用户名: 密码: 验证码:
大面积深开挖对抗拔桩承载性状的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的蓬勃发展,大量的地下建筑物在沿海地区兴建,大面积深开挖工程越来越多。另一方面,我国沿海地区地下水位普遍较高,地下建筑物通常需承受巨大的浮力,抗拔桩作为抗拔基础的主要形式之一在工程中应用十分广泛。受施工限制,坑内基桩需在基坑开挖前完成,上覆土层的大面积卸荷使抗拔桩承载性状的确定很复杂。如何根据抗拔桩所在土层的物理力学特性,结合桩土界面剪切特性,对开挖前后抗拔桩的承载性状进行计算分析是一个正在引起岩土工程界高度关注的课题。
     基于上述背景,本文针对大面积深开挖过程中桩~土相互作用问题进行研究。首先,进行了砂土中基坑开挖对抗拔桩极限承载力影响的模型试验,研究了开挖深度、开挖直径、坑底以下有效桩长对基坑开挖前后抗拔桩极限承载力的影响。试验结果表明:基坑开挖后桩土界面法向应力降低,导致抗拔桩极限承载力降低。开挖直径越大,抗拔桩极限承载力下降越多。当开挖直径为全开挖时,开挖卸荷后坑内土体处于超固结状态,坑内抗拔桩极限承载力大于土体为正常固结状态时。
     然后,采用JCY型静止侧压力系数固结仪对砂土(不同密实度)、饱和粉土和饱和粉质粘土进行了K0加卸载试验,并采用K0加卸载模型对土体K0加卸载过程中的σv′~σb′关系进行描述,探讨了土体物理力学特性对K0加卸载模型参数的影响。
     进而研制了土体超固结对抗拔桩极限侧摩阻力影响的试验装置,针对桩周土体为砂土和饱和粉土两种情况,首先采用该装置研究了抗拔桩在桩周土体K0加卸载过程中的极限承载力变化规律,进而研究了桩周土体不同OCR值对抗拔桩极限承载力的影响。试验结果表明,土体的超固结效应导致桩侧极限摩阻力增大。采用土体的K0加卸载模型计算桩周土体不同应力路径时桩土界面法向应力,进而计算抗拔桩极限承载力,计算值与实测值较为吻合。
     在上述单元体试验及模型试验的基础上,结合桩土界面往返剪切特性,建立了大面积深开挖对抗拔单桩承载性状影响的一维分析模型及有限元分析模型,通过对算例的分析表明,两种分析方法对大面积深开挖前后抗拔单桩承载性状的计算结果较为接近。大面积深开挖后桩土界面法向应力降低,导致抗拔桩极限承载力及刚度降低。开挖后土体产生卸荷回弹,从而带动基桩回弹,桩身上、下部分分别承受正、负摩阻力,并在桩身产生拉力,对抗拔桩在后期承载过程中的荷载传递过程产生影响。
     采用ABAQUS三维有限元分析软件,对大面积深开挖后群桩的受力及变形性状进行分析,研究了群桩的遮帘效应对基桩回弹位移及桩身拉力的影响,进而探讨了群桩的桩数、桩间距对其遮帘效应的影响。分析结果表明,由于群桩的遮帘效应,越靠近群桩中心,开挖后基桩桩身最大轴力越小。随桩间距的减小及桩数的增多,群桩的遮帘效应越来越明显。
     对大面积深开挖后抗拔群桩的承载变形性状进行分析,结果表明,开挖后抗拔群桩达极限承载力时的位移远大于单桩。在相同的桩间距情况下,随桩数的增加,群桩承载效率系数下降。相同桩数情况下,桩间距越大,群桩承载效率系数越高。
     最后将部分研究成果应用于上海500kV世博变电站工程的计算分析中。
With the rapid development of urban construction, a large number of underground structures are built in coastal areas, the large and deep excavation are more and more. On the other hand, the underground water level is high in coastal areas, the underground structures are under great buoyancy, and the uplift piles are used widely in the project. Limited by the construction procedure, piles are completed before excavation, because of the large area of unloading, it is very complicated to determine the behavior of uplift piles. Under the physical and mechanical properties of soil layers and the shearing properties of pile-soil interface, to calculate the behavior of uplift piles before and after excavation is an important issue in geotechnical engineering.
     Based on the above background, the pile-soil interaction during large and deep excavation is studied. At first, In order to realize the ultimate uplift capacity of model piles under excavation in sand, model tests are conducted on different excavation diameter, depth, and different pile length under the bottom of pit, several result are obtained. The ultimate uplift capacity of piles become smaller after excavation. Under the same excavation depth, the larger the diameter of excavation is, the lower the ultimate uplift capacity of piles will be. When the excavation diameter is all of the container, the sand is overconsolidated after excavation, the ultimate uplift capacity of piles are bigger than the piles in the normally consolidated sand.
     The sand (different relative density), saturated silt and silty clay K0 loading-unloading tests are conducted, using the JCY consolidation apparatus, then theσv'~σh'relationships during the tests are described by K0 loading-unloading model. The influence of the physical and mechanical properties of soil on the parameters of K0 loading-unloading model are discussed.
     The big soil consolidation apparatus is made, the uplift pile can be placed in it. When the soil around the pile are sand and saturated silt, the ultimate bearing capacity of uplift piles are tested when the soil around the piles are under K0 loading-unloading condition. Then the ultimate bearing capacity of uplift piles are tested when the OCR of the soil are different. The result indicates that the OCR has a great influence on the ultimate lateral friction of uplift pile. The bigger the OCR is, the bigger the ultimate lateral friction of uplift pile is. The influence of stress path of soil on the ultimate lateral friction of uplift pile can be calculated by K0 loading-unloading model.
     Based on the element experiment and model test, combined with the shearing properties of the pile-soil interface, the one dimensional model and FEM model are conducted to study the influence of the large and deep excavation on the bearing behavior of uplift single pile. An example is calculated, the calculated result of one dimensional model is similar to the FEM model. The normal stress of the pile-soil interface becomes smaller after large and deep excavation, this cause the ultimate bearing capacity and the bearing stiffness of uplift pile smaller. The soil rebounds after excavation, then drive the pile rebounds, the initial lateral friction will be produced after excavation, it will influence the load transfer process of uplift pile.
     The behavior of group piles after large and deep excavation is studied using ABAQUS, the rebounding displacement and pull force of piles influenced by the shielding effects are studied. Then the shielding effects of different number and pile spacing of group piles are discussed. The results indicate that pull force of center pile is smallest after excavation. The smaller the pile spacing and the larger the number of piles are, the greater the shielding effects are.
     The behavior of uplift group piles after excavation are calculated, the result indicates that when the uplift group piles reach the ultimate bearing capacity, the displacement are larger than the single pile. With the same pile spacing, the group efficiency is smaller when the number of piles increases. With the same number of piles, the group efficiency is larger when the pile spacing increases.
     At last, some research results are used in the design and calculation of Shanghai 500kV underground substation.
引文
ABAQUS. ABAQUS user's and theory manuals[M], Rhode Island:Hibbitt, Karlsson & Sorensen, Inc.,2004
    Alawneh, A.S., Malkawi, A.I.H., Al-Deeky, H.. Tension tests on smooth and rough model piles in dry sand[J]. Canadian Geotechnical Journal,1999,36(4): 746-753.
    Alonso, E.E., Josa, A., Ledesma, A.. Negative skin friction on piles:A simplified analysis and prediction procedure[J]. Geotechnique,1984,34(3):341-357.
    API recommended practice 2A-LRFD. Recommended practice for planning, designing and constructing fixed offshore platforms-load and resistance factor design[S].1993
    Bea, R.G. Parameters affecting axial capacity of piles in clays[C]. Proc.7th Offshore technology Conf.,1975,611-623.
    Brooker, E.W., Ireland, H.O.. Earth pressure at rest related to stress history[J]. Canadian Geotechnical Journal,1965,2(1):1-15.
    Chandler, R.J.. The shaft friction of piles in cohesive soils in terms of effective stresses[M]. Civ. Engng. Publ. Wks. Rev.1968,63:48-51.
    Chen, T.J., Fang, Y.S.. Earth Pressure due to Vibratory Compaction[J]. Journal of geotechnical and geoenvironmental engineering,2008,134(4):437-444.
    Chow, Y. K.. Discrete element analysis of settlement of pile groups[J]. Computers and Geotechnics,1986,24(1):157-166.
    Clark, J.I., Meyerhof, G.G.. The behavior of piles driven in clay, I. An investigation of soil stress and pore water pressure properties[J]. Canadian Geotechnical Journal, 1972,9(4):351-373.
    Coyle, H.M., Reese, L.C.. Load transfer for axially loaded piles in clay[J]. Journal of the soil mechanics and foundations division,1966,92(SM2):1-26.
    Daramola, O. On estimating Ko for overconsolidated granular soils[J]. Geotechnique, 1980,30(3):310-313.
    Das, B.M., Azim, M.F.. Uplift capacity of rigid steel pile groups in clay[J]. Soils and foundations,1985,25(4):117-122.
    Das, B.M., Seeley, G.R., Smith, J.E.. Uplift capacity of group piles in sand[J]. Journal of geotechnical engineering division,1976,102(3):282-286.
    Das, B.M., Seeley, G.R.. Uplift capacity of buried model piles in sand[J]. Journal of geotechnical engineering division,1975,101(10):1091-1094.
    Dash, B.K., Pise, P.J.. Effect of compressive load on uplift capacity of model piles[J]. Journal of geotechnical and geoenvironmental engineering,2003,129(11):987-992.
    Dash, B.K., Pise, P.J.. Effect of compressive load on uplift capacity of model piles[J]. Journal of geotechnical and geoenvironmental engineering,2003,129(11):987-992.
    Davisson, M.T.. Negative skin friction in piles and design decisions[C]. Proc.3rd Int. Conf. Case Histories Geotechnical Engineering,1993,1793-1801.
    Desai, C.S., Drumm, E.C., Zaman, M.. Cyclic testing and modeling of interface[J]. Journal of Geotechnical Enginering,1985, 111(6):793-815.
    Duncan, J.M., Seed, R.B.. Compaction-induced earth pressures under Ko-conditions[J].Journal of geotechnical engineering,1986,112(1):1-22.
    Eurocode7:Geotechnical design-Part1:General rules[S]. London,2004.
    Evgin, E., Fakharian, K.. Effect of stress paths on the behaviour of sand-steel interfaces[J]. Canadian Geotechnical Journal,1996,33(6):853-865.
    Fakharian, K., Evgin, E.. Cyclic simple-shear behavior.of sand-steel interfaces under constant normal stiffness condition[J]. Journal of geotechnical and geoenvironmental engineering,1997,123(12):1096-1105.
    Feda, J.. K0-Coefficient of sand in triaxial apparatus[J]. Journal of geotechnical engineering,1984,110(4):519-524.
    Felio, G.Y., Briaud, J.L.. Procedure for a rod shear test[J].Geotechnical testing Journal,1986,9(3):133-139.
    Fellenius, B.H., Altaee, A.A.. Critical depth:how it came into being and why it does not exist[C]. Proc. ICE:Geotechnical engineering,1995,113(2):107-111.
    Gomez, J.E., Filz, G. M., and Ebeling, R.M.. Development of an improved numerical model for concrete-to-soil interfaces in soil-structure interatction analyses[R]. Technical Rep. ITL-99-1, U.S. Army Engineer Research and Development Center, Vicksburg, Miss.2000.
    Guo, W. D., Randolph, M.F.. Vertically loaded piles in non-homogeneous media[J]. International journal for numerical and analytical methods in geomechanics,1997, 21:507-532
    Hanna, A., AI-Romhein, R.. At-rest earth pressure of overconsolidated cohesionless soil[J]. Journal of geotechnical and geoenvironmental engineering,2008,134(3): 408-412.
    Hanna, A., Ghaly, A.. Effects of Ko and overconsolidation on uplift capacity[J]. Journal of geotechnical engineering,1992,118(9):1449-1469.
    Hanna, A., Nguyen, T.Q.. Shaft Resistance of single vertical and batter piles driven in sand[J]. Journal of geotechnical and geoenvironmental engineering,2003,129(7): 601-607.
    Inoue, Y., Tamaoki, K., Ogai, T.. Settlement of building due to pile downdrag[C]. Proc. 9thICSMFE,1977,561-564.
    Iwasaki, Y., Watanabe, H., Fukuda, M., Hirata, A., Hori, Y. Construction control for underpinning piles and their behaviour during excavation[J]. Geotechnique,1994, 44(4):681-689.
    Jaky, J.. The coefficient of earth pressure at rest[J]. Journal for society of Hungarian architects and engineers,1944:355-358
    Kim, S., Jeong, S., Cho, S., Park, I.. Shear load transfer characteristics of drilled shafts in weathered rocks [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(11):999-1010.
    Kishida, H., Uesugi, M.. Tests of the interface between sand and steel in the simple shear apparatus[J]. Geotechnique,1987,37(1):45-52.
    Kishida, H.. Stress distribution by model piles in sand[J]. Soils and foundations,1963, 4(1):1-23.
    Kog, Y.C.. A case study of downdrag and axial load on timber piles in layered soil[C]. Proc.5th Int. Geotechnical Seminar,1987,269-276.
    Kraft, L. M., Ray, R. P., Kagawa, T.. Theoretical t-z curves[J]. Journal of geotechnical engineering,1981,107(11):1543-1561.
    Kulhawy, F.H., Kozera, D.W., Withiam, J.L.. Uplift testing of model drilled shafts in sand[J]. Journal of geotechnical engineering division,1979,105(1):31-47.
    Lee, C.J., Bolton, M.D., AI-Tabbaa, A.. Numerical modeling of group effects on the distribution of dragloads in pile foundations[J]. Geotechnique,2002,52(5):325-335.
    Lee, C.J., Ng, C.W.W.. Development of downdrag on piles and pile groups in consolidation soil[J]. Journal of geotechnical and geoenvironmental engineering, 2004,130(9):905-914.
    Lehane, B.M., Jardine, R.J., Bond, A.J., Frank, R.. Mechanisms of shaft friction in sand from instrumented pile tests[J]. Journal of geotechnical engineering,1993, 119(1):19-35.
    Levacher, D.R., Sieffert, J.G.. Tests on model tension piles[J]. Journal of geotechnical engineering,1984,110(12):1735-1748.
    Liu, J., Xiao, H.B., Tang, J., Li, Q. S.. Analysis of load-transfer of single pile in layered soil[J]. Computers and Geotechnics,2004,31:127-135.
    Madhav, M.R.. Efficiency of pile groups in tension[J]. Canadian Geotechnical Journal, 1987,24:149-153.
    Massarsch, K.R., Broms, B.B., Sundquist, O.. Pore pressure determination with multiple piezometers[C]. Proc. Conf. on in situ measurement of soil properties, 1975,260-265.
    Mattes, N. S., Poulos, H.G.. Settlement of single compressible pile[J]. Journal of Soil Mechanics Foundation Division,1969,95(1):189-207.
    Mayne, P.W., Kulhawy, F.H.. K0-OCR relationship in soil[J].Journal of geotechnical engineering division,1982,108(6):851-872.
    Mccabe, B.A., Lehane, B.M.. Behavior of axially loaded pile groups driven in clayey silt[J]. Journal of geotechnical and geoenvironmental engineering,2006,132(3): 401-410.
    Meyerhof, GG. Bearing capacity and settlement of pile foundations[J].Journal of geotechnical engineering division,1976,102(3):195-228.
    Mindlin, R. D.. Force at a point in the interior of semi-infinite solid[J]. Physics,1936, 7:195-202.
    Mochtar, I.B., Edil, T.B.. Shaft resistance of model pile in clay[J].Journal of geotechnical engineering,1988,114(11):1227-1243.
    Muki, R., Sternberg, E.. Elastostatic load-transfer to a half-space form a partially embedded axially loaded rod[J]. International Journal of Solids and Structures, 1970,6(7):69-90.
    Ng, C.W.W., Poulos, H.G, Chan, V.S.H., Lam, S.S.Y., Chan, G.C.Y.. Effects of tip location and shielding on piles in consolidation groud[J]. Journal of geotechnical and geoenvironmental engineering,2008,134(9):1245-1260.
    Nicola, A.D., Randolph, M.F.. Tensile and compressive shaft capacity of piles in sand [J] Journal of geotechnical engineering,1993,119(12):1952-1973.
    O'Neill, M.W., Hawkins, R.A., Mahar, L.J.. Load transfer mechanisms in piles and pile groups[J].Journal of geotechnical engineering,1982,108(12):1605-1623
    Okabe, T.. Large negative friction and friction-free pile methods[C]. Proc.9th ICSMFE,1977,679-682.
    Potyondy, J.G. Skin friction between various materials[J]. Geotechnique,1961,11(4): 339-353.
    Poulos, H.G, Chan, K.E.. Laboratory study of pile skin friction in calcareous sand: Civil engineering research report No.R486[R]. Sydney:University of Sydney, 1984
    Poulos, H.G, Davis, E.H.. Pile foundation analysis and design[M]. John Wiley, New York.1980.
    Poulos, H.G. Settlement of single pile in nohmogeneous soil[J]. ASCE Journal of Geotechnical engineering division,1979,105(5):627-642.
    Poulos, H.G., Mattes, N.S.. The behavoir of axially loaded end-bearing piles[J]. Geotechnique,1969,19(2):285-300.
    Randolph, M. F., Worth C. P.. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering,1978,104(2):1465-1488.
    Randolph, M.F., Worth, C.P.. An analysis of the vertical deformation of pile groups[J]. Geotechnique,1979,29(4):157-166.
    Robinsky, E.I, Morrison, C.F.. Sand displacement and compaction around model friction piles[J]. Canadian Geotechnical Journal,1964,1(2):81-93.
    Schmidt, B.. Earth pressure at rest related to stress history[J]. Canadian Geotechnical Journal,1966,3(4):239-242.
    Seed, H.B., Reese, L.C.. The action of soft clay along friction piles[C]. Trans Am. Soc. Civ. Engrs.1957, (122):731-754.
    Shanker, K., Basudhar, P.K., Patra, N.R.. Uplift capacity of pile groups embedded in sands:predictions and performance[J]. Soils and foundations,2006,46(5):605-612.
    Tsubakihara, Y., Kisheda, H.. Frictional behavior between normally consolidated clay and steel by two direct shear type apparatus[J]. Soils and Foundations,1993, 33(2):1-13.
    Worth, C.P.. General theories of earth pressure and deformation[C]. Proc.5th European conf. on soil mechanics and foundation engineering,1973,2:33-52.
    曹卫平.桩承式路堤土拱效应及基于性能的设计方法研究[D].浙江大学博士学位论文.2007.
    陈锦剑,王建华,范巍等.抗拔桩在大面积深开挖过程中的受力特性分析[J].岩土工程学报,2009,31(3):402-407.
    陈龙珠,梁国钱,朱金颖等.桩轴向荷载-沉降曲线的一种解析算法[J],岩土工程学报,1994,16(6):30-38.
    陈明中.群桩沉降计算理论及桩筏基础优化设计研究[D].浙江大学博士学位论文,2000.
    陈仁朋.软弱地基中桩筏基础工作性状及分析设计方法研究[D].浙江大学博士学位论文,2001.
    陈孝贤.深基坑开挖坑底土体隆起对工程桩影响的探讨[J].福建建设科技,2006,(3):15-16.
    程玉梅,周明芳,刘广博.卸荷土体的静止土压力系数[J],佳木斯大学学报,2006,24(2):312-314.
    范巍.大面积深基坑开挖过程中桩基受力特性研究[D].上海交通大学硕士学位论文,2007.
    胡琦,凌道盛,陈云敏等.深基坑开挖对坑内基桩受力特性的影响分析[J].岩土力学,2008,29(7):1965-1970.
    黄锋,李广信,吕禾.砂土中抗拔桩位移变形的分析[J].土木工程学报,1999,32(1):31-36.
    黄锋,李广信,郑继勤.单桩在压与拔荷载下桩侧摩阻力的有限元计算研究[J].工程力学,1999,16(6):97-101.
    黄茂松,郦建俊,王卫东等.开挖条件下抗拔桩的承载力损失比分析[J].岩土工程学报,2008,30(9):1291-1 297.
    黄茂松,任青,王卫东等.深层开挖条件下抗拔桩极限承载力分析[J].岩土工程学报,2007,29(11):1689-1695.
    黄绍铭,王迪民,裴捷等.减少沉降量桩基的设计和初步实践[C].第六届土力学与基础工程学术会议论文集,北京,中国建筑工业出版社,1991,405-414.
    黄文熙.土的工程性质[M].水利电力出版社,1983.
    建筑桩基技术规范(JGJ94-94)[S].中国建筑工业出版社,北京,1994.
    姜安龙,郭云英,高大钊.静止土压力系数研究[J].岩土工程技术,2003,(6):354-359.
    李熹,凌辉,吴传波.黏土中抗拔桩工作机理分析[J].工业建筑,2006,36(S):707-709.
    郦建俊,黄茂松,王卫东等.开挖条件下抗拔桩承载力的离心模型试验[J].岩土工程学报,2010,32(3):388-396.
    吕凡任,陈仁朋,陈云敏等.软土地基上微型桩抗压和抗拔特性试验研究[J].土木工程学报,2005,38(3):99-105.
    南京水利科学研究院.土工试验规程(SL237-1999)[S].北京:中国水利水电出版 社,1999.
    孙晓立,杨敏,朱碧堂.使用修正变分法分析抗拔单桩和群桩的变形[J].岩土工程学报,2007,29(4):549-553.
    孙晓立,杨敏.使用修正变分法分析抗拔桩非线性变形[J].岩石力学与工程学报,2008,27(6):1270-1277.
    孙晓立.抗拔桩承载力和变形计算方法研究[D].同济大学博士学位论文,2007.
    王启铜.柔性桩的沉降特性及荷载传递规律[D].浙江大学博士学位论文,1991.
    王之军,管志新,刘建平等.等截面单桩抗拔承载性状试验研究[J].探矿工程,2006,(4):1-4.
    杨敏,王树娟,王伯钧,周融华.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报,1997,25(4):379-385.
    杨仲元.超固结比对静止土压力系数的影响[J].工业建筑,2006,36(12):50-51.
    宰金珉.群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报,1996,17(1):63-64.
    张嘎.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究[D].清华大学博士学位论文.2002.
    张洁,尚岳全,林旭武.考虑上拔力作用点位置影响的抗拔桩变形分析[J].土木工程学报,2005,38(7):102-106.
    张尚根,陈志龙,尹峰等.等截面抗拔桩的变形分析[J].解放军理工大学学报,2002,3(5):71-73.
    张振营.城市生活垃圾的压缩性及填埋场的沉降研究[D].浙江大学博士学位论文.2005.
    郑刚,刁钰,吴宏伟.超深开挖对单桩的竖向荷载传递及沉降的影响机理有限元分析[J].岩土工程学报,2009,31(6):837-845.
    周万欢.堆载固结过程中单桩负摩擦力性状研究[D].浙江大学硕士学位论文,2005.
    朱碧堂,杨敏.抗拔桩的变形与极限承载力计算[J].建筑结构学报,2006,27(3):120-129.
    朱火根,孙加平.上海地区深基坑开挖坑底土体回弹对工程桩的影响[J].岩土工 程界,2005,8(3):43-46.
    佐藤悟.基桩承载力机理[J].土木技术,1965,20(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700