance for the application of Mn-containingiron-based sintered material and it has important academic significance and practical value.The main results show that:
     The mechanical properties and sintering behaviour of Fe-Cu-Mn-C series materials areaffected by different manganese content. Partially pre-alloyed Fe-2Cu-0.5Mn-0.9C sinteredmaterial was fabricated by die-wall lubricated warm compaction with good mechanicalproperty and uniformly distributed microstructure. The sintered material has a density ofhigher than7.3g/cm3, tensile strength of715MPa, Rockwell hardness of97HRB and impactenergy of23J. The tensile fracture mode is tough-brittle mixed fracture. The green densityof material under cold, warm compaction increases with increasing pressure. The greenrelative density of Fe-2Cu-0.5Mn-0.9C is able to reach at94.9%and96.0%under warmcompaction (700MPa,120℃) and high velocity compaction respectively. The content ofmanganese also influences the sintering process. Excess of manganese within sinteredmaterial will probably lead to internal oxidation and material strength reduction. But it hasgood strengthening effects if adding appropriate amount of manganese. During initialsintering period of Fe-Cu-Mn-C series materials, manganese alloying elements transfers intoiron matrix through the connecting pore-networks. Additionally, evaporation condensation ofMn is the diffusion mechanism during sintering process. The manganese vapor causesmaterial expansion and lowers sintered density slightly during the pre-sintering and initialsintering period, while density increases due to pores closing and porosity networksdisappearing gradually as sintering time extended. What is more, elevated sintering temperature contributes to slight sintering shrinkage of the material, which partially offsetmaterial expansion.
     Surface properties of warm compacted Fe-2Cu-0.5Mn-0.9C material such as the surfacedensity, micro hardness and residual stress are improved by shot peening. However, thetensile strength and fracture characteristics are not changed after shot peening. Fretting weartests between sintered materials and GCr15steel show that the main wear and frictionmechanism is fatigue spalling (at low load) and abrasive wear (at high load) under oillubrication. However, observation of dry friction surfaces indicates that mixed wearmechanism, including abrasive wear, adhesive wear, oxidation wear and plastic transfer. Thesurface wear area of specimen can be reduced by shot peening. The fretting wear property ofshot peen can be improved under lower loading, while only early stage friction of which canbe elevated under higher loading. The wear mechanism of shot peened material is similar withsintered material, but adhesive wear degree of shot peened material is significantly less thansintered material.
     Ultrasonic fatigue testing method is a high efficiency technology, which can be successfullyapplied in very high cycles fatigue testing of iron-based powder metallurgy sintered materials.The ultrasonic fatigue S-N curve decreases continuously. The ultrasonic fatigue limit existsand the axial fatigue strength of Fe-2Cu-0.5Mn-0.9C are393,289and213MPa for thecorresponding conditions of106,107and108cycles, respectively. The ultrasonic fatigue cracksources of fracture are located at voids or inclusions. Dimples and cleavage planes areobserved in the fatigue fracture, which is similar with that of tensile fracture. Some ultrasonicfatigue striations are distributed in fracture under ultra-high cycle. Fatigue fracture modelshows that the number of fatigue cycles of crack growth stage is inversely proportional to thesquare of fatigue stress in high-cycle fatigue ultrasonic test. The crack growth stage is only asmall part of the whole ultrasonic fatigue life. Crack initiation stage accounts for the most ofthe fatigue life. The axial ultrasonic fatigue strengths of Fe-2Cu-2Ni-1Mo-1C are312,249and199MPa for the corresponding conditions of106,107and108cycles, respectively. Thefatigue strength is less than that of Fe-2Cu-0.5Mn-0.9C sintered material. There is no obviousrelationship between the defect size and the fatigue cycles. In addition, the stress intensityrange factor of defects reduces with the gradual increase of the number of fatigue cycles. Thefatigue fracture characteristics of iron-based sintered material are similar with each other.Crack sources of fracture are located at voids or inclusions near the surface under high cyclebut it moves to the internal sites under ultra-high cycle. What is more, the symmetricalbending ultrasonic fatigue strengths of Fe-2Cu-0.5Mn-0.9C are402,331and273MPa for the corresponding conditions of106,107and108cycles, respectively.
引文
[1]韩凤麟.粉末冶金零件与汽车工业[J].新材料产业,2007,11:31-38.
    [2]孙世杰.近年铁基粉末冶金行业发展浅析[J].粉末冶金工业,2010,2:53-58.
    [3] G.B Jang, M.D Hur, S.S Kang. A study on the development of a substitution process bypowder metallurgy in automobile parts [J]. Journal of Materials Processing Technology,2000,100(1-3):110-115.
    [4] J. Beddoes, M.J Bibby. Powder metallurgy-Principles of metal manufacturing processes[M]. Burlington: Butterworth-Heinemann Ltd,1999:173-189.
    [5]黄培云.粉末冶金原理[M].北京:冶金工业出版社.2011:3-25,377-389.
    [6]曲选辉.新材料的发展趋势与粉末冶金技术的作用[J].粉末冶金材料科学与过程,1998,3(2):98-101.
    [7]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(一)[J].上海金属,2007,29(3):1-7.
    [8]倪冠曹.汽车用粉末冶金件对铁粉的需求[J].粉末冶金工业,2003,13(2):26-28.
    [9] H.G Rutz, F.G Hanejko. High density processing of high performance ferrous materials[J]. The International Journal of Powder Metallurgy,1995,31(1):9-17.
    [10]韩凤麟.模壁润滑与温压技术-高密度与高强度粉末冶金零件制造新工艺[J].新材料产业,2007,(1):59-61.
    [11]M. Campos, J.M Torralba. Surface assessment in low alloyed Cr–Mo sintered steels afterheat and thermochemical treatment [J]. Surface and Coatings Technology,2004,182(2-3):351-362.
    [12]F. Richard. HVC punches PM to new mass production limits [J]. Metal Powder Report,2002,57(9):26-30.
    [13]Anon. Warm compaction moves into production [J]. Metal Powder Report,1996,51(7/8):38-40.
    [14]J.Z Wang, X.H Qu, H.Q Yin. High velocity compaction of ferrous powder [J].PowderTechnology,2009,192(1):131-136.
    [15]B.A James. Die wall lubrication for powder compaction: a feasible solution [J]. PowderMetallurgy,1987,30:273-280.
    [16]A. Babakhani, A. Haerian. On the combined effect of lubrication and compactiontemperature on properties of iron-based P/M parts [J]. Materials Science and EngineeringA,2006,437(2):360-365.
    [17]W.G Ball, P.F Hibner, et al. A new die wall lubrication system [J]. Metal Powder Report,1997,52(7/8):38-41.
    [18]亓元钟.温压工艺[J].粉末冶金工业,1995,5(1):14-16.
    [19]Anonymous. Warm compaction move into production [J]. Metal Powder Report,1996,51(10):12-15.
    [20]周玲,温压Fe-2Cu-2Ni-1Mo-1C烧结材料的组织与疲劳性能研究[D].广州:华南理工大学硕士论文,2010.
    [21]果世驹,林涛.铁粉温压压坯的烧结行为[J].粉末冶金技术,1999,17(2):107-110.
    [22]J. Capus. Warm compacted turbine hub leads new PM thrust [J]. Metal Powder Report,1997,52(9):19-22.
    [23]李元元.金属粉末温压成形原理与技术[M].广州:华南理工大学出版社,2008:46-62.
    [24]C.N Degoix, A. Griffo. Effect of lubrication mode and compaction temperature on theproperties of Fe-Ni-Cu-Mo-C [J]. The International Journal of Powder Metallurgy,1998,34(2):29-33.
    [25]J. Capus, S. Pickering, A. Weaver. Hoeganaes offers higher density at lower cost [J].Metal Powder Report,1994,49(7/8):22-24.
    [26]S. St-Laurent. Warm pressing and die wall lubrication [A]. International Seminar onPowder Metallurgy [C]. Hangzhou, China,2002:16-20.
    [27]S. St-Laurent, F. Changnon.为温压工艺设计的混合粉末[J].粉末冶金技术,1998,16(1):40-51.
    [28]A. Babakhani, A. Haerian, M. Ghambari. On the combined effect of lubrication andcompaction temperature on properties of iron-based P/M parts [J]. Materials Science andEngineering A.2006,437(2):360-365.
    [29]N. Matsumoto, T. Miyake, M. Kondoh, et al. Development of high strength sintered steelby high pressure warm compaction using die wall lubrication [J]. Materials ScienceForum,2007,534-536:265-268.
    [30]T. L Ngai, W.P Chen, Z.Y Xiao, et al. Die wall lubricated warm compaction of iron-basedpowder metallurgy material [J]. The Chinese Journal of Nonferrous Metals,2002,12(6):1095-1098.
    [31]Y.Y Li, T.L Ngai, D.T Zhang, et al. Effect of die wall lubrication on warm compactionpowder metallurgy [J]. Journal of Materials Processing Technology,2002,129(1-3):354-358.
    [32]李元元,肖志瑜.温压技术的应用、发展及其在我国的工业化前景[J].粉末冶金技术,2002,20(6):360-364.
    [33]Z.Y Xiao, M.Y Ke. Die wall lubricated warm compacting and sintering behaviors ofpre-mixed Fe-Ni-Cu-Mo-C powders [J]. Journal of Materials Processing Technology,2009,209(3):4527-4530.
    [34]沈元勋,肖志瑜,方亮,等.部分扩散预合金温压铁-铜-镍-钼-碳材料的组织与性能[J].机械工程材料,2007,31(9):30-33.
    [35]林涛,果世驹,李明怡,等.温压过程致密化机制探讨[J].北京科技大学学报,2000,22(2):131-133.
    [36]沈元勋.温压铁基粉末冶金材料烧结硬化工艺的组织与性能研究[D].广州:华南理工大学硕士论文,2008.
    [37]J.Z Wang, X.H Qu, H.Q Yin. High velocity compaction of ferrous powder [J]. PowderTechnology,2009,192(1):131-136.
    [38]P. Skoglund. High density PM components by high velocity compaction [J]. PowderMetallurgy,2001,44(3):14-17.
    [39]B. Barendvanden, F. Christer, L. Tomas. Industrial implementation of high velocitycompaction for improved properties [J]. Powder Metallurgy,2006,49(2):107-109.
    [40]P. Skoglund, S. Dizdar, U. Engstrom. High density gears by new forming technology [J].Society of Automtive Engineers,2002,342(1):166-168.
    [41]D.F Khan, H.Q Yin. Improvement of a high velocity compaction technique for ironpowder [J]. Acta Metallurgica Sinica,2013,4:399-403.
    [42]J.Z Wang, X.H Qu, H.Q Yin, et al. High velocity compaction of ferrous powder [J].Powder Technology,2009,192(1):131-136.
    [43]Anon. Atlantic link lands hydropulsor in US on HVC sales drive [J]. Metal PowderReport,2004,59(1):20-21.
    [44]章林,周科朝.铁基烧结合金表面处理技术的研究进展[J].粉末冶金材料科学与工程,2006,11(1):1-6.
    [45]S. Rossi, L. Fedrizzi. Corrosion protection of P/M part s by hot dipping [J]. InternationalJournal of Powder Metallurgy,2002,38(3):61-69.
    [46]J. Thomas, J. Merster. Shot gun method can improve PM steel fatigue life [J]. MetalPowder Report,2004,59(8):48-52.
    [47]A. Molinari, E. Santuliana, I. Cristofolini, et al. Surface modifcations induced by shotpeening and their effect on the plane bending fatigue strength of a Cr-Mo steel producedby powder metallurgy[J]. Materials Science and Engineering A,2011,528(6):2904-2911.
    [48]S. Bengtsson, L. Forden.螺旋齿轮与正齿轮的表面致密化[J].粉末冶金技术,2009,27(1):67-73.
    [49]S.S Lorenz, R. Gunter. Selective surface densification for high performance PMcomponents [J]. Metal Powder Report,2007,62(11):22-26.
    [50]杨宗坡,宫声凯. MCM母合金对铁基材料性能的影响[J].粉末冶金技术,1983,1(4):1-5.
    [51]F.V Lenel.粉末冶金原理和应用[M].殷声,赖和怡译.北京:冶金工业出版社,1989:366-378.
    [52]韩凤麟.粉末冶金零件实用手册[M].北京:兵器工业出版社,1996:177-179.
    [53]韩凤麟.粉末冶金技术手册[M].北京:化学工业出版社,2009:129-157,350-360,440-448.
    [54]G. Zapf. Introduction of high oxygen affinity elements manganese, chromium andvanadium in the powder metallurgy of P/M parts [J]. Powder Metallurgy,1977,10:129-152.
    [55]H. Khorsand, S. Habibi. Fatigue of sintered steels (Fe-1.5Mo-3Mn-0.7C)[J]. Materialsand Structures,2004,6(37):335-341.
    [56]A. Klein, R. Oberacker. High strength Si-Mn-alloyed sintered steels (microstructure andproperties)[J]. Powder Metallurgy,1985,4(17):71-74.
    [57]R. Sandstrom, Z. Zhang. Fe-Mn-Si master alloy steel by powder metallurgy processing[J]. Journal of Alloys and Compounds,2004,363(1-2):194-202.
    [58]H. Sanderow, H. Rodrigues. High strength4100alloy P/M steels [J]. Metal PowderReport.1986,41(6):423-427.
    [59]B. Lindsley, B. James,亓家钟.粉末冶金锰钢研究新进展[J].粉末冶金技术,2012,30(1):63-69.
    [60]E. Hryha, E. Dudrova. The sintering behaviour of Fe-Mn-C powder system, correlationbetween thermodynamics and sintering process, manganese distribution andmicrostructure composition, effect of alloying mode [M]. Application ofThermodynamics to Biological and Materials Science, Rijeka, Croatia,2011:573-599.
    [61]M. Sulowski. Dilatometric investigation of Fe-Mn-Cr-Mo PM steels with different carbonconcentrations [J]. Powder Metallurgy Progress,2008,2(8):151-155.
    [62]M. Sulowski. Nitrogen as an alternative sintering atmosphere for sintering atmosphere forproduction of PM parts [J]. Archives of Metallurgy and Materials,2005,540(4):827-831.
    [63]A.Cias, M.Sulowski. Compaction of mechanical properties and microstructure ofCr-Mn-Mo steels based on astaloy CrL and astaloy CrM pre-alloyed powders [J].Archives of Metallurgy and Materials,2009,4(54):1093-1102.
    [64]A. Cias, S.C Mitchell, A. Watts, A.S Wronski. Microstructure and mechanical propertiesof sintered (2-4) Mn-(0.6-0.8) C steels [J]. Powder Metallurgy,1999,42(3):227-233.
    [65]E. Dudrova. Industrial processing, microstructures and mechanical properties ofFe-(2-4)Mn(-0.85Mo)-(0.3-0.7)C sintered steels [J]. Powder Metallurgy,1999,42(3):234-240.
    [66]A. Salak. Properties of induction-sintered Fe-Mn-C and Fe-Mn-Cu-C steel in the sinteredand forged states [J]. Powder Metallurgy International,1990,22(5):9-14.
    [67]L.E Larsson. Homogenization during liquid-solid alloying of a Fe-1Cu-1Mn-0.3Cpowder-forged steel. Materials Science and Engineering A,1975,19(2):231-240.
    [68]H.D’ Armas, L. Llanes, J. Penafiel, et al. Tempering effects on the tensile response andfatigue life behavior of a sinter-hardened steel [J]. Materials Science and Engineering A,2000,277(1-2):291-296.
    [69]N. Chawla, X. Deng. Microstructure and mechanical behavior of porous sintered steels[J]. Materials Science and Engineering A,2005,390(1-2):98-112.
    [70]S. Bengtsson. Influence of density and microstructure on fatigue properties of warmcompacted Fe-Cu-Ni-Mo steels [A]. Advances in Powder Metallurgy&ParticulateMaterials [C]. Princeton,2000:69-80.
    [71]J.J Williams, X. Deng, N. Chawla. Effect of residual surface stress on the fatiguebehavior of a low-alloy powder metallurgy steel [J]. International Journal of Fatigue,2007,29(9-11):1978-1984.
    [72]C. Verdu, S. Carabajar, G.Lormand, et al. Fatigue crack growth characterization andsimulation of a porous steel [J]. Materials Science and Engineering A,2001,319-321:544-549.
    [73]R. Gerosa, B. Rivolta, A. Tavasci, et al. Crack initiation and propagation in Chromiumpre-alloyed PM-steel under cyclic loading [J]. Engineering Fracture Mechanics,2008,75(3-4):750-759.
    [74]C.L Wang, P. Wang. Fatigue properties for sinter-hardened Fe-Ni-Mo-Cu materials [J].Materials Science Forum,2007,534-536:677-680.
    [75]刘新灵.疲劳断口定量分析[M].北京:国防工业出版社,2010:26-30.
    [76]程靳,赵树山.断裂力学[M].北京:科学出版社,2006:87-89.
    [77]郭瑞金, S. St-Laurent, F. Chagnon.烧结钼钢的动力学性能[J].粉末冶金技术,2003,21(6):238-246.
    [78]H. Abdoos, H. Khorsand, A.R Shahani. Fatigue behavior of diffusion bonded powdermetallurgy steel with heterogeneous microstructure [J]. Materials and Design,2009,30(4):1026-1031.
    [79]J. Yao, X.H Qu. Inclusion-controlled high cycle fatigue behavior of a high V alloyedpowder metallurgy cold-working tool steel [J].Materials Science and Engineering A,2011,528(12):4180-4186.
    [80]S. Carabajar, C. Verdu, A. Hamel. Fatigue behaviour of a nickel alloyed sintered steel[J].Materials Science and Engineering A,1998,257(2):225-234.
    [81]S.J Polasik, J.J Williams, N. Chawla. Fatigue crack initiation and propagation ofbinder-treated powder metallurgy steels [J]. Metallurgical and Materials Transactions A,2002,33(1):73-75.
    [82]B.A Gething, D.F Heaney, D.A Koss, T.J Mueller. The effect of nickel on the mechanicalbehavior of molybdenum P/M steels [J]. Materials Science and Engineering A,2005,390(1-2):19-26.
    [83]Y. Hong, Z.Q Lei, C.Q Sun, A.G Zhao. Propensities of crack interior initiation and earlygrowth for very-high-cycle fatigue of high strength steels [J]. International Journal ofFatigue,2014,(58):144-151.
    [84]P.C Paris. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering,1963,85(4):528-530.
    [85]X. Deng, G. Piotrowski, N. Chawla, K.S Narasimhan. Fatigue crack growth behavior ofhybrid and prealloyed sintered steels Part II.Fatigue behavior [J]. Materials Science andEngineering A,2008,491(1-2):19-38.
    [86]N. Chawla, T.F Murphy, K.S Narasimhan. Axial fatigue behavior of binder-treated versusdiffusion alloyed powder metallurgy steels [J]. Materials Science and Engineering A,2001,308(1-2):180-188.
    [87]T. Ramprabhu. Effect of copper addition on the fatigue life of low alloy C-Mo powdermetallurgy steel [J]. Metal Powder Report,2011,66(3):28-31,33-34.
    [88]Y. Wang. Four-point bending fatigue behaviour of an iron-based laser sintered material[J]. International Journal of Fatigue,2006,5:1706-1715.
    [89]N. Govindarajan. Rolling/sliding contact fatigue life prediction of sintered and hardenedsteels [J]. Wear,2007,262(1-2):70-77.
    [90]王弘,高庆.40Cr钢超高周疲劳性能及疲劳断口分析[J].中国铁道科学,2003,24(6):93-98.
    [91]Q.Y Wang, J.Y Berard. Gigacycle fatigue of ferrous alloys [J]. Fatigue&Fracture ofEngineering Materials&Structures,1999,22(8):667-672.
    [92]R. Ebara, Y. Yamada. Ultrasonic corrosion fatigue testing of13Cr stainless steel andTi-6Al-4V Alloys [M]. Ultrasonic Technology, Tokyo,1987:329-342.
    [93]H. R Mayer, S. E Stanzl-Tschegg, D. M Tan. FEM modeling of stress intensity factors forfatigue crack growth at ultrasonic frequencies [J]. Engineering Fracture Mechanics,1993,45(4):487-495.
    [94]H. Danninger, B. Weiss. Ultra high cycle fatigue properties of sintered steels [J]. PowderMetallurgy Progress,2001,1:1-19.
    [95]李元元,肖志瑜.粉末冶金高致密化成形技术的新进展[J].粉末冶金材料科学与工程,2005,(1):1-9.
    [96]肖志瑜,张菊红.烧结参数对温压Fe-2Ni-2Cu-1Mo-1C材料抗拉强度的影响[J].中国有色金属学报,2006,16(8):1326-1330.
    [97]肖志瑜,张菊红,模壁润滑温压Fe-2Ni-2Cu-1Mo-1C材料的烧结行为研究[J].粉末冶金技术,2007,25(1):27-31.
    [98]李祖德,赵慕岳,等.含锰高强度低合金烧结钢(Ⅰ)-成分系列[J].粉末冶金材料科学与工程,2008,13(4):63-69.
    [99]刘东华,钱晓泰.汽车铁基粉末冶金零件新进展[J].金属材料与冶金工程,2013,4:52-56.
    [100]韩凤麟.世界粉末冶金工业动向[J].粉末冶金技术,2001,19(4):225-232.
    [101] R.M German.粉末注射成形[M].曲选辉等译,长沙:中南大学出版社,2001:162-168.
    [102]李绍忠.粉末锻造汽车连杆在汽车发动机上的应用[J].粉末冶金工业,1998,8(6):36-39.
    [103] S.E Stanzl-Tschegg. Ultrasonic fatigue [A]. Fatigue, Proceeding of the SixthInternational Fatigue Congress [C], Berlin,1996:1887-1898.
    [104]王弘.40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[D].成都:西南交通大学博士论文,2004.
    [105]薛红前,陶华,王弘.超声振动载荷下LY12合金的超高周疲劳性能研究[J].西北工业大学学报,2004,22(1):108-111.
    [106]徐润泽.粉末冶金结构材料学[M].长沙:中南工业大学出版社,1998:102-109.
    [107]李祖德,赵慕岳,罗述东,易健宏.含锰高强度低合金烧结钢(Ⅱ)-锰的加入方式和烧结过程特征[J].粉末冶金材料科学与工程,2008,13(3):125-131.
    [108]罗述东,李祖德,赵慕岳,等.锰在粉末冶金材料中的应用[J].粉末冶金材料科学与工程,2007,12(6):321-329.
    [109] Y. Bonnor, J.B Vassongne, G. Raisson, et al. Sinter-forging of gas-atomized powdersprealloyed with Cr and Mn [J]. Industrial Heating,1981,48(12):19-21.
    [110] G.S Upadhyaya. Manganese in powder metallurgy alloys [M]. Great Britain: Page brosLtd.1986:80-87.
    [111]李元元,项品峰,徐铮,等.温压技术中的致密化机制[J].材料科学与工程,2001,19(1):39-42.
    [112]曹顺华,易健宏,曲选辉,等.温压技术的发展、特点及其技术问题分析[J].粉末冶金材料科学与工程,1998,3(3):201-205.
    [113]李明怡,果世驹,康志君,林涛.不同类型金属粉末的温压行为[J].粉末冶金技术,2000,18(4):261-264.
    [114] A. Salak, M. Selecka. Effect of manganese content and manganese carrier on propertiesof sintered and sinter hardened hybrid Fe-3Cr-0.5Mo-xMn-0.24C steel [J]. PowderMetallurgy,2008,51(4):327-339.
    [115] A. Salak. Manganese sublimation and carbon ferromanganese liquid phase formationduring sintering of premixed manganese steels [J]. The International Journal of PowderMetallurgy and Powder Technology,1980,16(4):369-397.
    [116]章林.高合金铁基烧结材料的致密化及组织性能的研究[D].长沙:中南大学硕士论文,2005.
    [117] H.E Exner, E. Arzt. Sintering processes, physical metallurgy (Fourth Edition)[M].Springer Netherlands,1996:2627-2662.
    [118]陈华.铁基烧结结构钢的成分设计及性能研究[D].吉林:吉林大学博士论文,2007.
    [119]刘世民,黄伯云,曾德麟,崔建民.合金化方法对铁基粉末材料性能的影响[J].粉末冶金工业,2002,12(06):26-29.
    [120] K. Narasimhan, J. Tengzelius. P/M low-alloy steel alloying methods and continuousimprovement [A]. Advances in Powder Metallurgy and Particulate Materials [C],Princeton, Metal Powder Industries Federation,1992:153-156.
    [121]汪明波.粉末压制成形的研究[D].吉林:吉林大学硕士论文,2007.
    [122] F. Chagnon, Y. Trudel. Effect of compaction temperature on sintered properties of highdensity PM materials [J]. Metal Powder Report.1995,50(12):54-57.
    [123]果世驹,林涛.温压压制压力强化因子及压制曲线的唯象分析[J].粉末冶金技术.1998,16(3):165-168.
    [124] Materials standards for PM structural parts [S]. MPIF35-2009(美国粉末冶金结构零件材料标准), USA: Metal Powder Industries Federation,2007.
    [125]果世驹.粉末烧结理论[M].北京:冶金工业出版社,2007:20-35.
    [126] M.F Ashby. A first report on sintering diagrams [J]. Acta Metallurgica,1974,22(3):275-289.
    [127] R. Oro, M. Campos, E. Hryha, et al. Surface phenomena during the early stages ofsintering in steels modified with Fe-Mn-Si-C master alloys [J]. MaterialsCharacterization,2013,86:80-91.
    [128] E. Hryha, E. Dudrova, L. Nyborg. Critical aspects of alloying of sintered steels withmanganese [J]. Metallurgical and Materials Transactions a-Physical Metallurgy andMaterials Science,2010,41A:2880-2897.
    [129] G.C Kuczynski. Self-diffusion in sintering of metallic particles [J]. Transactions of theAIME,1949,85(2):169-178.
    [130]腾新荣.表面物理化学[M].北京:化学工业出版社,2009:120-138.
    [131]戴永年,二元合金相图集[M],北京:科学出版社,2009:20-26.
    [132]孟庆昌.透射电子显微学[M].哈尔滨:哈尔滨工业大学出版社,1998:5-11.
    [133]唐翠勇.铁基非晶/纳米晶合金的制备、成形及性能研究[D].广州:华南理工大学博士论文.2012.
    [134]肖志瑜.高性能铁基温压材料的制备、成形及其应用的研究成形及性能研究[D].广州:华南理工大学博士论文.2002.
    [135]肖志瑜,叶旋,陆宇衡,等.喷丸表面强化处理Fe-2Cu-2Ni-1Mo-1C材料的弯曲疲劳性能及断口分析[J].机械工程学报,2013,49(20):152-157.
    [136] G. Donzella, R. Gerosa. Evaluation of the residual stresses induced by shot peening onsome sintered steels [J]. Procedia Engineering,2011,10:3399-3404.
    [137]屈盛官,王光宏,李文龙,等.高性能渗氮钢微动磨损性能研究[J].摩擦学学报,2012,32(5):486-492.
    [138]王思明,许明恒,周海军,等.滚动轴承微动磨损研究[J].轴承,2011,4:55-58.
    [139]周仲荣, L. Vincent著.微动磨损[M].北京:科学出版社,2002:3-10.
    [140]陈华,李月英,张驰,等.添加微细铬铁粉对烧结钢摩擦磨损性能的影响[J].吉林大学学报(工学版),2009,39(5):1162-1166.
    [141] K. Sudhakar, P. Sampathkumaran, E. Darakadasa. Dry sliding wear in high densityFe22%Ni bases P/M alloys [J]. Wear,2000,242(1-2):207-212.
    [142]吴荣伟,刘建新.表面滚压强化对粉末冶金烧结钢疲劳强度的影响[J].粉末冶金技术,1987,5(4):207-209.
    [143]王强.高强度钢试样喷丸残余应力实验研究及数值模拟[D].秦皇岛:燕山大学硕士论文.2006.
    [144] S. H Haga, H. Tsubakino, Y. Harada. Relation between Shot Peening. Process andFatigue Life in the Case of Hardening Steel [A]. Transactions of Materials and HeatTreatment Proceedings of The14THcongress [C]. Shanghai,2004,25(5):398-400.
    [145]张定辁.残余应力对金属疲劳强度的影响[J].理化检验-物理分册,2002,38(6):231-235.
    [146] D.J James, Z.C Hughes. Residual stresses and fatigue performance [J]. EngineeringFailure Analysis,2007,14(2):384-395.
    [147] Y.Q Fu, A.W Batchelor, N.K Loh. Effect of lubrication by mineral and synthetic oils onthe sliding wear of plasma nitride AISI410stainless steel [J]. Wear,1998,219(2):169-176.
    [148]郑健峰.车轴钢不同模式微动磨损行为研究[D].成都:西南交通大学博士论文,2006.
    [149] R.B Watethouse. Fretting corrosion [M]. Oxford: Pergamon Press,1972:35-42.
    [150] L. D Roth. Ultrasonic fatigue testing [M]. In Metals Handbook (ninth edition), Volume8: Mechanical testing. Ohio, USA, American Society for Metals,1995:240-258.
    [151] W.P Manson. Piezoelectric crystals and their application in ultrasonic [M]. NewYork: Van Nostrand,1950:161-163.
    [152] L.E Willertz. Ultrasonic fatigue [J]. International Materials Reviews,1980,2:65-77.
    [153] Q.Y Wang. High-cycle fatigue crack initiation and propagation behaviour ofhigh-strength spring steel wires [J]. Fatigue Fracture Engineering material Structure,1999,22:673-677.
    [154] P. Maria, et al. Influence of loading frequency on the fatigue properties in the very highcycle regime [A]. Professional of the International Conference on Fatigue in the VeryHigh Cycle Regime [C]. Vienna, Austria,2001:73-80.
    [155]周承恩,洪友士. GCr15钢超高周疲劳断口观察与裂纹起源分析[A].应用力学进展论文集[C].北京,2004:204-207.
    [156] S. Suresh. Fatigue of materials [M]. Cambridge: Cambridge University Press,2003:185-199.
    [157] N. Chawla, T.F Murphy, K.S Narasimhan, M. Koopman, K.K Chawla. Axial fatiguebehaviour of binder-treated versus diffusion alloyed powder metallurgy steels [J].Materials Science and Engineering A,2001,308(1-2):180-188.
    [158] K.V Sudhakar. Fatigue behavior of a high density powder metallurgy steel [J].International Journal of Fatigue,2000,22(9):729-734.
    [159] M.D Sangid. Fatigue modeling of U720-a multi-scale approach in understanding grainboundary effects on crack initiation [D]. University of Illinois at Urbana-Champaign,2010.
    [160] I.M Garcia, P.C Paris, H. Tada. Fatigue crack growth from small to long cracks inVHCF with surface initiations [J]. International Journal of Fatigue.2007,29(9-11):2072-2078.
    [161] I.M Garcia, P.C Paris, H. Tada. Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal “fish-eye” failures for ferrite-perlitic lowcarbon steel SAE8620[J]. Materials Science and Engineering A,2007,468-470:120-128.
    [162]黄志勇,陈伟,吴铁鹰.高强度钢的超高周疲劳裂纹扩展模型研究[J].固体力学学报,2011,32(3):235-241.
    [163] R.J Guo, S. St-Laurent, et al. Dynamic properties of sintered molybdenum steels [J].Powder Metall Technology,2003,21(6),238:338-346.
    [164] Y. Murakami. Metal fatigue: Effects of small defects and nonmetallic inclusions [M].Amsterdam: Elsevier Science Ltd,2002:17-22.
    [165] Y.J Zhang, H.J Hu. Effect of grain size on ultra-high-cycle fatigue properties of42CrMoVNb steel [J]. Acta Metallurgica Sinica,2009,45(7):880-886.
    [166] J.W Zhang, L.T Lu. Analysis on fatigue property of microshot peened medium carbonsteel [J]. Acta Metallurgica Sinica,2009,45(11):1378-1383.
    [167] H. Khorsand. Carbon, porosity and fatigue in sintered steel [J]. Metal Powder Report,2002,57(4):32-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700