用户名: 密码: 验证码:
酞菁功能聚合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酞菁(Phthalocyanines, Pcs)由于其独特的光电性质,在场效应晶体管、光信息存储、有机太阳能电池、光动力治疗以及非线性光学材料等多个领域具有广泛的应用,引起了科研工作者极大的关注。酞菁聚合物即可保留酞菁本身优异的物理化学特性,又能具备高分子材料优异的溶解和加工性能,日益成为研究的热点之一。同时,将酞菁单元通过自组装形成超分子结构能够进一步提高酞菁材料的物理化学性质,是制备酞菁类分子器件的关键步骤之一。因此,设计并合成结构新颖、性能优异的酞菁聚合物及酞菁单元的可控自组装是酞菁材料领域的重要研究课题之一。
     本论文从酞菁聚合物材料的合成以及可控自组装的角度出发,制备了具有特殊结构的酞菁聚合物,研究了酞菁单元的自组装行为以及光、电性质。研究内容具体包括:
     (1)运用可逆加成-断裂链转移(ReversibleAddition-Fragmentation Chain Transfer,RAFT)方法成功进行了邻苯二腈功能化的甲基丙烯酸甲酯类单体(2-methyl-acrylicacid6-(3,4-dicyano-phenoxy)-hexyl ester, MADCE)的聚合。聚合行为呈现“活性”/可控自由基聚合的特征:反应动力学呈一级线性关系,聚合物的数均分子量随单体转化率的增加而呈线性增长,较窄的分子量分布指数和成功的扩链实验。得到的侧链含邻苯二腈的聚合物通过后修饰方法进一步转变为侧链带有锌酞菁(ZincPhthalocyanine, ZnPc)的聚合物(PMADCE-ZnPc)。运用红外光谱、紫外-可见光谱、荧光光谱、原子吸收光谱和热分析测试对PMADCE-ZnPc进行了表征。探索了PMADCE-ZnPc作为给体材料在体异质结太阳能电池中的潜在应用。结构为ITO/PEDOT:PSS/PMADCE-ZnPc:PC61BM/LiF/Al的太阳能电池的能量转换效率(PCE)为0.014%,开路电压(Voc)为0.21V,短路电流(Jsc)为0.28mA/cm2,填充因子(FF)为0.24。
     (2)成功合成了两个可溶性金属酞菁,四叔丁基镓氟酞菁(Fluorogalliumtetra-tert-butylphthalocyanine, ttbPcGaF)和它的前驱体四叔丁基镓羟基酞菁(Hydroxygallium tetra-tert-butylphthalocyanine, ttbPcGaOH)。通过电喷雾-行波离子迁移质谱(ESI-TWIM MS)、紫外-可见光谱(UV-vis)、广角X射线散射(WAXS)和透射电镜(TEM)研究了ttbPcGaF和ttbPcGaOH的自组装性质。结果发现,在固态下,ttbPcGaF比ttbPcGaOH拥有更强的自组装能力来形成有序的一维超分子聚合物。此外,分别研究了以ttbPcGaF和ttbPcGaOH为给体材料,以PC61BM为受体材料的体异质结太阳能电池(Heterojunction (BHJ) Organic Solar Cell, BHJ OSC)的光伏性能。由于在ttbPcGaF:PC61BM共混膜中,ttbPcGaF依然能够自组装形成有序聚集体,所以基于ttbPcGaF:PC61BM的BHJ OSC的光电转换效率(PCE)能达到0.41%。反之,ttbPcGaOH在ttbPcGaOH:PC61BM共混膜中自组装能力较差,由ttbPcGaOH:PC61BM组成的BHJ OSC只能产生非常低的PCE(0.03%)值。
     (3)合成了新型的偶氮苯连接的双邻苯二腈单体(Azobenzene-containingbis(ether dinitrile)s, AzoBEDN),该单体进一步在加热条件下进行四缩合成环反应,得到了含偶氮苯单元的超支化锌酞菁(Azobenzene-containing hyperbranched ZnPc,AzoHBZnPc)。通过红外光谱、紫外-可见光谱、荧光光谱和热重分析测试证实了偶氮苯超支化锌酞菁的形成,并研究了AzoHBZnPc的光物理和热稳定性能。使用紫外-可见光谱法和原子吸收光谱法分别测定并计算了不同反应时间的AzoHBZnPc中锌酞菁的含量。结果表明,随着反应时间的延长,得到的AzoHBZnPc中锌酞菁的含量逐渐增加。在不同波长的光照射下,AzoHBZnPc在四氢呋喃溶液中能够发生可逆的光致异构化反应。此外,考察了AzoHBZnPc的介电性能,其介电常数在2.87-3.12之间,介电损耗低于0.014。
     (4)成功合成了一个新型的偶氮苯类小分子化合物,4,4’-二硼酸偶氮苯,并首次将该偶氮苯衍生物作为构建单元,和2,3,6,7,10,11-六羟基苯并菲在溶剂热条件下通过缩合反应合成了由偶氮苯连接的共价有机框架(Azo-linked covalent organicframework, Azo-COF)二维高分子。通过X射线粉末衍射、扫描电镜、透射电镜、热重分析和氮气吸附等温线测试发现Azo-COF具有高结晶、热稳定和永久多孔等特点。Azo-COF中的偶氮苯单元在365nm波长的紫外光照射下能够发生从反式到顺式结构的光异构化反应。虽然偶氮苯的光异构化行为能够降低Azo-COF的结晶度,但是不能改变Azo-COF的孔尺寸。该体系的成功构建为以后的含偶氮苯酞菁类有机共价框架提供了研究基础。
Phthalocyanines (Pcs) have received considerable attentions due to their uniqueoptical and electronic properties which give rise to the application of Pcs in variousdomains, such as organic filed effect transistors, optical information storage, organic solarcells, photodynamic therapy, nonlinear optical materials and so on.Phthalocyanine-containing polymers combine the excellent physical and chemicalproperties of Pcs and the good solubility and processability of polymers, which arebecoming one of research hotspots. In addition, the physical and chemical properties ofPcs-based materials can be further improved by self-assembly of Pcs to supramolecularstructures, which is a key issue for incorporating Pcs into molecular devices. Therefore,design and synthesis of phthalocyanine-containing polymers with novel structures andsuperior properites, and controlled organization of Pcs is one of the important researchsubjects in Pcs-based materials field.
     In this thesis, we designed and synthesized several phthalocyanine-containingpolymers with special structures. And the self-assembly, optical and electronic propertiesof Pcs-based materials were also investigated. The detailed researches were summarized asfollowing:
     (1) A benzenedinitrile functionalized monomer,2-methyl-acrylic acid6-(3,4-dicyano-phenoxy)-hexyl ester (MADCE), was successfully polymerized via thereversible addition-fragmentation chain transfer (RAFT) method. The polymerizationbehaviour conveyed the characteristics of “living”/controlled radical polymerization: thefirst-order kinetics, linear increase of number-average molecular weight with monomerconversion, narrow molecular weight distribution and successful chain-extensionexperiment. The soluble Zn(II) phthalocyanine (Pc)-containing (ZnPc) polymers wereachieved by post-polymerization modification of the obtained polymers. The Zn(II)phthalocyanine-functionalized polymer was characterized by FT-IR, UV-vis, fluorescence,atomic absorption spectroscopy and TGA analysis. The potential application of above ZnPc-functionalized polymer as an electron donor material in bulk heterojunction organicsolar cell was studied. The device with ITO/PEDOT:PSS/ZnPc-Polymer:PC61BM/LiF/Alstructure provided a power convergent efficiency (PCE) of0.014%, fill factor (FF) of0.24,open circuit voltage (Voc) of0.21V, and short circuit current (Jsc) of0.28mA/cm2.
     (2) Two soluble phthalocyanine compounds, fluorogalliumtetra-tert-butylphthalocyanine (ttbPcGaF) and its precursor hydroxygalliumtetra-tert-butylphthalocyanine (ttbPcGaOH) were successfully synthesized. ttbPcGaF had amuch stronger ability than that of ttbPcGaOH to self-organize into well-orderedone-dimensional (1D) supramolecular polymers in solid state as revealed by ESI-TWIMMS, UV-vis, WAXS and TEM measurements. The photovoltaic properties of ttbPcGaF andttbPcGaOH as electron donor materials in solution-processed Bulk Heterojunction (BHJ)organic solar cells (OSCs) were investigated, respectively. Due to the retention of theself-assembly property of ttbPcGaF in the ttbPcGaF:PC61BM blend film, thettbPcGaF-based BHJ OSC provided a profoundly improved power conversion efficiency(PCE) of0.41%. In contrast, ttbPcGaOH-based BHJ OSC only exhibited a low PCE of0.03%, because PC61BM prohibited the self-assembly of ttbPcGaOH into orderedsupramolecular structures in ttbPcGaOH:PC61BM blend film.
     (3) A new azobenzene-linked bisphthalontrile monomer (AzoBEDN) was synthesizedfor the first time. And the azobenzene-containing hyperbranched zinc phthalocyanine(AzoHBZnPc) were prepared by tetracyclomerization of AzoBEDN in high boiling pointsolvent. The formation of ZnPc in AzoHBZnPc and the photophysical and thermalproperties of AzoHBZnPc were investigated by FT-IR, UV-vis, PL and TGA measurements.The content of ZnPc in AzoHBZnPc was calculated by UV-vis spectroscopy and confirmedby atom absorption spectroscopy, respectively. The results indicated that the contents ofZnPc in AzoHBZnPc increased with the reaction time. The reversible trans-cis-transphotoisomerization of azobenzene units in AzoHBZnPc could take place under theirradiation of light with different wavelengths. Besides, the dielectric responses ofAzoHBZnPc were also studied. The dielectric constants of AzoHBZnPc were in the rangeof2.87and3.12, and the dielectric losses were below0.014.
     (4) A novel azobenzene (Azo) monomer (azobenzene-4,4’-diboronic acid) wassynthesized and employed as building block to produce Azo-containing covalent organicframeworks (Azo-COF) through the borate ester formation reaction with 2,3,6,7,10,11-hexahydroxytriphenylene under solvothermal condition. The obtainedAzo-COF exhibited high crystallinity, thermal stability and permanent porosity as revealedby PXRD, SEM, TEM, TGA and nitrogen sorption isotherm measurements. Thetrans-to-cis photoisomerization of Azo units in Azo-COF occurred under the radiation with365nm UV light. Most interestingly, the phoisomerization of Azo units only coulddecrease the crystallinity of Azo-COF, while could not change the pore size of Azo-COF.The successful construction of Azo-COF will provide the foundation of research for thesubsequent azobenzene-containing Pc COF.
引文
1. Linstead, R. P. Phthalocyanines. Part I. A New Type of Synthetic Colouring Matters. J.Chem. Soc.,1934,1016-1017.
    2. Byrne, G. T.; Linstead, R. P.; Lowe, A. R. Phthalocyanines. Part II. The Preparation ofPhthalocyanine and Some Metallic Derivatives from o-cyanobenzamide andPhthalimide. J. Chem. Soc.,1934,1017-1022.
    3. Linstead, R. P.; Lowe, A. R. Phthalocyanines. Part III. Preliminary Experiments on thePreparation of Phthalocyanines from Phthalonitrile. J. Chem. Soc.,1934,1022-1027.
    4. Dent, C. E.; Linstead, R. P. Phthalocyanines. Part IV. Copper Phthalocyanines. J.Chem. Soc.,1934,1027-1031.
    5. Robertson, J. M. An Χ-ray Study of the Srtucture of the Phthalocyanines. Part I. TheMetal-Free, Nickel, Copper, and Platinum Compounds. J. Chem. Soc.,1935,615-621.
    6. Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe, M. Molecular ImageResolution in Electron Microscopy. J. Appl. Phys.,1972,43,5181-5189.
    7. de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: The Need for SelectiveSynthetic Approaches. Eur. J. Org. Chem.,2000,2821-2830.
    8. Mack, J.; Kobayashi, N. Low Symmetry Phthalocyanines and Their Analogues. Chem.Rev.,2011,111,281-321.
    9.殷焕顺,邓建成,周燕.金属酞菁的固相法合成.染料与染色,2004,4,150-152.
    10. Krier, A.; Azim-Araghi, M. E. The Influence of NO2on the Conductivity ofChloro-Aluminium Phthalocyanine Thin Films. J. Phys. Chem. Solids,1997,58,711-716.
    11. W hrle, D.; Schnurpfeil, G.; Knothe, G. Efficient Synthesis of Phthalocyanines andRelated Macrocyclic Compounds in the Presence of Organic Bases. Dyes Pigm.,1992,18,91-102.
    12. Pawlowski, G.; Hanack, M. A Convenient Synthesis of OctasubstititedPhthalocyanines, Synthesis,1980,4,287-289.
    13. Ishii, K.; Itoya, H.; Miwa, H.; Kobayashi, N. Selective Detection of Minor PrototropicTautomers in Low-Symmetry Tetraazaporphyrin Derivatives by the Combined Use ofElectronic Absorption, MCD, and CI Calculations. Chem. Commun.,2005,4586-4588.
    14. Miwa, H.; Ishii, K.; Kobayashi, N. Electronic Structures of Zinc and PalladiumTetraazaporphyrin Derivatives Controlled by Fused Benzo Rings. Chem. Eur. J.,2004,10,4422-4435.
    15. Vagin, S. I.; Hanack, M. Synthesis and Spectroscopic Properties of Non-SymmetricalBenzo-Annulated Porphyrazines and Their Metal Complexes. Eur. J. Org. Chem.,2002,2859-2865.
    16. Youssef, T. E.; O’Flaherty, S.; Blau, W.; Hanack, M. Phthalocyaninatoindium(III)Acetylacetonates for Nonlinear Optics. Eur. J. Org. Chem.,2004,101-108.
    17. Haas, M.; Liu, S.; Neels, A.; Decurtins, S. A Synthetic Approach to AsymmetricPhthalocyanines with Peripheral Metal-Binding Sites. Eur. J. Org. Chem.,2006,5467-5478.
    18. Kobayashi, N.; Mack, J.; Ishii, K.; Stillman, M. Electronic Structure of ReducedSymmetry Peripheral Fused-Ring-Substituted Phthalocyanines. Inorg. Chem.,2002,41,5350-5363.
    19. Kimura, T.; Kanota, N.; Matsui, K.; Tanaka, I.; Tsuboi, T.; Takaguchi, Y.; Yomogita,A.; Wakahara, T.; Kuwahara, S.; Nagatsugi, F.; Akasaka, T. Preparation andElectrochemical and Optical Properties of Unsymmetrically SubstitutedPhthalocyanines with One or Two Trithiole Rings and Related Symmetric Derivatives.Inorg. Chem.,2008,47,3577-3583.
    20. García-Frutos, E. M.; Fernández-Lázaro, F.; Maya, E. M.; Vázquez, P.; Torres, T.Copper-Mediated Synthesis of Phthalocyanino-Fused Dehydro [12]-and [18]Annulenes. J. Org. Chem.,2000,65,6841-6846.
    21. Maya, E. M.; Vázquez, P.; Torres, T. Synthesis of Alkynyl-Linked PhthalocyanineDyads: Push-Pull Homo-and Heterodimetallic Bisphthalocyaninato Complexes.Chem. Eur. J.,1999,5,2004-2013.
    22. Ranta, J.; Kumpulainen, T.; Lemmetyinen, H.; Efimov, A. Synthesis andCharacterization of Monoisomeric1,8,15,22-Substituted (A3B and A2B2)Phthalocyanines and Phthalocyanine-Fullerene Dyads. J. Org. Chem.,2010,75,5178-5194.
    23. Maya, E. M.; Vázquez, P.; Torres, T.; Gobbi, L.; Diederich, F.; Pyo, S.; Echegoyen, L.Synthesis and Electrochemical Properties of Homo-and HeterodimetallicDiethynylethene Bisphthalocyaninato Complexes. J. Org. Chem.,2000,65,823-830.
    24. Torres, T.; de la Torre, G.; García-Ruiz, J. Synthesis of New Push-PullUnsymmetrically Substituted Styryl Metallophthalocyanines: Targets for NonlinearOptics. Eur. J. Org. Chem.,1999,2323-2326.
    25. Chambrier, I.; Cook, M. J.; Cracknell, S. J.; McMurdo, J. Synthesis andCharacterisation of Some Non-Uniformly Substituted Mesogenic Phthalocyanines. J.Mater. Chem.,1993,3,841-849.
    26. Kobayashi, N.; Kondo, R.; Nakajima, S.; Osa, T. New Route to UnsymmetricalPhthalocyanine Analogues by the Use of Structurally Distorted Subphthalocyanine. J.Am. Chem. Soc.,1990,112,9640-9641.
    27. Kudrevich, S. V.; Gilbert, S.; van Lier, J. E. Syntheses of TrisulfonatedPhthalocyanines and Their Derivatives Using Boron(III) Subphthalocyanines asIntermediates. J. Org. Chem.,1996,61,5706-5707.
    28. Sastre, A.; Torres, T.; Hanack, M. Synthesis of Novel Unsymmetrical MonoaminatedPhthalocyanines. Tetrahedron Lett.,1995,36,8501-8504.
    29. Weitemeyer, A.; Kliesch, H.; W hrle, D. Unsymmetrically Substituted PhthalocyanineDerivatives via a Modified Ring Enlargement Reaction of UnsubstitutedSubphthalocyanine. J. Org. Chem.,1996,60,4900-4904.
    30. Sastre, A.; del Rey, B.; Torres, T. Synthesis of Novel Unsymmetrically SubstitutedPush-Pull Phthalocyanines. J. Org. Chem.,1996,61,8591-8597.
    31. Kobayashi, N.; Ishizaki, T.; Ishii, K.; Konami, H. Synthesis, Spectroscopy, andMolecular Orbital Calculations of Subazaporphyrins, Subphthalocyanines,Subnaphthalocyanines, and Compounds Derived Therefrom by Ring Expansion. J.Am. Chem. Soc.,1999,121,9096-9110.
    32. Kasuga, K.; Idehara, T.; Handa, M. Preparation of Unsymmetrical Phthalocyanine byMeans of a Ring Expansion of Subphthalocyanine. Inorg. Chim. Acta.,1992,196,127-128.
    33. Leznoff, C. C.; Hall, T. W. The Synthesis of a Soluble, UnsymmetricalPhthalocyanine of a Polymer Support. Tetrahedron Lett.,1982,23,3023-3206.
    34. Erdem, S. S.; Nesterova, I. V.; Soper, S. A.; Hammer, R. P. Solid-Phase Synthesis ofAsymmetrically Substituted “AB3-Type” Phthalocyanines. J. Org. Chem.,2008,73,5003-5007.
    35. Hirth, A.; Sobbi, A. K.; W hrle, D. Synthesis of a Monofunctional Phthalocyanine onSilica. J. Porphyrins Phthalocyanines,1997,1,275-279.
    36. Synak, A.; Gil, M.; Organero, J. A.; Sánchez, F.; Iglesias, M.; Douhal, A. Fast toUltrafast Dynamics of Palladium Phthalocyanine Covalently Bonded to MCM-41Mesoporous Material. J. Phys. Chem. C,2009,113,19199-19207.
    37. Stihler, P.; Hauschel, B.; Hanack, M. Synthesis of a Bisdienophilic Phthalocyanineand of Precursors for Repetitive Diels-Alder Reactions Based on Hemiporphyrazinesand Phthalocyanines. Chem. Ber.,1997,130,801-806.
    38. Young, J. G.; Onyebuagu, W. Synthesis and Characterization of Di-disubstitutedPhthalocyanines. J. Org. Chem.,1990,55,2155-2159.
    39. Sakamoto, K.; Ohno-Okumura, E.; Kato, T.; Watanabe, M.; Cook, M. J. Investigationof Zinc Bis(1,4-didecylbenzo)-bis(2,3-pyrido)porphyrazine as an EfficientPhotosensitizer by Cyclic Voltammetry. Dyes Pigm.,2008,78,213-218.
    40. Cook, M. J.; Jafari-Fini, A. Phthalocyanine-Related Macrocycles: CrossCyclotetramerisation Products from3,4-Dicyanothiophenes,2,3-Dicyanothiopheneand3,6-Dialkylphthalonitriles. Tetrahedron,2000,56,4085-4094.
    41. Kobayashi, N.; Ashida, T.; Osa, T. Synthesis, Spectroscopy, Electrochemistry, andSpectroelectrochemistry of a Zinc Phthalocyanine with D2hSymmetry. Chem. Lett.,1992,2031-2034.
    42. Sholto, A.; Lee, S.; Hoffman, B. M.; Barrett, A. G. M.; Ehrenberg, B. Spectroscopy,Binding to Liposomes and Production of Singlet Oxygen by Porphyrazines withModularly Variable Water Solubility. Photochem. Photobiol.,2008,84,764-773.
    43. Nolan, K. J. M.; Hu, M.; Leznoff, C. C.“Adjacent” Substituted Phthalocyanines.Synlett,1997,593-594.
    44. Kobayashi, N. Optically Active “Adjacent” Type Non-CentrosymmetricallySubstituted Phthalocyanines. Chem. Commun.,1998,487-488.
    45. Kobayashi, N.; Miwa, H.; Isago, H.; Tomura, T. An AdjacentDibenzotetraazaporphyrin: a Structural Intermediate between Tetraazaporphyrin andPhthalocyanine. Inorg. Chem.,1999,38,479-485.
    46. Kobayashi, N.; Miwa, H.; Nemykin, V. N. Adjacent versus Opposite TypeDi-Aromatic Ring-Fused Phthalocyanine Derivatives: Synthesis, Spectroscopy,Electrochemistry, and Molecular Orbital Calculations. J. Am. Chem. Soc.,2002,124,8007-8020.
    47. Kimura, M.; Ueki, H.; Ohta, K.; Shirai, H.; Kobayashi, N. Self-Organization ofLow-Symmetry Adjacent-Type Metallophthalocyanines Having Branched AlkylChains. Langmuir,2006,22,5051-5056.
    48. W hrle, D. Phthalocyanines in Macromolecular Phases-Methods of Synthesis andProperties of the Materials. Macromol. Rapid Commun.,2001,22,68-97.
    49. McKeown, N. B. Phthalocyanine-Containing Polymers. J. Mater. Chem.,2000,10,1979-1995.
    50. de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: Old Dyes, NewMaterials. Putting Color in Nanotechnology. Chem. Commun.,2007,2000-2015.
    51. W hrle, D.; Marose, U.; Knoop, R. Synthesis and Analytical Characterization ofPolymers from1,2,4,5-Benzenetetracarbonitrile. Makromol. Chem.,1985,186,2209-2228.
    52. W hrle, D.; Preuβner, E. Synthesis and Analytical Characterization of Polymers from1,2,4,5-Benzenetetracarboxylic Acid Derivatives. Makromol. Chem.,1985,186,2189-2207.
    53. Bannehr, R.; Meyer, G.; W hrle, D. The Structure of Polyphthalocyanines. Polym.Bull.,1980,2,841-846.
    54. W hrle, D.; Schulte, B. Synthesis and Analytical Characterization of Polymers fromOxy-and Arylenedioxy-Bridged Diphthalonitriles. Makromol. Chem.,1988,189,1167-1187.
    55. W hrle, D.; Schulte, B. Syntheses of Alkylenedioxy Bridged PolymericPhthalocyanines and Their Absorption Capacities for Organic Solvents in Comparisonto Other Phthalocyanines. Makromol. Chem.,1988,189,1229-1238.
    56. Snow, A. W.; Griffith, J. R. Syntheses and Characterization of Heteroatom-BridgedMetal-Free Phthalocyanine Network Polymers and Model Compounds.Macromolecules,1984,17,1614-1624.
    57. Ahsen, V.; Yilmazer, E.; Bekaroglu,. Synthesis and Properties of(18-Crown-6)-Bridged Phthalocyanine Network Polymers. Makromol. Chem.,1988,189,2533-2543.
    58. Hanack, M.; Lang, M. Conducting Stacked Metallophthalocyanines and RelatedCompounds. Adv. Mater.,1994,6,819-833.
    59. W hrle, D.; Schmidt, V.; Schumann, B.; Yamada, A.; Shigehara, K. Synthesis,Structureand Electrochemical Properties of Thin Films of Polymeric Phthalocyaninesfrom Tetracarbonitriles. Ber. Bunsengens. Phys. Chem.,1987,91,975-981.
    60. Feucht, C.; Linβen, T.; Hanack, M. Synthese Dienophiler und EnophilerPhthalocyanine, Chem. Ber.,1994,127,113-117.
    61. Hanack, M.; Stihler, P. Synthesis of Ladder-Type Oligomers IncorporatingPhthalocyanine Units. Eur. J. Org. Chem.,2000,303-311.
    62. Cook, M. J. Liquid Crystalline Oligomeric and Polymeric Phthalocyanines. Adv.Mater.,1995,7,877-880.
    63. Kimura, M.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Preparationof Ordered Stacked Phthalocyanine Polymers through Olefin Metathesis Reaction,Macromolecules,2001,34,4706-4711.
    64. Marks, T. J. Electrically Conductive Metallomacrocyclic Assemblies. Science,1985,227,881-889.
    65. Hohol, M. D.; Urban, M. W. Room Temperature Polymerization and SpectroscopicAnalysis of Germanium Phthalocyanine Polymers. Polymer,1993,34,1995-2002.
    66. Orthmann, E. A.; Wegner, G. Catalysis of Polycondensation ofDihydroxysilliconphthalocyanine, Makromol. Chem., Rapid Commun.,1986,7,243-247.
    67. Caseri, W.; Sauer, T.; Wegner, G. Soluble Phthalocyaninato-Polysiloxanes: Rigid RodPolymers of High Molecular Weight. Makromol. Chem., Rapid Commun.,1988,9,651-657.
    68. Kleinw chter, J.; Hanack, M. Rotational Isomers in Stacked Macrocycles: Synthesisand Spectroscopic Properties of Peripherally Substituted(μ-Oxo)bis(phthalocyaninatosilicon) Compounds. J. Am. Chem. Soc.,1997,119,10684-10695.
    69. Schwiegk, S.; Vahlenkamp, T.; Xu, Y.; Wegner, G. Origin of Orientation PhenomenaObserved in Layered Langmuir-Blodgett Structures of Hairy-Rod Polymers.Macromolecules,1992,25,2513-2525.
    70. Kalachev, A. A.; Sauer, T.; Vogel, A.; Plate, N. A.; Wegner, G. Influence of SubphaseConditions on the Properties of Langmuir-Blodgett Films from SubstitutedPhthalocyaninato-Polysiloxanes. Thin Solid Films,1990,188,341-353.
    71. Dirk, C. W.; Inabe, T.; Schoch, K. F.; Marks, T. J. Cofacial Assembly of PartiallyOxidized Metallamacrocycles as an Approach to Controlling Lattice Architecture inLow-Dimensional Molecular Solids. Chemical and Architectural Properties of the"Face-to-Face" Polymers [M(phthalocyaninato)O]n, Where M=Si, Ge, and Sn. J. Am.Chem. Soc.,1983,105,1539-1550.
    72. Dulog, L.; Gittinger, A.; Roth, S.; Wegner, G. Synthesis and Characterization ofPoly[2,3,9,10,16,17,23,24-octakis(dodecyloxycarbonyl)phthalocyaninatogermoxane].Makromol. Chem.,1993,194,493-500.
    73. Wu, J.; Zou, B.; Pan, Z.; Du, X.; Zhou, X. Molecular Images of[M(phthalocyaninato)O]n, Where M=Si and Ge: Microphases and Structures ofCrystal Domains. J. Polym. Sci. B: Polym. Phys.,1995,33,379-386.
    74. Hanack, M. Conduction in Polymeric Macrocyclic Complexes. Macromol. Symp.,1994,80,83-93.
    75. Hanack, M.; Dürr, K.; Lange, A.; Barcina, J. O.; Pohmer, J.; Witke, E. Synthesis ofLow Band Gap Polymers-a Challenge for Organic Chemists. Synth. Met.,1995,71,2275-2278.
    76. Schneider, O.; Hanack, M. Axial Polymerisiertes (Phthalocyaninato)eisen(II) mitPyrazin,4,4′-Bipyridin,1,4-Diisocyanobenzol oder1,4-Diazabicyclo[2.2.2]octan alsBrückenliganden; Darstellung, Charakterisierung und elektrische Leitf higkeiten.Chem. Ber.,1983,116,2088-2108.
    77. Grund, A.; Kalbeitzel, A.; Mathy, A.; Schwarz, R.; Bubeck, C.; Vermehren, P.;Hanack, M. Resonant Nonlinear Optical Properties of Spin-Cast Films ofSoluble Oligomeric Bridged (Phthalocyaninato)ruthenium(II) Complexes. J. Phys.Chem.,1992,96,7450-7454.
    78. Hanack, M.; Vermehren, P. Synthesis and Characterization of Soluble OligomericBridged Phthalocyaninatoruthenium(II) Complexes. Synth. Met.,1989,32,257-261.
    79. Markovitsi, D.; Hanack, M.; Vermehren, P. Triplet States of Oligomeric AxiallyBridged Ruthenium Phthalocyanines. J. Chem. Soc., Faraday Trans.,1991,37,455-459.
    80. Metz, J.; Hanack, M. Synthesis, Characterization, and Conductivity of(μ-Cyano)(phthalocyaninato)cobalt(III). J. Am. Chem. Soc.,1983,105,828-830.
    81. Schwartz, M.; Hatfield, W. E.; Joestan, M. D.; Hanack, M.; Datz, A. MagneticExchange Interactions in the Linear-Chain Chromium(III) Compounds. Inorg. Chem.,1985,24,4198-4201.
    82. Hanack, M.; Beck, A.; Lehmann, H. Syntheses of Liquid Crystalline Phthalocyanines.Synthesis,1987,703-705.
    83. Hanack, M.; Hedtmann-Rein, C.; Satz, A.; Keppeler, U.; Münz, X. Synthesis andProperties of (μ-Thiocyanato) and (μ-Azido)phthalocyaninato-Metal-Complexes.Synth. Met.,1987,19,787-792.
    84. Schneider, O.; Hanack, M. Phthalocyaninatoiron with Pyrazine as a BidentateBridging Ligand. Angew. Chem., Int. Ed. Engl.,1980,19,392-393.
    85. Schneider, O.; Hanack, M. A Novel Type of Organic Conductor: One-DimensionallyPolymerized Phthalocyaninatoiron(II). Angew. Chem., Int. Ed. Engl.,1982,21,79-79.
    86. Diel, B. N.; Inabe, T.; Jaggi, N. K.; Lyding, J. W.; Schneider, O.; Hanack, M.;Kannewurf, C. R.; Marks, T. J.; Schwartz, L. H. Cofacial Assembly ofMetallomacrocycles as an Approach to Controlling Lattice Architecture inLow-Dimensional Molecular Solids. Chemical, Structural, Oxidation-State, Transport,and Optical Properties of the Iron Coordination Polymer[Fe(phthalocyaninato)(.mu.-pyrazine)]nand the Consequences of Halogen Doping. J.Am. Chem. Soc.,1984,106,3207-3214.
    87. Schneider, O.; Hanack, M. Polymeric Electrically ConductivePhthalocyaninato(μ-s-tetrazine)iron, Angew. Chem., Int. Ed. Engl.,1983,22,784-785.
    88. Hanack, M.; Linge, A.; Rein, M.; Behnisch, R.; Renz, G.; Leverenz, A. BridgedMacrocyclic Transition Metal Complexesas Semiconducting Materials. Synth. Met.,1989,29,1-8.
    89. Wu, L.; Wang, Q.; Lu, J.; Bian, Y.; Jiang, J.; Zhang, X. Helical NanostructuresSelf-Assembled from Optically Active Phthalocyanine Derivatives Bearing FourOptically Active Binaphthyl Moieties: Effect of Metal-Ligand Coordination on theMorphology, Dimension, and Helical Pitch of Self-Assembled Nanostructures.Langmuir,2010,26,7489-7497.
    90. Rikukawa, M.; Matuzaki, D.; Nakagawa, M.; Sanui, K.; Ogata, N. BisaxiallyCoordinated (Phthalocyaninato) Metal Compounds with Azobispyridine. Synth. Met.,1995,71,2279-2280.
    91. Meier, H.; Albrecht, W.; Hanack, M. Correlations between Photoconductivity andMolecular Structure of Bridged Polymeric Phthalocyanines. Mol. Cryst. Liq. Cryst.,1991,194,75-83.
    92. Meier, H.; Albrecht, W.; Hanack, M. Photoconductivity of Bridged PolymericPhthalocyanine. Mol. Cryst. Liq. Cryst.,1993,228,69-74.
    93. Linsky, J. P.; Paul, T. R.; Nohr, R. S.; Kenney, M. E. Studies of a Series ofHaloaluminum,-Gallium, and-Indium Phthalocyanines. Inorg. Chem.,1980,19,3131-3135.
    94. Nohr, R. S.; Kuznesof, P. M.; Wynne, K. J.; Kenney, M. E.; Siebenman, P. G. HighlyConducting Linear Stacked Polymers: Iodine-Doped Fluoroaluminum andFluorogallim Phthalocyanines. J. Am. Chem. Soc.,1981,103,4371-4377.
    95. Fujimoto, H.; Dann, A. J.; Fahy, M. R.; Le Quesne, J. P.; Willis, M. R. InfraredReflection Study of Cofacially Stacked Phthalocyanines Doped with Iodine. J. Mater.Chem.,1996,6,1361-1367.
    96. Hiromitsu, I.; Ikeda, N.; Handa, M.; Ito, T. Quasi-one-dimensionalAntiferromagnetism in Fluoro-Aluminum Phthalocyanine-(BF4)0.3. Synth. Met.,1999,103,2322-2322.
    97. Maleysson, C.; Passard, M.; Blanc, J. P.; Battut, V.; Germain, J. P.; Pauly, A.;Demarne, V.; Grisel, A.; Tiret, C.; Planade, R. Elaboration and Tests ofMicroelectronically Designed Gas Sensors with Phthalocyanine Sensitive Layers.Sens. Actuators B, Chem.,1995,26,144-149.
    98. Yamaguchi, H.; Fujiwara, R.; Kusuda, K. Water-Soluble Substituted Polystyrene withPendant Tetrametal2,9,16,23-Phthalocyaninetetracarboxylate Metal Complexes,Sensitizing the Reduction of1,l’-Dimethyl-4,4’-bipyridinium Dichloride. Makromol.Chem., Rapid Commun.,1986,7,225-230.
    99. Bourdelande, J. L.; Karzazi, M.; Dicelio, L. E.; Litter, M. I.; Tura, G. M.; Román, E.S.; Vinent, V. Phthalocyanines Bound to Insoluble Polystyrene. Synthesis andProperties as Energy-Transfer Photosensitizers. J. Photochem. Photobiol. A,1997,108,273-282.
    100. Chen, Y.; Hanack, M.; O’Flaherty, S.; Bernd, G.; Zeug, A.; Roeder, B.; Blau, W. J.An Axially Grafted Charm Bracelet Type Indium Phthalocyanine Copolymer.Macromolecules,2003,36,3786-3788.
    101. Eichhorn, H.; Sturm, M.; W hrle, D. Syntheses and Polymerization ofMethacryloyloxy and2,4-Hexadienoyloxy Derivatives of Porphyrins andPhthalocyanines. Macromol. Chem. Phys.,1995,196,115-131.
    102. van Nostrum, C. F.; Nolte, R. J. M.; Devillers, M. A. C.; Oostergetel, G. T.;Teerenstra, M. N.; Schouten, A. J. Slow Structural Rearrangement of a Side-ChainPhthalocyanine Methacrylate Polymer at the Air-Water Interface. Macromolecules,1993,26,3306-3312.
    103. Kimura, M.; Dakeno, T.; Adachi, E.; Koyama, T.; Hanabusa, K.; Shirai, H.2-Acryloylamino-9,16,23-tri-tert-butylphthalocyanine and Autoxidation of Thiol withWater-Soluble Polymers Containing Cobalt(II) Phthalocyaninate Complex. Macromol.Chem. Phys.,1994,195,2423-2433.
    104. Makhseed, S.; Cook, A.; McKeown, N. B.; Phthalocyanine-Containing Polystyrenes.Chem. Commun.,1999,419-420.
    105. Kimura, M.; Ueki, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N.Aggregation Behavior of Amphiphilic Phthalocyanine Block Copolymers. Langmuir,2002,18,7683-7687.
    106. de la Escosura, A.; Martínez-Díaz, M. V.; Torres, T.; Grubbs, R. H.; Guldi, D. M.;Neugebauer, H.; Zinder, C.; Drees, M.; Sariciftci, N. S. New Donor-AcceptorMaterials Based on Random Polynorbornenes Bearing Pendant Phthalocyanine andFullerene Units. Chem. Asian J.,2006,1-2,148-154.
    107. Martínez-Díaz, M. V.; Esperanza, S.; de la Escosura, A.; Catellani, M.; Yunus, S.;Luzzati, S.; Torres, T. New Polythiophenes Bearing Electron-AcceptorPhthalocyanine Chromophores. Tetrahedron Lett.,2003,44,8475-8478.
    108. Allcock, H. R.; Neenan, T. X. Synthesis of Polyphosphazenes Bearing CovalentlyLinked Copper Phthalocyanine Units. Macromolecules,1986,19,1495-1501.
    109. Leclaire, J.; Dagiral, R.; Fery-Forgues, S.; Coppel, Y.; Donnadieu, B.; Caminade, A.-M.; Majoral, J.-P. Octasubstituted Metal-Free Phthalocyanine as Core of PhosphorusDendrimers: A Probe for the Properties of the Internal Structure. J. Am. Chem. Soc.,2005,127,15762-15770.
    110. Kernag, C. A.; McGrath, D. V. Non-Aggregating Octasubstituted DendriticPhthalocyanines. Chem. Commun.,2003,1048-1049.
    111. Brewis, M.; Clarkson, G. J.; Goddard, V.; Helliwell, M.; Holder, A. M.; McKeown,N. B. Silicon Phthalocyanines with Axial Dendritic Substituents. Angew. Chem. Int.Ed.,1998,37,1092-1094.
    112. Uchiyama, T.; Ishii, K.; Nonomura, T.; Kobayashi, N.; Isoda, S. A PhthalocyanineDendrimer Capable of Forming Spherical Micelles. Chem. Eur. J.,2003,9,5757-5761.
    113. Brewis, M.; Clarkson, G. J.; Helliwell, M.; Holder, A. M.; McKeown, N. B. TheSynthesis and Glass-Forming Properties of Phthalocyanine-Containing Poly(aryl ether)Dendrimers. Chem. Eur. J.,2000,6,4630-4636.
    114. Engelkamp, H.; Middelbeek, S.; Note, R. J. M. Self-Assembly of Disk-ShapedMolecules to Coiled-Coil Aggregates with Tunable Helicity. Science,1999,284,785-788.
    115. Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. MolecularMaterials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Adv.Mater.,2006,18,1251-1266.
    116. Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Mastering Molecular Matter.Supramolecular Architectures by Hierarchical Self-Assembly. J. Mater. Chem.,2003,13,2661-2670.
    117. Sly, J.; Kasák, P.; Gomar-Nadal, E.; Rovira, C.; Górriz, L.; Thordarson, P.;Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chiral Molecular Tapes from NovelTetra(thiafulvalene-crownether)-Substituted Phthalocyanine Building Blocks. Chem.Commun.,2005,1255-1257.
    118. de la Escosura, A.; Martínez-Díaz, M. V.; Thordarson, P.; RoRowan, A. E.; Nolte, R.J. M.; Torres, T. Donor-Acceptor Phthalocyanine Nanoaggregates. J. Am. Chem. Soc.,2003,125,12300-12308.
    119. Fujiki, M.; Tabei, H. Self-Assembling Features of Soluble Nickel Phthalocyanines. J.Phys. Chem.,1988,92,1281-1285.
    120. Duro, J. A.; de la Torre, G.; Torres, T. Synthesis of Different Aggregation Propertiesin Solution of Alkyl-and Dialkyl Amide Surrounded Phthalocyanines. TetrahedronLett.,1995,36,8079-8082.
    121. Lützen, A.; Starnes, S. D.; Rudkevich, D. M.; Jr, J. R. A Self-AssembledPhthalocyanine Dimer. Tetrahedron Lett.,2000,41,3777-3780.
    122. Martínez-Díaz, M. V.; Rodríguez-Morgade, M. S.; Feiters, M. C.; van Kan, P. J. M.;Nolte, R. J. M.; Stoddart, J. F.; Torres, T. Supramolecular PhthalocyanineDimersBased on the Secondary Dialkylammonium Cation/Dibenzo-24-crown-8Recognition Motif. Org. Lett.,2000,2,1057-1060.
    123. Rai, R.; Saxena, A.; Ohira, A.; Fujiki, M. Programmed Hyperhelical SupramolecularAssembly of Nickel Phthalocyanine Bearing Enantiopure1-(p-Tolyl)ethylaminocarbonyl Groups. Langmuir,2005,21,3957-3962.
    124. Cook, M. J. Properties of Some Alkyl Substituted Phthalocyanines and RelatedMacrocycles. Chem. Rec.,2002,2,225-236.
    125. Cammidge, A. N.; Gopee, H. Macrodiscotic Triphenylenophthalocyanines. Chem.Commun.,2002,966-967.
    126. Duro, J. A.; de la Torre, G.; Barberá, J.; Serrano, J. L.; Torres, T. Synthesis andLiquid-Crystal Behavior of Metal-Free and Metal-Containing PhthalocyaninesSubstituted with Long-Chain Amide Groups. Chem. Mater.,1996,8,1061-1066.
    127. Kimura, M.; Narikawa, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N.Star-Shaped Stilbenoid Phthalocyanines. Chem. Mater.,2002,14,2711-2717.
    128. Zhang, W.; Ochi, K.; Fujiki, M.; Naito, M.; Ishikawa, M.; Kaneto, K.; Takashima,W.; Saeki, A.; Seki, S. Programmed High-Hole-Mobility Supramolecular Polymersfrom Disk-Shaped Molecules. Adv. Funct. Mater.,2010,20,3941-3947.
    129. Kameyama, K.; Morisue, M.; Satake, A.; Kobuke, Y. Highly FluorescentSelf-Coordinated Phthalocyanine Dimers. Angew. Chem. Int. Ed.,2005,44,4763-4766.
    130. Satake, A.; Sugimura, T.; Kobule, Y. Coordination-Induced Sliding Motion of aComplementary Porphyrin-Phthalocyanine Dimer: Fluorescence-Based MolecularSwitch. J. Porphyrins Phthalocyanines,2009,13,326-335.
    131. Cordeiro, M. R.; Moreira, W. C. Thermal Behavior of Tetrapyrrole Derivatives andTheir Mixed Complexes. Thermochim. Acta.,2009,486,52-56.
    132. Li, X.; Ng, D. K. P. Self-Assembly of Meso-Pyridylporphyrins and ZincPhthalocyanines through Axial Coordination. Eur. J. Inorg. Chem.,2000,1845-1848.
    133. Cammidge, A. N.; Berber, G.; Chambrier, I.; Hough, P. W.; Cook, M. J.Octaalkylphthalocyaninato Ruthenium(II) Complexes with Mixed Axial Ligands andSupramolecular Porphyrin:Phthalocyanine Structures Derived from Them.Tetrahedron,2005,61,4067-4074.
    134. Berber, G.; Cammidge, A. N.; Chambrier, I.; Cook, M. J.; Hough, P. W. ControlledSynthesis of Ruthenium Phthalocyanines and Their Use in the Construction ofSupramolecular Arrays. Tetrahedron Lett.,2003,44,5527-5529.
    135. Morisue, M.; Kobuke, Y. Tandem Cofacial Stacks of Porphyrin-PhthalocyanineDyads through Complementary Coordination. Chem. Eur. J.,2008,14,4993-5000.
    136. Xu, H.; Ng, D. K. P. Construction of Subphthalocyanine-Porphyrin andSubphthalocyanine-Phthalocyanine Heterodyads through Axial Coordination. Inorg.Chem.,2008,47,7921-7927.
    137. Guldi, D. M.; Ramey, J.; Martínez-Díaz, M. V.; de la Escosura, A.; Torres, T.; Ros, T.D.; Prato, M. Reversible Zinc Phthalocyanine Fullerene Ensembles. Chem. Commun.,2002,2774-2775.
    138. Rodríguez-Morgade, M. S.; Torres, T.; Atienza-Castellanos, C.; Guldi, D. M.Supramolecular Bis(rutheniumphthalocyanine)-Perylenediimide Ensembles: SimpleComplexation as a Powerful Tool toward Long-Lived Radical Ion Pair States. J. Am.Chem. Soc.,2006,128,15145-15154.
    139. Silvestri, F.; López-Duarte, I.; Seitz, W.; Beverina, L.; Martínez-Díaz, M. V.; Marks,T. J.; Guldi, D. M.; Pagani, G. A.; Torres, T. A Squaraine-Phthalocyanine Ensemble:Towards Molecular Panchromatic Sensitizers in Solar Cells. Chem. Commun.,2009,4500-4502.
    140. Guan, Y.; Yu, S.; Antonietti, M.; B ttcher, C.; Faul, C. F. J. Synthesis ofSupramolecular Polymers by Ionic Self-Assembly of Oppositely Charged Dyes. Chem.Eur. J.,2005,11,1305-1311.
    141. Fournier, T.; Liu, Z.; Tran-Thi, T.-H. Influence of Molecular Oxygen on the ChargeTransfer Properties of a Co(II) Porphyrin-Al(III) Phthalocyanine Aggregate. ExcitedStates Dynamics and Photobiological Activities. J. Phys. Chem. A,1999,103,1179-1186.
    142. Kimura, M.; Ueki, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. NanoscopicFibrous Assemblies Made of Metallophthalocyanine-Terminated AmphiphilicPolymers. Chem. Eur. J.,2004,10,4954-4959.
    143. C té, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M.Porous, Crystalline, Covalent Organic Frameworks. Science,2005,310,1166-1170.
    144. Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. Covalent OrganicFrameworks as Exceptional Hydrogen Storage Materials. J. Am Chem. Soc.,2008,130,11580-11581.
    145. Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide inHighly Porous Covalent Organic Frameworks for Clean Energy Applications. J. AmChem. Soc.,2009,131,8875-8883.
    146. Doonan, C. J.; Tranchemontagne, D. J.; Glover, T. G.; Hunt, J. R.; Yaghi, O. M.Exceptional Ammonia Uptake by a Covalent Organic Framework. Nat. Chem.,2010,2,235-258.
    147. Mendoza-Cortés, J. L.; Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A.Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks:Theory and Experiment. J. Phys. Chem. A,2010,114,10824-10833.
    148. Mendoza-Cortés, J. L.; Goddard, W. A. A Covalent Organic Framework thatExceeds the DOE2015Volumetric Target for H2Uptake at298K. J. Phys. Chem.Lett.,2012,3,2671-2675.
    149. Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. CovalentTriazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Lett.,2010,10,537-541.
    150. Ding, S.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.; Su, C.; Wang, W. Construction ofCovalent Organic Framework for Catalysis: Pd/COF-LZU1in Suzuki-MiyauraCoupling Reaction. J. Am. Chem. Soc.,2011,133,19816-19822.
    151. Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Catalytic CovalentOrganic Frameworks via Pore Surface Engineering. Chem. Commun.,2014,50,1292-1294.
    152. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Belt-Shaped, Blue Luminescent, andSemiconducting Covalent Organic Framework. Angew. Chem. Int. Ed.,2008,47,8826-8830.
    153. Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang,D. High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks:Switching from Hole to Electron to Ambipolar Conduction. Angew. Chem. Int. Ed.,2012,51,2618-2622.
    154. Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle,S.; Seki, S.; Dong, Y.; Jiang, D. An Ambipolar Conducting Covalent OrganicFramework with Self-Sorted and Periodic Electron Donor-Acceptor Ordering. Adv.Mater.,2012,24,3026-3031.
    155. Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.;Saeki, A.; Ihee, H.; Seki, S.; Hiramoto, S. M.; Gao, J.; Jiang, D. Conjugated OrganicFramework with Three-Dimensionally Ordered Stable Structure and Delocalized πClouds. Nat. Commun.,2013,4,2736-2743.
    156. Jin, S.; Furukawa, K.; Addicoat, M.; Chen, L.; Takahashi, S.; Irle, S.; Nakamura, T.;Jiang, D. Large Pore Donor-Acceptor Covalent Organic Frameworks. Chem. Sci.,2013,4,4505-4511.
    157. Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.;Nagase, S.; Jiang, D. Synthesis of Metallophthalocyanine Covalent OrganicFrameworks That Exhibit High Carrier Mobility and Photoconductivity. Angew.Chem., Int. Ed.,2011,50,1289-1293.
    158. Ding, X.; Feng, X.; Saeki, A.; Seki, S.; Nagai, A.; Jiang, D. ConductingMetallophthalocyanine2D Covalent Organic Frameworks: the Role of Central Metalsin Controlling π-electronic Functions. Chem. Commun.,2012,48,8952-8954.
    159. Ding, X.; Chen, L.; Honsho, Y.; Feng, X.; Saengsawang, O.; Guo, J.; Saeki, A.; Seki,S.; Irle, S.; Nagase, S.; Parasuk, V.; Jiang, D. An n-Channel Two-DimensionalCovalent Organic Framework. J. Am. Chem. Soc.,2011,133,14510-14513.
    160. Jin, S.; Ding, X.; Feng, X.; Supur, M.; Furukawa, K.; Takahashi, S.; Addicoat, M.;El-Khouly, M. E.; Nakamura, T.; Irle, S.; Fukuzumi, S.; Nagai, A.; Jiang, D. ChargeDynamics in A Donor-Acceptor Covalent Organic Framework with PeriodicallyOrdered Bicontinuous Heterojunctions. Angew. Chem. Int. Ed.,2013,52,2017-2021.
    161. Spitler, E. L.; Dichtel, W. R. Lewis Acid-catalysed Formation of Two-dimensionalPhthalocyanine Covalent Organic Frameworks. Nat. Chem.,2010,2,672-677.
    162. Cook, M. J.; Cooke, G.; Jafari-Fini, A. A Liquid CrystallineTetrathiafulvalenylphthalocyanine. Chem. Commun.,1996,1925-1926.
    163. Bourgoin, J.-P.; Doublet, F.; Palacin, S.; Vandevyver, M. High In-Plane Anisotropyin Phthalocyanine LB Films. Langmuir,1996,12,6473-6479.
    164. Cook, M. J. Phthalocyanine Thin Films. Pure Appl. Chem.,1999,71,2145-2151.
    165. ilerová, R.; Kalvoda, L.; Neher, D.; Ferencz, A.; Wu, J.; Wegner, G. ElectricalConductivity of Highly Organized Langmuir-Blodgett Films ofPhthalocyaninato-Polysiloxane. Chem. Mater.,1998,10,2284-2292.
    166. Tong, W. Y.; Djuriǎi, A. B.; Xie, M. H.; Ng, A. C. M.; Cheung, K. Y.; Chan, W. K.;Leung, Y. H.; Lin, H. W.; Gwo, S. Metal Phthalocyanine Nanoribbons and Nanowires.J. Phys. Chem. B,2006,110,17406-17413.
    167. Xiao, K.; Li, R.; Tao, J.; Payzant, E. A.; Ivanov, I. N.; Puretzky, A. A.; Hu, W.;Geohegan, D. B. Metastable Copper-Phthalocyanine Single-Crystal Nanowires andTheir Use in Fabricating High-Performance Field-Effect Transistors. Adv. Funct.Mater.,2009,19,3776-3780.
    168. Wang, M.; Yang, Y.; Deng, K.; Wang, C. Phthalocyanine Nanobars Obtained byUsing Alkyloxy Substitution Effects. Chem. Phys. Lett.,2007,439,76-80.
    169. Zhang, Y.; Zhang, Z.; Zhao, Y.; Fan, Y.; Tong, T.; Zhang, H.; Wang, Y.Solution-Processed Microwires of Phthalocyanine Copper(II) Derivative withExcellent Conductivity. Langmuir,2009,25,6045-6048.
    170. Bottari, G.; Olea, D.; Gómez-Navarro, C.; Zamora, F.; Gómez-Herrero, J.; Torres, T.Highly Conductive Supramolecular Nanostructures of a CovalentlyLinked Phthalocyanine-C60Fullerene Conjugate. Angew. Chem. Int. Ed.,2008,47,2026-2031.
    171. Tang, C. W. Two-Layer Organic Photovoltaic Cell. Appl. Phys. Lett.,1986,48,183-185.
    172. Peumans, P.; Forrest, S. R. Very-High-Efficiency Double-Heterostructure CopperPhthalocyanine/C60Photovoltaic Cells. Appl. Phys. Lett.,2001,79,126-128.
    173. Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. A Hybrid Planar-Mixed MolecularHeterojunction Photovoltaic Cell. Adv. Mater.,2005,17,66-71.
    174. Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R. Asymmetric Tandem OrganicPhotovoltaic Cells with Hybrid Planar-Mixed Molecular Heterojunctions. Appl. Phys.Lett.,2004,85,5757-5759.
    175. Chan, M. Y.; Lai, S. L.; Fung, M. K.; Lee, C. S.; Lee, S. T. Doping-InducedEfficiency Enhancement in Organic Photovoltaic Devices. Appl. Phys. Lett.,2007,90,023504.
    176. Jiang, X.; Dai, J.; Wang, H.; Geng, Y.; Yan, D. Organic Photovoltaic CellsUsing Hexadecafluorophthalocyaninatocopper (F16CuPc) as Electron AcceptorMaterial. Chem. Phys. Lett.,2007,446,329-332.
    177. Dai, J.; Jiang, X.; Wang, H.; Yan, D. Organic Photovoltaic Cells with Near InfraredAbsorption Spectrum. Appl. Phys. Lett.,2007,91,253503.
    178. Yang, F.; Lunt, R. R.; Forrest, S. R. Simultaneous Heterojunction Organic SolarCells with Broad Spectral. Appl. Phys. Lett.,2008,92,053310.
    179. Bailey-Salzman, R. F.; Rand, B. P.; Forrest, S. R. Near-Infrared Sensitive SmallMolecule Organic Photovoltaic Cells Based on Chloroaluminum Phthalocyanine.Appl. Phys. Lett.,2007,91,013508.
    180. Brumbach, M.; Placencia, D.; Armstrong, N. R. TitanylPhthalocyanine/C60Heterojunctions: Band-Edge Offsets and Photovoltaic DevicePerformance. J. Phys. Chem. C,2008,112,3142-3151.
    181. Schmidt-Mende, L.; Fechtenk tter, A.; Müllen, K.; Moons, E.; Friend, R. H.;MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-EfficiencyOrganic Photovoltaics. Science,2001,293,1119-1122.
    182. Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E. Fabrication ofBulk Heterojunction Plastic Solar Cells by Screen Printing. Appl. Phys. Lett.,2001,79,2996-2998.
    183. Loi, M. A.; Denk, P.; Hoppe, H.; Neugebauer, H.; Winder, C.; Meissner, D.; Brabec,C.; Sariciftci, N. S.; Gouloumis, A.; Vázquez, P.; Torres, T. Long-LivedPhotoinduced Charge Separation for Solar Cell Applications inPhthalocyanine-Fulleropyrrolidine Dyad Thin Films. J. Mater. Chem.,2003,13,700-704.
    184. Varotto, A.; Nam, C-Y.; Radivojevic, I.; Tomé, J. P. C.; Cavalerio, J. A. S.; Black, C.T.; Drain, C. M. Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells. J.Am. Chem. Soc.,2010,132,2552-2554.
    185. Sánchez-Díaz, A.; Pacios, R.; Mu ecas, U.; Torres, T.; Palomares, E. ChargeTransfer Reactions in Near IR Absorbing Small Molecule Solution Processed OrganicBulk-Heterojunction Solar. Org. Electron.,2011,12,329-335.
    186. Ryan, J. W.; Anaya-Plaza, E.; de la Escosura, A.; Torres, T.; Palomares, E. SmallMolecule Solar Cells Based on a Series of Water-Soluble Zinc PhthalocyanineDonors. Chem. Commun.,2012,48,6094-6096.
    187. Fischer, M. K. R.; López-Duarte, I.; Wienk, M. M.; Martínez-Díaz, M. V.; Janssen, R.A. J.; B uerle, P.; Torres, T. Functionalized Dendritic Oligothiophenes: RutheniumPhthalocyanine Complexes and Their Application in Bulk Heterojunction Solar Cells.J. Am. Chem. Soc.,2009,131,8669-8676.
    188. Allen, C. M.; Sharman, W. M.; van Lier, J. E. Current Status of Phthalocyanines inthe Photodynamic Therapy of Cancer. J. Porphyrins Phthalocyanines.,2001,5,161-169.
    189. Maruyama, J.; Ioroi, T.; Siroma, Z.; Hasegawa, T.; Mineshige, A. HydrogenEvolution by Carbonaceous Nanoparticle Aggregates that were derived from CobaltPhthalocyanine. ChemCatChem,2013,5,130-133.
    190. Gryko, D.; Li, J.; Diers, J. R.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S.Studies Related to the Design and Synthesis of a Molecular Octal Counter. J. Mater.Chem.,2001,11,1162-1180.
    191. Zhang, W.; Fujiki, M.; Zhu, X. L. Chiroptical Nanofibers Generated from AchiralMetallophthalocyanines Induced by Diamine Homochirality. Chem. Eur. J.,2011,17,10628-10635.
    192. Wang, J. S.; Matyjaszewski, K. Control1ed/“Living” Radical Polymerization. AtomTransfer Radical Polymerization in the Presence of Transition-Metal Complexes. J.Am. Chem. Soc.,1995,117,5614-5615.
    193. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of MethylMethacrylate with the CarbonTetrachloride/Dichlorotris-(triphenylphosphine)ruthedum(II)/MethylaluminumBis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living RadicalPolymerization. Macromolecules,1995,28,1721-1723.
    194. Hawker, C. J. Molecular Weight Control by a “Living” Free-Radical PolymerizationProcess. J. Am. Chem. Soc.,1994,116,11185-11186.
    195. Chiefari, J.; Chong, Y. K.; Ercole. F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne,R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. LivingFree-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31,5559-5562.
    196. Percec, V.; Guilashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska,M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahigh Molar MassPolymers by Metal-Catalyzed Living Radical Polymerization of Acrylates,Methacrylates, and Vinyl Chloride Mediated by SET at25°C. J. Am. Chem. Soc.,2006,128,14156-14165.
    197. Janoschka, T.; Teichler, A.; Krieg, A.; Hager, M. D.; Schubert, U. S. Polymerizationof Free Secondary Amine Bearing Monomers by RAFT Polymerization and OtherControlled Radical Techniques. J. Polym. Sci., Part A: Polym. Chem.,2012,50,1394-1407.
    198. Zhu, J.; Zhou, D.; Zhu, X. L.; Chen, G. J. Reversible Addition-Fragmentation ChainTransfer Polymerization of Glycidyl Methacrylate with2-Cyanoprop-2-yl1-dithionaphthalate as a Chain-Transfer Agent. J. Polym. Sci., Part A: Polym. Chem.,2004,42,2558-2565.
    199. Kakwere, H.; Perrier, S. Orthogonal “Relay” Reactions for Designing FunctionalizedSoft Nanoparticles. J. Am. Chem. Soc.,2009,131,1889-1895.
    200. Gauthier, M. A.; Gibson, M. I.; Klok, H. A. Synthesis of Functional Polymers byPost-Polymerization Modification. Angew. Chem. Int. Ed.,2008,48,48-58.
    201. Chen, W.; Yang, H. C.; Wang, R.; Cheng, R.; Meng, F. H.; Wei, W. X.; Zhong, Z. Y.Versatile Synthesis of Functional Biodegradable Polymers by CombiningRing-Opening Polymerization and Postpolymerization Modification viaMichael-Type Addition Reaction. Macromolecules,2010,43,201-207.
    202. Justynska, J.; Hordyjewicz, Z.; Schlaad, H. Toward a Toolbox of Functional BlockCopolymers via Free-Radical Addition of Mercaptans. Polymer,2005,46,12057-12064.
    203. Ghosh, S.; Basu, S.; Thayumanavan, S. Simultaneous and ReversibleFunctionalization of Copolymers for Biological Application. Macromolecules,2006,39,5595-5597.
    204. Binder, W. H.; Sachsenhofer, R.‘Click’ Chemistry in Polymer and Materials Science,Macromol. Rapid Commun.,2007,28,15-54.
    205. Perrier, S.; Takolpuckdee, P.; Mars. C. A. Reversible Addition-Fragmentation ChainTransfer Polymerization: End Group Modification for Functionalized Polymers andChain Transfer Agent Recovery. Macromolecules,2005,38,2033-2036.
    206. Wróbel, D.; Boguta, A. Study of the Infuence of Substituents on SpectroscopicandPhotoelectric Properties of Zinc Phthalocyanines. J. Photoch. Photobio. A: Chem.,2002,150,67-76.
    207. Claessens, C. G.; Hahn, U.; Torres, T. Phthalocyanines: From Outstanding ElectronicProperties to Emerging Applications. Chem. Rec.,2008,8,75-97.
    208. Seoudi, R.; El-Bahy, G. S.; El Sayed, Z. A. FTIR, TGA and DC ElectricalConductivity Studies of Phthalocyanine and Its Complexes. J. Mol. Struc.,2005,753,119-126.
    209. Walter, M. G.; Rudine, A. B.; Wamser, C. C. Porphyrins and Phthalocyanines inSolar Photovoltaic Cells. J. Porphyrins Phthalocyanines,2010,14,759-792.
    210. Dong, Q. F.; Zhou, Y. H.; Pei, J. N.; Liu, Z. Y.; Li, Y. W.; Yao, S. Y.; Zhang, J. B.;Tian, W. J. All-Spin-Coating Vacuum-Free Processed Semi-Transparent InvertedPolymer Solar Cells with PEDOT:PSS Anode and PAH-D Interfacial Layer. Org.Electron.,2010,11,1327-1331.
    211. de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Role of Structural Factorsin the Nonlinear Optical Properties of Phthalocyanines and Related Compounds.Chem. Rev.,2004,104,3723-3750.
    212. Leznoff, C. C.; Lever, A. B. P. Phthalocyanine: Properties and Applications,Volume1-4, VCH, New York1989/1993/1996.
    213. Hassan, M.; Li, H.; Mckeown, N. B. The Control of Molecular Self-Association inSpin-Coated Films of Substituted Phthalocyanines. J. Mater. Chem.,2000,10,39-45.
    214. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based OrganicSolar Cells. Chem. Rev.,2007,107,1324-1338.
    215. Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. MolecularSemiconductors in Organic Photovoltaic Cells. Chem. Rev.,2010,110,6689-6735.
    216. Lin, Y.; Li, Y.; Zhan, X. Small Molecule Semiconductors for High-EfficiencyOrganic Photovoltaics. Chem. Soc. Rev.,2012,41,4245-4272.
    217. Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Solution Processable D-A Small Moleculesfor Bulk-Heterojunction Solar Cells. Energy Environ. Sci.,2010,3,1427-1436.
    218. Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: TowardSuitable Electronic Energy Levels and Broad Absorption. Acc. Chem. Res.,2012,45,723-733.
    219. Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Controlling the Morphology andPerformance of Bulk Heterojunctions in Solar Cells. Lessons Learned from theBenchmark Poly(3-hexylthiophene):[6,6]-Phenyl-C61-butyric Acid Methyl EsterSystem. Chem. Rev.,2013,113,3734-3765.
    220. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally Stable, EfficientPolymer Solar Cells with Nanoscale Control of the Interpenetrating NetworkMorphology. Adv. Funct. Mater.,2005,15,1617-1622.
    221. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y.High-Efficiency Solution Processable Polymer Photovoltaic Cells bySelf-Organization of Polymer Blends. Nat. Mater.,2005,4,864-868.
    222. Li, C.; Chen, Y.; Zhao, Y.; Wang, H.; Zhang, W.; Li, Y.; Yang, X.; Ma, C.; Chen, Li.;Zhu, X.; Tu, Y. Acceptor-Donor-Acceptor-Based Small Molecules with VariedCrystallinity: Processing Additive-Induced Nanofibrl in Blend Film for PhotovoltaicApplications. Nanoscale,2013,5,9536-9540.
    223. Zhang, P.; Li, C.; Li, Y.; Yang, X.; Chen, L.; Xu, B.; Tian, W.; Tu, Y. A FullereneDyad with a Tri(octyloxy)benzene Moiety Induced Efficient Nanoscale Active Layerfor the Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cell Applications.Chem. Commun.,2013,49,4917-4919.
    224. Jurow, M. J.; Hageman, B. A.; DiMasi, E.; Nam, C.; Pabon, C.; Black, C. T.; Drain,C. M. Controlling Morphology and Molecular Packing of Alkane SubstitutedPhthalocyanine Blend Bulk Heterojunction Solar Cells. J. Mater. Chem. A,2013,1,1557-1565.
    225. Warman, J. M.; Piris, J.; Pisula, W.; Kastler, M.; Wasserfallen, D.; Müllen, K.Charge Recombination via Intercolumnar Electron Tunnelingthrough the Lipid-LikeMantle of Discotic through the Lipid-Like Mantle of Discotic. J. Am. Chem. Soc.,2005,127,14257-14262.
    226. Ren, X.; Sun, B.; Tsai, C.; Tu, Y.; Leng, S.; Li, K.; Kang, Z.; R. Horn, M. V.; Li, X.;Zhu, M.; Wesdemiotis, C.; Zhang, W.; Cheng, S. Z. D. Synthesis, Self-Assembly, andCrystal Structure of a Shape-PersistentPolyhedral-Oligosilsesquioxane-Nanoparticle-Tethered Perylene Diimide. J. Phys.Chem. B,2010,114,4802-4810.
    227. Lou, N.; Wang, Y.; Li, X.; Li, H.; Wang, P.; Wesdemiotis, C.; Sokolov, A. P.; Xiong,H. Dielectric Relaxation and Rheological Behavior of Supramolecular PolymericLiquid. Macromolecules,2013,46,3160-3166.
    228. Li, X.; Chan, Y.; Newkome, G. R.; Wesdemiotis, C. Gradient Tandem MassSpectrometry Interfaced with Ion Mobility Separation for the Characterization ofSupramolecular Architectures. Anal. Chem.,2011,83,1284-1290.
    229. Schutte, W. J.; Sluryters-Rehbach, M.; Sluyters, J. H. Aggregation of anOctasubstituted Phthalocyanine in Dodecane Solution. J. Phys. Chem.,1993,97,6069-6073.
    230. Wu, P.; Ren, G.; Jenekhe, S. A. Crystalline Random Conjugated Copolymers withMultiple Side Chains: Tunable Intermolecular Interactions and Enhanced ChargeTransport and Photovoltaic Properties. Macromolecules,2010,43,3306-3313.
    231. Kim, H. J.; Lee, H. H.; Kim, J. W.; Jiang, J.; Kim, J. Surface Dependent ThermalEvolution of the Nanostructures in Ultra-Thin Copper(II) Phthalocyanine Films. J.Mater. Chem.,2012,22,8881-8886.
    232. Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. LowThreshold Voltage Transistors Based on IndividualSingle-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. Adv.Mater.,2006,18,65-68.
    233. Gao, C.; Yan, D. Hyperbranched Polymers: From Synthesis to Applications. Prog.Polym. Sci.,2004,29,183-275.
    234. Kim, Y. H.; Webster, O. W. Hyperbranched Polyphenylenes. Macromolecules,1992,25,5561-5572.
    235. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.; Grubbs, R. B.Self-Condensing Vinyl Polymerization: an Approach to Dendritic Materials. Science,1995,269,1080-1083.
    236. Suzuki, M.; Li, A.; Saegusa, T. Multibranching Polymerization: Palladium-CatalyzedRing-Opening Polymerization of Cyclic Carbamate to Produce HyperbranchedDendritic Polyamine. Macromolecules,1992,25,7071-7072.
    237. Chen, Z.; Zhong, C.; Zhang, Z.; Li, Z.; Niu, L.; Bin, Y.; Zhang, F. PhotoresponsiveJ-Aggregation Behavior of a Novel Azobenzene-Phthalocyanine Dyad and ItsThird-Order Optical Nonlinearity. J. Phys. Chem. B,2008,112,7387-7394.
    238. Guo, M.; Yan, X.; Kwon, Y.; Hayakawa, T.; Kakimoto, M-aki.; Goodson, T. HighFrequency Dielectric Response in a Branched Phthalocyanine. J. Am. Chem. Soc.,2006,128,14820-14821.
    239. C té, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. ReticularSynthesis of Microporous and Mesoporous2D Covalent Organic Frameworks. J. Am.Chem. Soc.,2007,129,12914-12915.
    240. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Photoconductive Covalent OrganicFramework: Self-Condensed Arene Cubes Composed of Eclipsed2D PolypyreneSheets for Photocurrent Generation. Angew. Chem. Int. Ed.,2009,48,5439-5442.
    241. Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; C té, A. P.; Yaghi, O. M. ReticularSynthesis of Covalent Organic Borosilicate Frameworks. J. Am. Chem. Soc.,2008,130,11872-11873.
    242. Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R.Construction of Crystalline2D Covalent Organic Frameworks with RemarkableChemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J.Am. Chem. Soc.,2012,134,19524-19527.
    243. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based FrameworksPrepared by Ionothermal Synthesis. Angew. Chem. Int. Ed.,2008,47,3450-3453.
    244. Uribe-Rome, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. CrystallineCovalent Organic Frameworks with Hydrazone Linkages. J. Am. Chem. Soc.,2011,133,11478-11481.
    245. Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked CovalentOrganic Framework. J. Am. Chem. Soc.,2013,135,17310-17313.
    246. Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A Squaraine-LinkedMesoporous Covalent Organic Framework. Angew. Chem. Int. Ed.,2013,52,3770-3774.
    247. Browne, W. R.; Feringa, B. L. Making Molecular Machines Work. NatureNanotechnology,2006,1,25-35.
    248. Rasmussen, P. H.; Ramanujam, P. S.; Hvilsted, S.; Berg, R. H. A RemarkablyEfficient Azobenzene Peptide for Holographic Information Storage. J. Am. Chem.Soc.,1999,121,4738-4743.
    249. Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T.Photomobile Polymer Materials: Towards Light-Driven Plastic Motors. Angew. Chem.Int. Ed.,2008,47,4986-4988.
    250. Beharry, A. A.; Woolley, G. A. Azobenzene Photoswitches for Biomolecules. Chem.Soc. Rev.,2011,40,4422-4437.
    251. Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.;Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A2D Covalent Organic Framework with
    4.7nm Pores and Insight into Its Interlayer Stacking. J. Am. Chem. Soc.,2011,133,19416-19421.
    252. Xue, X.; Zhu, J.; Zhang, Z.; Zhou, N.; Tu, Y.; Zhu, X. Soluble Main-ChainAzobenzene Polymers via Thermal1,3-Dipolar Cycloaddition: Preparation andPhotoresponsive Behavior. Macromolecules,2010,43,2704-2712.
    253. Lyndon, R.; Konstas, K.; Ladewig, B. P.; Southon, P. D.; Kepert, C. J.; Hill, M. R.Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-EnergyCarbon Dioxide Capture and Release. Angew. Chem. Int. Ed.,2013,52,3695-3698.
    254. Modrow, A.; Zargarani, D.; Herges, R.; Stock, N. The First Porous MOF withPhotoswitchable Linker Molecules. Dalton Trans.,2011,40,4217-4222.
    255. Park, J.; Yuan, D.; Pham, K. T.; Li, J.; Yakovenko, A.; Zhou, H. ReversibleAlteration of CO2Adsorption upon Photochemical or Thermal Treatment in aMetal-Organic Framework. J. Am. Chem. Soc.,2012,134,99-102.
    256. Brown, J. W.; Henderson, B. L.; Kiesz, M. D.; Whalley, A. C.; Morris, W.; Grunder,S.; Deng, H.; Furukawa, H.; Zink, J. I.; Stoddart, J. F.; Yaghi, O. M. PhotophysicalPore Control in an Azobenzene-Containing Metal-Organic Framework. Chem. Sci.,2013,4,2858-2864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700