用户名: 密码: 验证码:
硬脆材料旋转超声加工高频振动效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑腔作为微靶装配体的核心部件,其制备质量是影响激光约束核聚变(Inertial confinement fusion,简称ICF)中点火能否成功的关键因素。而玻璃材料芯轴的加工作为黑腔制备过程的核心环节,其表面粗糙度和形状精度直接决定了黑腔的能量转化率以及靶丸的能量增益。由于硬脆材料微型精密靶结构件的尺寸非常小,承载能力较低,对亚表层裂纹异常敏感,导致其在加工过程中容易发生脆性断裂,这给微结构件的旋转超声加工(RUM)提出了严峻挑战。
     利用微型刀具对脆性材料靶结构件进行旋转超声加工时,由于参与切削的磨粒数目有限,单个磨粒所承受的载荷较大,刀具磨粒容易脱落,往往使工件难以达到预期的表面粗糙度和形状精度。因此,本文根据微型靶结构件加工的实际需要,分析了旋转超声加工中磨粒的独特动力学特性,并对材料去除机理、表面形成过程、亚表层损伤特征、切削力和刀具磨损进行了系统深入的研究,以便为靶结构件加工提供可靠的技术支持和保证。具体研究工作包括如下几个方面:
     分析了旋转超声加工表面的微观形貌,发现材料粉末化是除了脆性断裂、塑性变形以外的另一种主要材料去除机理。对旋转超声刻划表面损伤特征进行了动态断裂力学理论分析,提出初始裂纹是材料粉末化形成的初期阶段,磨粒的惯性力以及材料惯性力效应是导致初始裂纹成核的主要原因。在对磨粒动力学特性进行系统研究的基础上,定义了评价超声振动强弱的无量纲的超声强度特征参数K,实现了对高频振动效应的定量表征。另外,系统分析了高频振动效应对磨粒的惯性力、工作角度以及材料动态断裂力学性能的影响,提出了适用于旋转超声加工的表面形成过程新模型。
     借助于截面显微法分析了高频振动对亚表层裂纹构型的影响,发现粉末层由微米/亚微米级碎片堆积而成,且仅仅覆盖于加工表面,并未扩展至材料内部。基于脆性材料的断裂动力学理论,分析了粉末化的形成机理,提出超声振动的叠加增大了材料的应力强度因子,降低了材料的动态断裂韧性,最终导致粉末化的形成。另外,当磨粒运动至其轨迹最低点时,磨粒切削深度的增加导致侧向裂纹和中位裂纹扩展深度增长,这是导致旋转超声加工亚表层损伤深度增加的根本原因。
     利用光滑质点流体动力学法(SPH)实现了对磨粒冲击工件表面过程的数值仿真,提出了一种能够模拟脆性材料内部裂纹形成及扩展过程的新方法。基于压痕断裂力学理论,研究了中位裂纹与和侧向裂纹之间的内在关系,综合考虑弹性应力场和塑形应力场对中位裂纹和侧向裂纹扩展深度的影响,建立了工件表面粗糙度与亚表层裂纹扩展深度之间的非线性关系模型,实现了对亚表层损伤深度的有效预测。
     在对磨粒动力学特性进行分析的基础上,基于脆性材料的动态压痕断裂力学理论,提出了磨粒加载过程中材料应变率的计算公式,实现了对旋转超声加工中材料应变率的定量描述。在综合考虑应变率效应对磨粒-工件相互作用过程影响的基础上,提出了旋转超声加工过程中脆性材料的脆-塑转变临界条件。通过在初始裂纹中心位置进行压痕实验,发现初始裂纹的成核对于切削力具有良好的屏蔽效应,且初始裂纹相对疏松的结构特点使其易于向前扩展,导致材料去除率提高,切削力进一步降低,这为旋转超声加工中优选工艺参数提供了理论依据。
     分析了超声振动对刀具的磨损区域性特征、轮廓形状和端面磨粒数目的影响,提出超声振动使得单个磨粒所承受的载荷降低,从而抑制了刀具的轮廓磨损和磨粒脱落,最终提高了工件的形状精度和表面质量。通过对旋转超声加工中刀具端面磨粒的微观破碎形貌进行分析,发现磨粒的破碎形态主要为材料崩碎所产生的浅表层贝壳状缺陷(微观破碎)。借助于霍普金森杆冲击实验测试材料的动态力学性能,提出高应变率效应使材料的弹性模量增加,从而降低了磨粒内部裂纹的成核深度,最终导致磨粒的微观破碎。
As the core component of the micro-target assembly, the preparation quality of the hohlraum became the key constraint to the ignition success in the Inertial Confinement Fusion (ICF). Processing of the glass mandrel was the core aspects in the hohlraum preparation process, and its shape accuracy and surface roughness directly determined energy conversion rate of the hohlraum and the pellet energy gain. Due to its the small size, low bearing capacity and subsurface crack sensitivity, the precision target micro-structure could fracture easily during the processing, which presented a challenge to the Rotary Ultrasonic Machining (RUM).
     When machining the target structure with the micro-tools, the abrasives were easily fell off, due to the limited abrasive number involved in machining and the large loading acted on the abrasives, which made it difficult to achieve the desired surface roughness and shape accuracy. Therefore, in the present work, based on the actual needs of the target structure machining, the unique dynamics characteritics of the abrasive were investigated. Also, the material removal mechanisms, surface formation process, sub-surface damage characteristics, the cutting force and tool wear characteristics were comprehensively, systematically explored, which would provide the reliable technical and theoretical guidances for the requirements on the high quality target structure. Detailed research work includes the following aspects:
     Microscopic observations of the RUM surface presented that pulverization could be another material removal mechanism besides brittle fracture and plastic deformation. The damage characteristics of the RUM scratching surfaces were investigated using the dynamic fracture mechanics of the brittle material, and it was revealed that incipient cracks acted as the initial stage of the material pulverization were resulted from the great vertical inertia force of the abrasive and the inertial effects of the material. Based on the analyses of the specific kinematics principles of the abrasive, a nondimensional parameter K was defined to quantitatively characterize the effects of the ultrasonic vibration in RUM process. A fresh analytical model of surface formation process involved in the RUM process was proposed, which incorporated the effects of the larger inertia force of the abrasive, the cyclical variation in the effective work angles of the abrasive, the lower dynamic fracture toughness of the material.
     With the bonded interface sectioning technique, the ultrasonic effects on the subsurface cracking patterns were investigated, and it was found that the micron/submicron fragments just smeared on the top surface forming the pulverization layer. Based on the fracture dynamic theory of the brittle materials, it was proposed that the superimposition with the ultrasonic would increase the material strain rate together with the decreased dynamic fracture toughness, which pulverizing the mateiral in consequence. At the bottom of the abrasive trajectory, the increased cutting depth would increase the extending depth of the lateral cracks and the median/radial cracks, which was the root cause of the worsened subsurface quality on the RUM specimen.
     The impact process of the abrasive on the specimen surface was simulated by means of the Smoothed Particle Hydrodynamics (SPH) method, proposing a new method to simulate the crack formation and expansion within the brittle material. Based on indentation fracture mechanics of brittle material, the correlation between the median and lateral crack systems aroused by a sharp indenter was analyzed. By incorporating the combined effects of the elastic and plastic stress fields on the lateral and the median/radial cracks, a nonlinear theoretical model between the surface roughness and the subsurface damage depth was proposed, with which the depth of the subsurface damage could be effectively predicted.
     Based on the analyses of the specific kinematics principles of the abrasive and dynamic indentation fracture mechanics of the material, the formula of the material strain rate during abrasive loading process was established, which could quantitatively characterize the strain rate effects. Brittle-ductile transition critical condition suited for the RUM process was developed with the incorporation of the strain rate effects on the abrasive-material interactions. Through the indentation experiments at the central of the incipient cracks, it was found that their nucleation provided a shielding effect to the increased cutting force. The relatively loose structural characteristics of the incipient crack made it easy to extend forward, which could increase material removal rate and further reduce the abrasive cutting force. These effects of the incipient cracks supplied a theoretical basis for the reduction of the cutting force by optimizing the processing parameters.
     Effects of the ultrasonic superposition on the wear regional characteristics, tool contour wear and the abrasive number were investigated, and it was found that the ultrasonic vibration by reducing the cutting force of the abrasive suppressed the tool contour wear, ultimately improving the shape accuracy and surface quality of the specimen. Microscopic fracture morphology of the abrasives on the tool end face revealed that the conchoidal chipping defects (microscopic fracture) were generated by the shallow fracture. Dynamic mechanical properties of the material were investigated by means of the impact experiments of the Hopkinson bar, which exhibited that the high strain rate effects would increase the material elastic modulus, thus reducing the crack nucleation depth in the internal abrasive, resulting in microscopic abrasive fracture.
引文
[1]张占文.惯性约束聚变中的双壳层靶制备技术基础研究[D].绵阳:中国工程物理研究院,2007.
    [2]赵学森.激光靶丸表面几何状态的测量系统及评价方法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [3] Lindl JD,Amendt P,Berger R L,et al. The Physics Basis for Ignition UsingIndirect-Drive Targets on the National Ignition Facility[J]. Physics of Plasmas,2004,11:339.
    [4] Hammer JH,Tabak M,Wilks SC,et al. High Yield Inertial Confinement FusionTarget Design for a Z-pinch-driven Hohlraum[J]. Physics of Plasmas,1999,6:2129.
    [5] Hein NA,Wilkens HL,Nikroo A,et al. Production Manufacturing of Gold-DepletedUranium Layered Hohlraums for the National Ignition Facility[J]. Fusion Scienceand Technology,2013,63(2):218-225.
    [6] Streckert H,Blobaum K,Chen B,et al. Process Control Improvements forProduction of Depleted Uranium Hohlraums[J]. Fusion Science and Technology,2013,63(2):213-217.
    [7] Wilkens HL,Nikroo A,Wall DR,et al. Developing Depleted Uranium and GoldCocktail Hohlraums for the NIF Phys[J]. Plasmas Physics of Plasmas,2007,14(056310):1-6.
    [8]王丹.硬脆非金属材料微结构微细加工关键技术研究[D].上海:上海交通大学,2011.
    [9]冯冬菊.超声波铣削加工原理及相关技术研究[D].大连:大连理工大学,2005.
    [10] Aurich JC,Engmann GM,Schueler GM,et al. Micro Grinding Tool forManufacture of Complex Structures in Brittle Materials[J]. CIRPAnnals-Manufacturing Technology,2009,58(1):311-314.
    [11]程军,巩亚东,武治政,等.硬脆材料微磨削表面形成机理试验研究[J].机械工程学报,2012,48(21):190-198.
    [12] Lee Pil-Ho,Lee SW. Experimental Characterization of Micro-grinding ProcessUsing Compressed Chilly Air[J]. International Journal of Machine Tools andManufacture,2011,51(3):201-209.
    [13]秦娜.旋转超声波磨削制孔的切削力建模与试验研究[D].大连:大连理工大学,2011.
    [14] Liu DF,Cong WL,Pei ZJ,et al. A Cutting Force Model for Rotary UltrasonicMachining of Brittle Materials[J]. International Journal of Machine Tools andManufacture,2012,52(1):77-84.
    [15]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版),2009(11):1799-1804.
    [16] Hu X. Mechanism, Characteristics and Modeling of Micro UltrasonicMachining[D]. Nebraska:University of Nebraska,2007.
    [17]李健中.精密陶瓷的超声波振动磨削加工机理研究[D].石家庄:河北工学院,1992.
    [18] Pei ZJ,Khanna N,Ferreira PM. Rotary Ultrasonic Machining of StructuralCeramics-A Review[C]//Ceramics Engineering Science Processing,1995,16(1):259-78.
    [19] Prabhakar D. Machining Advanced Ceramic Materials Using Rotary UltrasonicMachining Process[D]. Illinois:University of Illinois at Urbana-Champaign,1992.
    [20] Wu J,Cong W,Williams RE,et al. Dynamic Process Modeling for RotaryUltrasonic Machining of Alumina[J]. Journal of Manufacturing Science andEngineering,2011,133(4)041012-1-5.
    [21] Pei ZJ,Ferreira PM,Kapoor SG,et al. Rotary Ultrasonic Machining for FaceMilling of Ceramics[J]. International Journal of Machine Tools and Manufacture,1995,35(7):1033-1046.
    [22] Kubota M,Tamura Y,Shimamura N. Ultrasonic Machining with a DiamondImpregnated Tool[J]. Bulletin of Japan Society of Precision Engineering,1977,11(3):127-132.
    [23] Markov AI. Ultrasonic Drilling and Milling of Hard Non-metallic Materials withDiamond Tools[J]. Machine and Tooling,1977,48(9):45-47.
    [24] Sugita T,Ueda K,Endoh K. Possibility of Plastic Deformation Type MaterialRemoval in Microcutting of Brittle Material[J]. Journal of Japan Society ofPrecision Engineering,1986,52(12):144-147.
    [25] Huerta M,Malkin S. Grinding of Glass: The Mechanics of the Process[J].Transactions of the ASME Journal of Engineering for Industry,1976,98(2):459-467.
    [26] Pei ZJ. Rotary Ultrasonic Machining of Ceramies: Characterization andExtensions[D].Urbana-lllinois: University of lllinois at Urbana-ChamPaign,1995.
    [27] Pei ZJ,Ferreira PM. Modeling of Ductile-Mode Material Removal in RotaryUltrasonic Machining[J]. International Journal of Machine Tools andManufacture,1998,38(10-11):1399-1418.
    [28] Uhlmann E,Spur G. Surface Formation in Creep Feed Grinding of AdvancedCeramics with and without Ultrasonic Assistance[J]. CIRP Annals-ManufacturingTechnology,1998,47(1):249-252.
    [29] Spur G,Holl SE. Ultrasonic Assisted Grinding of Ceramics[J]. Journal of MaterialsProcessing Technology,1996,62(4):287-293.
    [30] Hed PP,Edwards DF. Optical Glass Fabrication Technology.2: RelationshipBetween Surface Roughness and Subsurface Damage[J]. Applied Optics,1987,26(21):4677-4680.
    [31] Li Y,Zheng N, Li H,et al. Morphology and Distribution of Subsurface Damagein Optical Fused Silica Parts: Bound-Abrasive Grinding[J]. Applied SurfaceScience,2011,257(6):2066-2073.
    [32] Gu W,Yao ZQ. Evaluation of Surface Cracking in Micron and Sub-micron ScaleScratch Tests for Optical Glass BK7[J]. Journal of Mechanical Science andTechnology,2011,25(5):1167-1174.
    [33] Cook RF,Pharr GM. Direct Observation and Analysis of Indentation Cracking inGlasses and Ceramics[J]. Journal of the American Ceramic Society,1990,73(4):787-817.
    [34] Qu W,Wang K,Miller MH,et al. Using Vibration-Assisted Grinding to ReduceSubsurface Damage[J]. Precision Engineering,2000,24(4):329-337.
    [35] Chao CL,Chou WC,Chao CW,et al. Material Removal Mechanisms Involved inRotary Ultrasonic Machining of Brittle Materials[J]. Key Engineering Materials,2007,329:391-396.
    [36] Sabia R,Stevens HJ,Varner JR. Pitting of a Glass-Ceramic during Polishing withCerium Oxide[J]. Journal of Non-Crystalline Solids,1999,249(2-3):123-130.
    [37] Lambropoulos JC. From Abrasive Size to Subsurface Damage in Grinding[J].Convergence,2000,8:1-3.
    [38] Ma B,Shen Z,He P,et al. Detection of Subsurface Defects of Fused Silica Opticsby Confocal Scattering Microscopy[J]. Chinese Optics Letters,2010,8(3):296-299.
    [39] Brown NJ,Fuchs BA,Hed PP,et al. The Response of Isotropic Brittle Materialsto Abrasive Processes[C]//Frequency Control,Proceedings of the43rd AnnualSymposium on. IEEE,1989:611-616.
    [40] Zhang W,Zhu J. Determination of Subsurface Damage in Nd-doped PhosphateGlasses[C]//3rd International Symposium on Advanced Optical Manufacturingand Testing Technologies:Optical Test and Measurement Technology andEquipment. International Society for Optics and Photonics,2007:672311-672311-5.
    [41] Neauport J,Destribats J,Maunier C,et al. Loose Abrasive Slurries for OpticalGlass Lapping[J]. Applied optics,2010,49(30):5736-5745.
    [42] Helbawi H,Zhang L,Zarudi I. Difference in Subsurface Damage in IndentedSpecimens Sith and Without Bonding Layer[J]. International Journal ofMechanical Sciences,2001,43(4):1107-1121.
    [43]吉川昌範,張璧,戸倉和. Observations of Seramic Surface Cracks by NewlyProposed Methods[J].窯業協會誌,1987,95(1106):961-969.
    [44] Li S,Wang Z,Wu Y. Relationship Between Subsurface Damage and SurfaceRoughness of Optical Materials in Grinding and Lapping processes[J]. Journal ofMaterials Processing Technology,2008,205(1-3):34-41.
    [45] Affatigato M,Osborne DH,Haglund RF. Effect of Surface Roughness on the AcidEtching of Amorphous Silica[J]. Journal of the American Ceramic Society,1996,79(3):688-694.
    [46] Zhou Y,Funkenbusch PD,Quesnel DJ,et al. Effect of Etching and Imaging Modeon the Measurement of subsurface Damage in Microground Optical Glasses[J].Journal of the American Ceramic Society,1994,77(12):3277-3280.
    [47] Ellingson WA,Todd JA,Sun J. Optical Method and Apparatus for Detection ofDefects and Microstructural Changes in Ceramics and Ceramic Coatings: U.S.Patent6,285,449[P].2001-9-4.
    [48] Lu WK,Sun JG,Pei ZJ. Subsurface Damage Measurement in Silicon Wafers withCross-Polarisation Confocal Microscopy[J]. International Journal ofNanomanufacturing,2006,1(2):272-282.
    [49] Yan M,Wang L,Siekhaus WJ,et al. Defect Study in Fused Silica Using Near-FieldScanning Optical Microscopy[C]//Laser-Induced Damage in Optical Materials:1997. International Society for Optics and Photonics,1998:268-271.
    [50] Steinert J,Gliech S,Wutting A,et al. Advanced Methods for Surface andSubsurface Defect Characterization of Optical Components[C]//Proc. SPIE.2000,4099:290-298.
    [51] Kanematsu W,Sando M,Ives LK,et al. Dye Impregnation Method for RevealingMachining Crack Geometry[J]. Journal of the American Ceramic Society,2001,84(4):795-800.
    [52] Randi JA,Lambropoulos JC,Jacobs SD. Subsurface Damage in Some SingleCrystalline Optical Materials[J]. Applied optics,2005,44(12):2241-2249.
    [53] Yao Z,Gu W,Li K. Relationship Between Surface Roughness and SubsurfaceCrack Depth during Grinding of Optical Glass BK7[J]. Journal of MaterialsProcessing Technology,2012,212(4):969-976.
    [54]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [55]王卓.光学材料加工亚表面损伤检测及控制关键技术研究[D].长沙:国防科学技术大学,2008.
    [56] Zhang CL,Feng PF,Wu ZJ,et al. Experimental Investigation of Rotary UltrasonicFace Milling of K9Glass[J]. Advanced Materials Research,2011,230:644-648.
    [57] Bertsche E, Ehmann K, Malukhin K. An analytical model of rotary ultrasonicmilling[J]. The International Journal of Advanced Manufacturing Technology,2013,65(9-12):1705-1720.
    [58] Lauwers B,Bleicher F,Ten HP,et al. Investigation of the Process-MaterialInteraction in Ultrasonic Assisted Grinding of ZrO2Based CeramicMaterials[C]//Proceedings of the4th CIRP International Conference on HighPerformance Cutting.2010.
    [59] Zhang JF,Feng PF,Wu ZJ,et al. Theoretical and Experimental Research on theFeatures of Cutting Force in Rotary Ultrasonic Face Milling of K9Glass[J].Applied Mechanics and Materials,2012,157:1674-1679.
    [60] Ishikawa K,Suwabe H,Nishide T,et al. A Study on Combined Vibration dDrillingby Ultrasonic and Low-Frequency Vibrations for Hard and Brittle Materials[J].Precision engineering,1998,22(4):196-205.
    [61] Zhao CY,Gong H,Fang FZ,et al. Experimental Study on the Cutting ForceDifference Between Rotary Ultrasonic Machining and Conventional DiamondGrinding of K9Glass[J]. Machining Science and Technology,2013,17(1):129-144.
    [62] Marinescu ID,Hitchiner M,Uhlmann E,et al. Handbook of Machining withGrinding Wheels[M]. Wakefield:CRC Press,2006.
    [63] Spur G,Uhlmann E,Holl SE,et al. Influences on Surface and Subsurface duringUltrasonic Assisted Grinding of Advanced Ceramics[C]//Proceedings of the14thAnnual Meeting,the American Society for Precision Engineering. Monterey,1999.
    [64] Ishikawa K,Suwabe H,Nishide T,et al. A Study on Combined Vibration Drillingby Ultrasonic and Low-Frequency Vibrations for Hard and Brittle Materials[J].Precision engineering,1998,22(4):196-205.
    [65] Zeng WM,Li ZC,Pei ZJ,et al. Experimental Observation of Tool Wear in RotaryUltrasonic Machining of Advanced Ceramics[J]. International Journal of MachineTools and Manufacture,2005,45(12):1468-1473.
    [66] Liu LP,Lin B,Fang FZ. Monitoring of Tool Wear in Rotary Ultrasonic Machiningof Advanced Ceramics[J]. Advanced Materials Research,2011,314:1754-1759.
    [67] Gong H,Fang FZ,Hu XT. Kinematic View of Tool Life in Rotary Ultrasonic SideMilling of Hard and Brittle Materials[J]. International Journal of Machine Toolsand Manufacture,2010,50(3):303-307.
    [68] Liu Y, Zhao H,Jing J,Wei S. Investigation on the Bonding Strength Patterns ofUltrasonic Vibration Tools and Influence on Working Performance during RotaryUltrasonic Grinding[J]. The International Journal of Advanced ManufacturingTechnology,2013,65(1-4):533-541.
    [69] Daus NA. Ultraschallunterstützes quer-seiten-schleifen[D]. Berlin:TechnischeUniversit t,2004.
    [70] Zhang B,Howes TD. Material-Removal Mechanisms in Grinding Ceramics[J].CIRP Annals-Manufacturing Technology,1994,43(1):305-308.
    [71] Zhang B,Zheng XL,Tokura H,et al. Grinding Induced Damage in Ceramics[J].Journal of Materials Processing Technology,2003,132(1):353-364.
    [72] Sanchez LEA,Oliveira JFG,Coelho RT. Detection of Cracks in Scratching Tests inCeramic Materials Through Acoustic Emission[J]. Proceedings of the Institution ofMechanical Engineers,Part B: Journal of Engineering Manufacture,2005,219(9):685-693.
    [73] Sivakumar R,Jones MI,Hirao K,et al. Scratch Behavior of SiAlON Ceramics[J].Journal of the European Ceramic Society,2006,26(3):351-359.
    [74] Subhash G,Klecka M. Ductile to Brittle Transition Depth During Single-GritScratching on Alumina Ceramics[J]. Journal of the American Ceramic Society,2007,90(11):3704-3707.
    [75] Gu W,Yao Z,Liang X. Material Removal of Optical Glass BK7During Single andDouble Scratch Tests[J]. Wear,2011,270(3):241-246.
    [76] Brinksmeier E,Mutlugünes Y,Klocke F,et al. Ultra-Precision Grinding[J]. CIRPAnnals-Manufacturing Technology,2010,59(2):652-671.
    [77] Marshall DB,Lawn BR,Cook RF. Microstructural Effects on Grinding of Aluminaand Glass-Ceramics[J]. Journal of the American Ceramic Society,1987,70(6):139-140.
    [78] Chandra A,Wang K,Huang Y,et al. Role of Unloading in Machining of BrittleMaterials[J]. Journal of Manufacturing Science and Engineering,2000,122(3):452-462.
    [79] Chen M,Zhao Q,Dong S,et al. The Critical Conditions of Brittle–DuctileTransition and the Factors Influencing the Surface Quality of Brittle Materials inUltra-Precision Grinding[J]. Journal of Materials Processing Technology,2005,168(1):75-82.
    [80] Shukla A. Dynamic Failure of Materials and Structures[M]. New York:SpringerScience Business Media,2010.
    [81] Fischer-Cripps AC. Nanoindentation (Mechanical Engineering Series)[M]. NewSouth Wales:Springer-Verlag,2010.
    [82] Dally JW,Barker DB. Dynamic Measurements of Initiation Toughness at HighLoading Rates[J]. Experimental Mechanics,1988,28(3):298-303.
    [83] Freund LB. Dynamic Fracture Mechanics[M]. New York:Cambridge UniversityPress,1990.
    [84] Buijs M,Houten K. Three-Body Abrasion of Brittle Materials as Studied byLapping[J]. Wear,1993,166(2):237-245.
    [85] Marshall DB,Lawn BR,Evans AG. Elastic/Plastic Indentation Damage inCeramics: The Lateral Crack System[J]. Journal of the American CeramicSociety,1982,65(11):561-566.
    [86]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006.
    [87]查立豫,郑武城,顾秀明等.光学材料与辅料[M].北京:兵器工业出版社,1995.
    [88] Malkin S,Hwang TW. Grinding Mechanisms for Ceramics[J]. CIRPAnnals-Manufacturing Technology,1996,45(2):569-580.
    [89] Bouzid S,Nyoungue A,Azari Z,et al. Fracture Criterion for Glass under ImpactLoading[J]. International Journal of Impact Engineering,2001,25(9):831-845.
    [90] Grady DE. Local Inertial Effects in Dynamic Fragmentation[J]. Journal of AppliedPhysics,1982,53(1):322-325.
    [91] Young HT,Liao HT,Huang HY. Surface Integrity of Silicon Wafers in UltraPrecision Machining[J]. The International Journal of Advanced ManufacturingTechnology,2006,29(3-4):372-378.
    [92] Wang Z,Wu Y,Dai Y,et al. Subsurface Damage Distribution in the LappingProcess[J]. Applied Optics,2008,47(10):1417-1426.
    [93] Li S,Wang Z,Wu Y. Relationship Between Subsurface Damage and SurfaceRoughness of Ground Optical Materials[J]. Journal of Central South University ofTechnology,2007,14:546-551.
    [94] Lawn BR,Evans AG,Marshall DB. Elastic/Plastic Indentation Damage inCeramics: the Median/Radial Crack System[J]. Journal of the American CeramicSociety,1980,63(9-10):574-581.
    [95] Suratwala T,Wong L,Miller P,et al. Sub-Surface Mechanical DamageDistributions During Grinding of Fused Silica[J]. Journal of Non-CrystallineSolids,2006,352(52):5601-5617.
    [96] Suratwala T,Steele R,Feit MD,et al. Effect of Rogue Particles on the Sub-SurfaceDamage of Fused Silica During Grinding/Polishing[J]. Journal of Non-CrystallineSolids,2008,354(18):2023-2037.
    [97] Hecker RL,Liang SY,Wu XJ,et al. Grinding Force and Power Modeling Basedon Chip Thickness Analysis[J]. The International Journal of AdvancedManufacturing Technology,2007,33(5-6):449-459.
    [98] Zhou X,Xi F. Modeling and Predicting Surface Roughness of the GrindingProcess[J]. International Journal of Machine Tools and Manufacture,2002,4(28):969-977.
    [99] Buijs M,Martens LAAG. Effect of Indentation Interaction on Cracking[J]. Journalof the American Ceramic Society,1992,75(10):2809-2814.
    [100] Akarca SS,Altenhof WJ,Alpas AT. A Smoothed-Particle Hydrodynamics (SPH)Model for Machining of1100Aluminum[C]//10th International LS-DYNA UsersConference,2008,12:1-8.
    [101]宿崇,唐亮,侯俊铭,王宛山.基于FEM与SPH耦合算法的金属切削仿真研究[J].系统仿真学报,2009,21(16):5002-5005.
    [102] Bil H,Kilic S,Tekkaya AE. A Comparison of Orthogonal Cutting Data fromExperiments with Three Different Finite Element Models[J]. International Journalof Machine Tools and Manufacture.2004,44(9):933-944.
    [103] Faraud M,Destefanis R,Palmieri D,et al. SPH Simulations of Debris Impactsusing Two Different Computer Codes[J]. International Journal of ImpactEngineering,1999,23(1):249-260.
    [104]何涛,杨竞,金鑫. ANSYS10.0/LS_DYNA非线性有限元分析实例教程[M].北京:机械工业出版社,2007.
    [105] Cronin DS,Bui K,Kaufmann C,et al. Implementation and Validation of theJohnson-Holmquist Ceramic Material Model in LS-DYNA[C]//4th EuropeanLS-dyna Users Conference.2003:47-60.
    [106]宿崇,侯俊铭,朱立达,王宛山.基于SPH法的金属切削大变形数值模拟[J].东北大学学报,2009,30(3):418-421.
    [107] Conway JJC,Kirchner HP. The Mechanics of Crack Initiation and PropagationBeneath a Moving Sharp Indentor[J]. Journal of Materials Science.1980,15(11):2879-2883.
    [108] Miller PE,Suratwala TI,Wong LL,et al. The Distribution of Subsurface Damagein Fused Silica[C]//Boulder Damage Symposium XXXVII: Annual Symposium onOptical Materials for High Power Lasers. International Society for Optics andPhotonics,2005:599101-599101-25.
    [109] Lawn BR,Swain MV. Microfracture Beneath Point Indentations in BrittleSolids[J]. Journal of Materials Science,1975,10(1):113-122.
    [110] Lambropoulos JC,Jacobs SD,Ruckman J. Material Removal Mechanisms fromGrinding to Polishing[J]. Journal of American Ceramic Society,1999,102:113-128.
    [111] Yan JW,Mahmoud TA,Tamaki J. Three-Dimensional Shape Modeling ofDiamond Abrasive Grains Measured by a Scanning Laser Microscope[J]. KeyEngineering Materials,2003,238:131-136.
    [112] Marshall DB. Geometrical Effects in Elastic/Plastic Indentation[J]. Journal of theAmerican Ceramic Society,1984,67(1):57-60.
    [113] Kucheyev SO,Hamza AV,Satcher JrJH,et al. Depth-Sensing Indentation ofLow-Density Brittle Nanoporous Solids[J]. Acta Materialia,2009,57(12):3472-3480.
    [114] Bulsara VH, Chandrasekar S. Direct Observation of Contact Damage AroundScratches in Brittle Solids[C]//AeroSense'97. International Society for Optics andPhotonics,1997:76-88.
    [115] Jannotti P,Subhash G,Ifju P,et al. Influence of Ultra-high Residual CompressiveStress on the Static and Dynamic Indentation Response of a ChemicallyStrengthened Glass[J]. Journal of the European Ceramic Society,2012,32(8):1551-1559.
    [116] Prabhakar D,Ferreira PM,Haselkorn M. An Experimental Investigation ofMaterial Removal Rates in Rotary Ultrasonic Machining[J]. Transactions of theNorth American Manufacturing Research Institution of SME.,1992,20:211-218.
    [117] Lawn B. Fracture of Brittle Solids[M]. Cambridge:Cambridge University Press,1993.
    [118] Tuck JR,Korsunsky AM,Bull SJ,et al. On the Application of theWork-of-Indentation Approach to Depth-Sensing Indentation Experiments inCoated Systems[J]. Surface and Coatings Technology,2001,137(2):217-224.
    [119] Zhang M,Li F,Chen B,et al. Investigation of Micro-Indentation Characteristicsof P/M Nickel-Base Superalloy FGH96using Dislocation-Power Theory[J].Materials Science and Engineering: A,2012,535:170-181.
    [120] Recco AAC,Viáfara CC,Sinatora A,et al. Energy Dissipation in Depth-SensingIndentation as a Characteristic of the Nanoscratch Behavior of Coatings[J]. Wear,2009,267(5):1146-1152.
    [121] Ebisu T,Horibe S. Analysis of the Indentation Size Effect in Brittle Materialsfrom Nanoindentation Load-Displacement Curve[J]. Journal of the EuropeanCeramic Society,2010,30(12):2419-2426.
    [122] Venkatachalam S,Li X,Liang SY. Predictive Modeling of Transition UndeformedChip Thickness in Ductile-Regime Micro-Machining of Single Crystal BrittleMaterials[J]. Journal of Materials Processing Technology,2009,209(7):3306-3319.
    [123] Johnson GR, Cook WH. A Constitutive Model and Data for Metals Subjected toLarge Strains, High Strain Rates and Figh Temperatures[C]//Proceedings of the7thInternational Symposium on Ballistics. The Hague,Netherlands:InternationalBallistics Committee,1983,21:541-547.
    [124] Meyers MA. Dynamic Behavior of Materials[M]. New York:John Wiley&Sons,Inc.,1994.
    [125]梁志强,王西彬,吴勇波,等.超声振动辅助磨削技术的现状与新进展[J].兵工学报,2010,31(11):1530-1535.
    [126] Feng J. Microgrinding of Ceramic Materials[D]. Michigan:The University ofMichigan,2010.
    [127] Werner G. Relation Between Grinding Work and Wheel Wear in PlungeGrinding[J]. SME Technical Paper,MR-75-610,1975.
    [128]曲庆璋,梁兴复.弹性力学[M],北京:冶金工业出版社,1997.
    [129] Hopkinson B. A Method of Measuring the Pressure Produced in the Detonation ofHigh Explosives or by the Impact of Bullets[J]. Proceedings of the Royal Societyof London. Series A,1914,89(612):411-413.
    [130]张华.冲击荷载作用下岩石动态损伤特性研究[D].昆明:昆明理工大学,2009.
    [131]刘永强,张睿娟,撒玉宝,等.分层介质动态力学性能的实验研究[J].工程爆破,2008,14(2):12-15.
    [132]刘军忠,许金余,吕晓聪,等.冲击压缩荷载下角闪岩的动态力学性能试验研究[J].岩石力学与工程学报,2009,28(10):2113-2120.
    [133]杜庆华,余寿文,姚振汉.弹性理论[M],北京:科学出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700