用户名: 密码: 验证码:
超分子聚合物/无机纳米粒子有序组装体的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料的机械、光学、电和磁等各项性能不仅取决于各组成的性质,还取决于纳米复合材料的结构及无机纳米粒子在共聚物微区中的组装和排列。超分子聚合物通过微观相分离可以形成丰富的微观结构,在这个过程中可诱导无机纳米粒子组装。功能性纳米粒子的可控分级有序组装在基础研究和应用技术等领域都具有重要的意义,是目前聚合物/无机纳米粒子复合材料领域一个重要的方向和生长点。
     本论文基于超分子诱导无机纳米粒子自组装的方法,以嵌段共聚物、小分子氢键试剂和无机纳米粒子为研究对象,系统地研究了嵌段共聚物、小分子和无机纳米粒子三元体系的组装行为,阐明了超分子聚合物/无机纳米粒子复合材料各种有序结构形成的原因及不同形态间转变的机制,从而得到了具有特定功能和新颖有序结构的自组装复合材料,为功能性复合材料的设计和制备提供了实验和理论依据:
     首先,嵌段共聚物聚苯乙烯-聚乙烯基吡啶(PS-b-P4VP)中的P4VP与十五烷基苯酚(PDP)通过氢键相互作用得到了梳状超分子。采用表面接枝技术使球形无机纳米粒子均匀分散在超分子聚合物不同嵌段的微区,实现了纳米粒子在超分子体系中有序排列;调节纳米粒子的尺寸和加入量,对其在微区中的位置及纳米粒子间距进行了调控,并通过解组装的方法破坏共聚物与小分子氢键试剂形成的氢键,从而得到单个分散的包覆有无机纳米粒子的杂化胶束;阐明了共聚物微区的均方根末端距与纳米粒子直径的比例对纳米粒子在共聚物微区中的分布规律及对体系中纳米粒子平动熵和嵌段共聚物构象熵的影响规律。
     系统研究了无机纳米粒子和小分子PDP的含量对共聚物/金纳米粒子复合物形态(层状、棒状和球状等)的影响规律及形态转变规律;通过同时向体系中加入金纳米粒子和小分子氢键试剂,使体系在增加纳米粒子含量的同时可保持复合组装体的形态;在此基础上,得到了纳米粒子与氢键试剂含量对共聚物组装体结构影响的相图。
     其次,研究了表面聚合物配体性质对金纳米棒在聚合物棒状微区中分散的影响,结果表明采用分子量不同的二元PS同时修饰金纳米棒,使金棒与聚合物基体产生足够的浸润性,从而使金纳米棒良好地分散在共聚物微区中;研究了纳米粒子的含量、长径比和棒状胶束的直径对金纳米棒的空间位置和取向的影响;结果表明,长金棒形成平行于棒状微区轴向的排列,而短棒则形成垂直于棒状微区的排列,表明二维受限对棒状纳米粒子取向有重要影响;紫外分光光度计和有限差分时域模拟结果表明,金棒的有序组装及组装结构的改变对杂化胶束光学性质有重要的影响。
     再次,研究了新型的纳米粒子三嵌段体在超分子P4VP(PDP)体系中形成超晶格的堆积行为。结果表明,调节各组分的参数(包括纳米粒子的几何结构、纳米粒子配体的种类及分子量),各向异性的纳米粒子可以形成大面积自支撑二维、三维超晶格结构。对比了纳米粒子表面配体性质和几何形态对超级晶格自组装结构的影响,提出了可能的形态转变机理。
     最后,研究了乳液液滴界面不稳定条件下的自组装从而得到了核中包覆有金纳米粒子的共聚物胶束。通过改变表面活性剂十二烷基硫酸钠的浓度,成功制备出形态可调的囊泡、棒、球状复合胶束。该方法可同时实现对光电材料C60和聚-3-已基噻吩的有效包覆。
     本工作丰富了人们对超分子聚合物与无机纳米粒子自组装行为的理解,为从分子层面理解、设计、制备和优化有序结构纳米复合材料提供了理论基础和实验依据。
The properties of nanocomposites depend not only on the individual building blocks,but also on the organization and spatial arrangement of individual blocks within the host.Block copolymer, which can microphase separate into a variety of periodically orderednanostructures, have shown their potential for organizing inorganic nanoparticles inbulk/thin film. Supramolecular block polymers can further provide more versatile routes tocontrol spatial arrangement of the nanoparticles over multiple length scales. Arrangementof nanoparticles to form ordered arrays with single particle precision over macroscopicdistances will not only enable a basic understanding of the physical properties of this newfamily of material, but also pave the way for next-generation nanoparticle-based devices.
     In this thesis, we systematically investigated the self-assembly behaviors ofsupermolecular polymers and nanoparticles. The purposes of this thesis include predictingthe underlying rules of self-assembled structures with the variation of the content ofindividual blocks within the host, understanding the origin of the formation of the orderednanostructures, elucidating of the mechanism for the morphological transitions betweendifferent structures, and providing guidelines for design and fabrication of novelnanocomposites.
     Polystyrene-poly(4-vinyl pyridine)(PS20K-b-P4VP17K) and pentadecylphenol (PDP)were dissolved in chloroform to form PS-P4VP(PDP)x(x represents ratio of PDP to P4VP)comb-coil supramolecules. NPs were synthesized and functionalized with a thiol-end PS.Upon addition of PS-coated NPs to the supramolecules, hierarchical structures, whereNPs were selectively incorporated in PS cylindrically confined phases withinP4VP(PDP)1.0matrices were formed. Isolated wormlike micelles with uniformly dispersedgold NPs along the centerline were obtained by removal of small molecule PDP. Thisversatile approach allows us to fine tune interparticle distance and micellar morphology byvarying the content of nanoparticles and/or hydrogen bonding agent in the supramolecularassemblies. Spatial distribution of NPs in micellar core depends on D/R0(D denotes theoverall diameter of PS-coated Au NPs, R0is the root-mean-square end-to-end distance of host block of the block copolymer). And the relationship between translational entropy ofthe particles and polymer conformation entropy were estabilished.
     The NP loading and the PDP addition effect on the hybrid aggregate morphology withspherical, cylindrical, or nano-sheet morphologies were systematically investigated. Thebalance between the NP loading and the PDP addition maintains the same micellarmorphology while achieves high NP loading. Based on the data above, effect of theamount of PDP and NP loading on the hybrid micellar morphology were summarized in aphase diagram.
     We describe an effective approach to disperse and orient nanorods (NRs) withincylindrically confined microdomains of block copolymer (BCP)-based supramolecularself-assemblies by tethering two populations of the same homopolymer brushes withdifferent lengths on the surface of the NRs. The mismatch of binary polymer brushes withdifferent lengths on the surface of the NRs was used to effectively improve the dispersionof the NRs within polymer matrix, due to the enhanced wetting of the brushes bysurrounding mismatch polymers. Location and orientation of the NRs can be tailored byvarying the content of NRs, the aspect ratio of the NRs, or the diameter of the cylindricalnano-objects. UV-visible spectroscopy measurements and finite-difference time-domain(FDTD) calculations confirm that our approach provides a simple yet versatile route tocontrol the optical properties of the hybrid nano-objects via the tunable assembly of theNRs.
     The hydrophilic gold nanorod grafted with a hydrophobic polymer at both ends wasconsidered as ABA triblock copolymer. We reported on a different approach to fabricatelarge-area, free-standing2D,3D superlattice through combining phase separation, stericrepulsion and long range attractive interaction between nanoparticles. The packingbehavior of the metal nanoparticle can be controlled by varying the geometries ofnanoparticles or the ligands on the surface of nanoparticles. The self-assemblymechanisms have been discussed.
     Finally, we introduce a facile way to fabricate hybrid micelles through interfacialinstabilities of oil-in-water emulsion droplets containing polystyrene-b-poly(ethyleneoxide) and PS-grafted Au nanoparticles. Hybrid micellar morphology can be tuned fromvesicles to wormlike micelles and to spherical micelles via varying the concentration of surfactant sodium dodecyl sulfate. In addition, our experimental technique can beextended to encapsulate fullerene(C60) and polythiophene.
     These findings will provide an understanding of the nature of the self-assembly ofsupramolecular polymers and nanoparticles, and help engineers to design orderednanostructured functional materials and optimize the fabrication process.
引文
[1] Pedersen C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc.,1967,89(10):2495-2496.
    [2] Cram D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew.Chem., Int. Ed.,1988,27(8):1009-1020.
    [3] Lehn J.-M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, andmolecular devices (Nobel Lecture). Angew. Chem., Int. Ed.,1988,27(1):89-112.
    [4] Gale P. A. Supramolecular chemistry anniversary. Chem. Soc. Rev.,2007,36(2):141-142.
    [5] Whitesides G. M., Boncheva M. Beyond molecules: self-assembly of mesoscopic andmacroscopic components. Proc. Natl. Acad. Sci.,2002,99(8):4769-4774.
    [6] Whitesides G. M., Grzybowski B. Self-assembly at all scales. Science,2002,295(5564):2418-2421.
    [7] Lu H., Wang J., Bai Y., Lang J. W., Liu S., Lin Y., Cheng J. Ionic polypeptides with unusualhelical stability. Nat. Commun.,2011,2(1):206-211.
    [8] Sinnokrot M. O., Valeev E. F., Sherrill C. D. Estimates of the Ab nitio imit for π πnteractions: The benzene dimer. J. Am. Chem. Soc.,2002,124(36):10887-10893.
    [9] Jang S. G., Kramer E. J., Hawker C. J. Controlled supramolecular assembly of micelle-like goldnanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding. J. Am. Chem. Soc.,2011,133(5):16986-16996.
    [10] Wang M., Mohebbi A. R., Sun Y., Wudl F. Ribbons, vesicles, and baskets: supramolecularassembly of a coil-plate-coil emeraldicene derivative. Angew. Chem., Int. Ed.,2012,51(28):6920-6924.
    [11] Wang J., Lu H., Kamat R., Pingali S. V., Urban V. S., Cheng J., Lin Y. Supramolecularpolymerization from polypeptide-grafted comb polymers. J. Am. Chem. Soc.,2011,133(33):12906-12909.
    [12] Yan D., Zhou Y., Hou J. Supramolecular self-assembly of macroscopic tubes. Science,2004,303(5654):65-67.
    [13] Service R. F. How Far Can We Push Chemical Self-Assembly? Science,2005,309(5731):95-96.
    [14] Hawker C. J., Wooley K. L. The convergence of synthetic organic and polymer chemistries.Science,2005,309(5738):1200-1205.
    [15] Ikkala O., Ten Brinke G. Functional materials based on self-assembly of polymericsupramolecules. Science,2002,295(5564):2407-2409.
    [16] Ruokolainen J. Switching supramolecular polymeric materials with multiple length scales.Science,1998,280(5363):557-560.
    [17] Ikkala O., ten Brinke G. Hierarchical self-assembly in polymeric complexes: towards functionalmaterials. Chem. Commun.,2004,19:2131-2137.
    [18] Munch E., Laune, M. E., Alse, D. H., Sai, E., Tomsi, A. P., Ritchi, R. O. Tough, bio-inspiredhybrid materials. Science,2008,322(5907):1516-1520.
    [19] Podsiadlo P., Kaushik A. K., Arruda E. M., Waas A. M., Shim B. S., Xu J., Nandivada H.,Pumplin B. G., Lahann J., Ramamoorthy A., Kotov N. A. Ultrastrong and stiff layered polymernanocomposites. Science,2007,318(5847):80-83.
    [20] Bonderer L. J., Studart A. R., Gauckler L. J. Bioinspired design and assembly of plateletreinforced polymer films. Science,2008,319(5866):1069-1073.
    [21] Nalla R. K., Kinney J. H., Ritchie R. O. Mechanistic fracture criteria for the failure of humancortical bone. Nat. Mater.,2003,2(3):164-168.
    [22] White S. R., Sottos N. R., Geubelle P. H., Moore J. S., Kessler M. R., Sriram S. R., Brown E. N.,Viswanathan S. Autonomic healing of polymer composites. Nature,2001,409(6822):794-797.
    [23] Toohey K. S., Sottos N. R., Lewis J. A., Moore J. S., White S. R. Self-healing materials withmicrovascular networks. Nat. Mater.,2007,6(8):581-585.
    [24] Burnworth M., Tang L., Kumpfer J. R., Duncan A. J., Beyer F. L., Fiore G. L., Rowan S. J.,Weder C. Optically healable supramolecular polymers. Nature,2011,472(7343):334-337.
    [25] Chen Y., Kushner A. M., Williams G. A., Guan Z. Multiphase design of autonomic self-healingthermoplastic elastomers. Nat. Chem.,2012,4(6):467-472.
    [26] Colquhoun H. M. Self-repairing polymers: Materials that heal themselves. Nat. Chem.,2012,4(6):435-436.
    [27] Nakahata M., Takashima Y., Yamaguchi H., Harada A. Redox-responsive self-healing materialsformed from host–guest polymers. Nat. Commun.,2011,2(1):511-516.
    [28] van Zoelen W., Asumaa T., Ruokolainen J., Ikkala O., Ten Brinke G. Phase Behavior of SolventVapor Annealed Thin Films of PS-b-P4VP(PDP) Supramolecules. Macromolecules,2008,41(9):3199-3208.
    [29] Miyake G. M., Weitekamp R. A., Piunova V. A., Grubbs R. H. Synthesis of isocyanate-basedbrush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J.Am. Chem. Soc.,2012,134(34):14249-14254.
    [30] Miyake G. M., Piunova V. A., Weitekamp R. A., Grubbs R. H. Precisely tunable photonic crystalsfrom rapidly self-assembling brush block copolymer blends. Angew. Chem., Int. Ed.,2012,51(45):11246-11248.
    [31] Valkama S., Kosonen H., Ruokolainen J., Haatainen T., Torkkeli M., Serimaa R., Ten Brinke G.,Ikkala O. Self-assembled polymeric solid films with temperature-induced large and reversiblephotonic-bandgap switching. Nat. Mater.,2004,3(12):872-876.
    [32] Zhao Y., Thorkelsson K., Mastroianni A. J., Schilling T., Luther J. M., Rancatore B. J.,Matsunaga K., Jinnai H., Wu Y., Poulsen D., Frechet J. M. J., Paul Alivisatos A., Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater.,2009,8(12):979-985.
    [33] Mezzenga R., Ruokolainen J. Nanocomposites: Nanoparticles in the right place. Nat. Mater.,2009,8(12):926-928.
    [34] Kao J., Bai P., Chuang V. P., Jiang Z., Ercius P., Xu T. Nanoparticle assemblies in thin films ofsupramolecular nanocomposites. Nano Lett.,2012,12(5):2610-2618.
    [35] Thorkelsson K., Mastroianni A. J., Ercius P., Xu T. Direct nanorod assembly using blockcopolymer-based supramolecules. Nano Lett.,2012,12(1):498-504.
    [36] Kao J., Thorkelsson K., Bai P., Rancatore B. J., Xu T. Toward functional nanocomposites: takingthe best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev.,2013, DOI:10.1039/C2CS35375J.
    [37] Balazs A. C., Emrick T., Russell T. P. Nanoparticle polymer composites: where two small worldsmeet. Science,2006,314(5802):1107-1110.
    [38] Zhang H., Liu Y., Yao D., Yang B. Hybridization of inorganic nanoparticles and polymers tocreate regular and reversible self-assembly architectures. Chem. Soc. Rev.,2012,41(18),6066-6088.
    [39] Schacher F. H., Rupar P. A., Manners I. Functional block copolymers: nanostructured materialswith emerging applications. Angew. Chem., Int. Ed.,2012,51(32):7898-7921.
    [40] Cheng J. Y., Ross C. A., Smith H. I., Thomas E. L. Templated self-assembly of block copolymers:Top-down helps bottom-up. Adv. Mater.,2006,18(19):2505-2521.
    [41] Zhang M., Drechsler M., Müller A. H. E. Template-controlled synthesis of wire-like cadmiumsulfide nanoparticle assemblies within core shell cylindrical polymer brushes. Chem. Mater.,2004,16(3):537-543.
    [42] Yuan J., Schacher F., Drechsler M., Hanisch A., Lu Y., Ballauff M., ller A.. E. Stimuli-responsive organosilica hybrid nanowires decorated with metal nanoparticles. Chem. Mater.,2010,22(8):2626-2634.
    [43] Yuan J., Xu Y., Walther A., Bolisetty S., Schumacher M., Schmalz H., Ballauff M., Muller A. H.Water-soluble organo-silica hybrid nanowires. Nat. Mater.,2008,7(9):718-722.
    [44] Zhu J., Jiang W. Fabrication of conductive metallized nanostructures from self-assembledamphiphilic triblock copolymer templates: Nanospheres, nanowires, nanorings. Mater. Chem.Phys.,2007,101(1):56-62.
    [45] Zhang K., Gao L., Chen Y., Yang Z. Onionlike Spherical Polymer Composites with ControlledDispersion of Gold Nanoclusters. Chem. Mater.,2007,20(1):23-25.
    [46] Deng R., Liu S., Li J., Liao Y., Tao J., Zhu J. Mesoporous block copolymer nanoparticles withtailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater.,2012,24(14):1889-1893.
    [47] Mei S., Jin Z., Mesoporous block-copolymer nanospheres prepared by selective swelling. Small,2013,9(2),322-329.
    [48] Wang H., Wang X., Winnik M. A., Manners I. Redox-mediated synthesis and encapsulation ofinorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymermicelles. J. Am. Chem. Soc.,2008,130(39):12921-12930.
    [49] Li X., Yang H., Xu L., Fu X., Guo H., Zhang X. Janus micelle formation induced byprotonation/deprotonation of poly(2-vinylpyridine)-block-poly(ethylene oxide) diblockcopolymers. Macromol. Chem. Phys.,2010,211(3):297-302.
    [50] Li X., Fu X., Yang H. Preparation and photocatalytic activity of eccentric Au-titania core-shellnanoparticles by block copolymer templates. Phys. Chem. Chem. Phys.,2011,13(7):2809-2814.
    [51] Chen T., Yang M., Wang X., Tan L. H., Chen H. Controlled assembly of eccentricallyencapsulated gold nanoparticles. J. Am. Chem. Soc.,2008,130(36):11858-11859.
    [52] Guo Y., Harirchian-Saei S., Izumi C. M., Moffitt M. G. Block copolymer mimetic self-assemblyof inorganic nanoparticles. Acs Nano,2011,5(4):3309-3318.
    [53] Hu J., Wu T., Zhang G., Liu S. Efficient synthesis of single gold nanoparticle hybrid amphiphilictriblock copolymers and their controlled self-assembly. J. Am. Chem. Soc.,2012,134(18):7624-7627.
    [54] Dubertret B., Skourides P., Norris D. J., Noireaux V., Brivanlou A. H., Libchaber A. In vivoimaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762.
    [55] Kang Y., Taton T. A. Core/Shell gold nanoparticles by self-assembly and crosslinking of micellar,block-copolymer shells. Angew. Chem., Int. Ed.,2005,44(3):409-412.
    [56] Kang Y., Taton T. A. Controlling shell thickness in core shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants. Macromolecules,2005,38(14):6115-6121.
    [57] Kang Y., Erickson K. J., Taton T. A. Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J. Am. Chem. Soc.,2005,127(40):13800-13801.
    [58] Chen H. Y., Abraham S., Mendenhall J., Delamarre S. C., Smith K., Kim I., Batt C. A.Encapsulation of single small gold nanoparticles by diblock copolymers. ChemPhysChem,2008,9(3):388-392.
    [59] Chen G., Wang Y., Tan L. H., Yang M., Tan L. S., Chen Y., Chen H. High-purity separation ofgold nanoparticle dimers and trimers. J. Am. Chem. Soc.,2009,131(12):4218-4219.
    [60] Wang X., Li G., Chen T., Yang M., Zhang Z., Wu T., Chen H. Polymer-encapsulated gold-nanoparticle dimers: Facile preparation and catalytical application in guided growth of dimericZnO-nanowires. Nano Lett.,2008,8(9):2643-2647.
    [61] Chen G., Wang Y., Yang M., Xu J., Goh S. J., Pan M., Chen H. Measuring ensemble-averagedsurface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J.Am. Chem. Soc.,2010,132(11):3644-3645.
    [62] Wang Y., Chen G., Yang M., Silber G., Xing S., Tan L. H., Wang F., Feng Y., Liu X., Li S., ChenH A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat.Commun.,2010,1(1):87-88.
    [63] Wang M., Zhang M., Qian J., Zhao F., Shen L., Scholes G. D., Winnik M. A. Enhancing thephotoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shellquantum dots in water through a chemical-activation approach. Langmuir,2009,25(19):11732-11740.
    [64] Wang M., Felorzabihi N., Guerin G., Haley J. C., Scholes G. D., Winnik M. A. Water-solubleCdSe quantum dots passivated by a multidentate diblock copolymer. Macromolecules,2007,40(17):6377-6384.
    [65] Yu W. W., Chang E., Falkner J. C., Zhang J., Al-Somali A. M., Sayes C. M., Johns J., Drezek R.,Colvin V. L. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilicpolymers. J. Am. Chem. Soc.,2007,129(10):2871-2879.
    [66] Janczewski D., Tomczak N., Han M. Y., Vancso G. J. Synthesis of functionalized amphiphilicpolymers for coating quantum dots. Nat. Protoc.,2011,6(10):1546-1553.
    [67] Sanchez-Gaytan B. L., Cui W., Kim Y., Mendez-Polanco M. A., Duncan T. V., Fryd M., WaylandB. B., Park S. J. Interfacial assembly of nanoparticles in discrete block-copolymer aggregates.Angew. Chem., Int. Ed.,2007,46(48):9235-9238.
    [68] Hickey R. J., Haynes A. S., Kikkawa J. M., Park S.-J. Controlling the self-assembly structure ofmagnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J. Am.Chem. Soc.,2011,133(5):1517-1525.
    [69] Kamps A. C., Sanchez-Gaytan B. L., Hickey R. J., Clarke N., Fryd M., Park S. J. Nanoparticle-directed self-assembly of amphiphilic block copolymers. Langmuir,2010,26(17):14345-14350.
    [70] Zhu J., Hayward R. C. Spontaneous generation of amphiphilic block copolymer micelles withmultiple morphologies through interfacial instabilities. J. Am. Chem. Soc.,2008,130(23):7496-7502.
    [71] Zhu J., Hayward R. C. Hierarchically structured microparticles formed by interfacial instabilitiesof emulsion droplets containing amphiphilic block copolymers. Angew. Chem., Int. Ed.,2008,47(11):2113-2116.
    [72] Ruan G., Vieira G., Henighan T., Chen A., Thakur D., Sooryakumar R., Winter J. O.Simultaneous magnetic manipulation and fluorescent tracking of multiple individual hybridnanostructures. Nano Lett.,2010,10(6):2220-2224.
    [73] Ruan G., Winter J. O. Alternating-color quantum dot nanocomposites for particle tracking. NanoLett.,2011,11(3):941-945.
    [74] Bae J., Lawrence J., Miesch C., Ribbe A., Li W., Emrick T., Zhu J., Hayward R. C.Multifunctional nanoparticle-loaded spherical and wormlike micelles formed by interfacialinstabilities. Adv. Mater.,2012,24(20):2735-2741.
    [75] Cui H., Chen Z., Zhong S., Wooley K. L., Pochan D. J. Block copolymer assembly via kineticcontrol. Science,2007,317(5838):647-650.
    [76] Zhu J., Jiang W. Self-assembly of ABC triblock copolymer into giant segmented wormlikemicelles in dilute solution. Macromolecules,2005,38(22):9315-9323.
    [77] Wang H., Lin W., Fritz K. P., Scholes G. D., Winnik M. A., Manners I. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc.,2007,129(43):12924-12925.
    [78] Wang X., Guerin G., Wang H., Wang Y., Manners I., Winnik M. A. Cylindrical block copolymermicelles and co-micelles of controlled length and architecture. Science,2007,317(5838):644-647.
    [79] Mai Y., Eisenberg A. Controlled incorporation of particles into the central portion of vesicle walls.J. Am. Chem. Soc.,2010,132(29):10078-10084.
    [80] Mai Y., Eisenberg A. Controlled incorporation of particles into the central portion of blockcopolymer rods and micelles. Macromolecules,2011,44(8):3179-3183.
    [81] Wang H., Chen L., Shen X., Zhu L., He J., Chen H. Unconventional chain-growth mode in theassembly of colloidal gold nanoparticles. Angew. Chem., Int. Ed.,2012,51(32):8021-8025.
    [82] Zhu L., Shen X., Zeng Z., Wang H., Zhang H., Chen H. Induced coiling action: Exploring theintrinsic defects in five-fold twinned silver nanowires. Acs Nano,2012,6(7):6033-6039.
    [83] He J., Liu Y., Babu T., Wei Z., Nie Z. Self-assembly of inorganic nanoparticle vesicles andtubules driven by tethered linear block copolymers. J. Am. Chem. Soc.,2012,134(28):11342-11345.
    [84] Song J., Cheng L., Liu A., Yin J., Kuang M., Duan H. Plasmonic vesicles of amphiphilic goldnanocrystals: self-assembly and external-stimuli-triggered destruction. J. Am. Chem. Soc.,2011,133(28):10760-10763.
    [85] Song J., Zhou J., Duan H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic goldnanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc.,2012,134(32):13458-13469.
    [86] Niikura K., Iyo N., Higuchi T., Nishio T., Jinnai H., Fujitani N., Ijiro K. Gold nanoparticlescoated with semi-fluorinated oligo(ethylene glycol) produce sub-100nm nanoparticle vesicleswithout templates. J. Am. Chem. Soc.,2012,134(18):7632-7635.
    [87] Fahmi A. W., Braun H. G., Stamm M. Fabrication of metallized nanowires from self-assembleddiblock copolymer templates. Adv. Mater.,2003,15(14):1201-1204.
    [88] Mendoza C., Gindy N., Gutmann J. S., r msdorf A., rster S., Fahmi A. In situ synthesis andalignment of Au nanoparticles within hexagonally packed cylindrical domains of diblockcopolymers in bulk. Langmuir,2009,25(16):9571-9578.
    [89] Thompson R. B., Ginzburg V. V., Matsen M. W., Balazs A. C. Predicting the mesophases ofcopolymer-nanoparticle composites. Science,2001,292(5526):2469-2472.
    [90] Wang Q., Nealey P. F., de Pablo J. J. Behavior of single nanoparticle/homopolymer chain inordered structures of diblock copolymers. J. Chem. Phys.,2003,118(24):11278.
    [91] Liu D., Zhong C. Cooperative self-assembly of nanoparticle mixtures in lamellar diblockcopolymers: A dissipative particle dynamics study. Macromol. Rapid. Comm.,2006,27(6):458-462.
    [92] Bockstaller M. R., Lapetnikov Y., Margel S., Thomas E. L. Size-selective organization ofenthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem.Soc.,2003,125(18):5276-5277.
    [93] Corbierre M. K., Cameron N. S., Lennox R. B., Polymer-stabilized gold nanoparticles with highgrafting densities. Langmuir,2004,20(7):2867-2873.
    [94] Chiu J. J., Kim B. J., Kramer E. J., Pine D. J. Control of nanoparticle location in block copolymers.J. Am. Chem. Soc.,2005,127(14):5036-5037.
    [95] Jeon S.-J., Yang S.-M., Kim B. J., Petrie J. D., Jang S. G., Kramer E. J., Pine D. J., Yi G.-R.Hierarchically structured colloids of diblock copolymers and Au nanoparticles. Chem. Mater.,2009,21(16):3739-3741.
    [96] Sides S. W., Kim B. J., Kramer E. J., Fredrickson G. H. Hybrid particle-field simulations ofpolymer nanocomposites. Phys. Rev. Lett.,2006,96(25):250601.
    [97] Chiu J. J., Kim B. J., Yi G.-R., Bang J., Kramer E. J., Pine D. J. Distribution of nanoparticles inlamellar domains of block copolymers. Macromolecules,2007,40(9):3361-3365.
    [98] Kim B. J., Bang J., Hawker C. J., Kramer E. J. Effect of areal chain density on the location ofpolymer-modified gold nanoparticles in a block copolymer template. Macromolecules,2006,39(12):4108-4114.
    [99] Kim B. J., Fredrickson G. H., Kramer E. J. Effect of polymer ligand molecular weight onpolymer-coated nanoparticle location in block copolymers. Macromolecules,2007,41(2):436-447.
    [100] Matsen M. W., Thompson R. B. Particle distributions in a block copolymer nanocomposite.Macromolecules,2008,41(5):1853-1860.
    [101] Mackay M. E., Tuteja A., Duxbury P. M., Hawker C. J., Van Horn B., Guan Z., Chen G.,Krishnan R. S. General strategies for nanoparticle dispersion. Science,2006,311(5768):1740-1743.
    [102] Murphy C. J., Orendorff C. J. Alignment of gold nanorods in polymer composites and on polymersurfaces. Adv. Mater.,2005,17(18):2173-2177.
    [103] Perez-Juste J., Rodriguez-Gonzalez B., Mulvaney P., Liz-Marzan L. M. Optical control andpatterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater.,2005,7(15):1065-1071.
    [104] Zhang Q., Gupta S., Emrick T., Russell T. P. Surface-functionalized CdSe nanorods for assemblyin diblock copolymer templates. J. Am. Chem. Soc.,2006,128(12):3898-3899.
    [105] Deshmukh R. D., Liu Y., Composto R. J. Two-dimensional confinement of nanorods in blockcopolymer domains. Nano Lett.,2007,7(12):3662-3668.
    [106] Ploshnik E., Salant A., Banin U., Shenhar R. Hierarchical surface patterns of nanorods obtainedby co-assembly with block copolymers in ultrathin films. Adv. Mater.,2010,22(25):2774-2779.
    [107] Hore M. J., Composto R. J. Nanorod self-assembly for tuning optical absorption. ACS Nano,2010,4(11):6941-6949.
    [108] Hore M. J. A. Frischknecht A. L., Composto R. J. Nanorod assemblies in polymer films and theirdispersion-dependent optical properties. ACS Macro Lett.,2012,1(1):115-121.
    [109] Jiang G., Hore M. J. A., Gam S., Composto R. J. Gold Nanorods dispersed in homopolymer films:Optical properties controlled by self-Assembly and percolation of nanorods. Acs Nano,2012,6(5):1578-1588.
    [110] Hore M. J. A., Composto R. J. Using miscible polymer blends to control depletion–attractionforces between Au nanorods in nanocomposite films. Macromolecules,2012,45(15):6078-6086.
    [111] Peng G. Forming Supramolecular Networks from Nanoscale Rods in Binary, Phase-SeparatingMixtures. Science,2000,288(5472):1802-1804.
    [112] Buxton G. A., Balazs A. C. Predicting the mechanical and electrical properties of nanocompositesformed from polymer blends and nanorods. Mol. Simul.,2004,30(4):249-257.
    [113] Tang Q.-y., Ma Y.-q. Self-assembly of rod-shaped particles in diblock-copolymer templates. J.Phys. Chem. B.,2009,113(30):10117-10120.
    [114] He L., Zhang L., Liang H. Cooperative surface-induced self-assembly of symmetric diblockcopolymers confined films with embedded nanorods. Polymer,2009,50(2):721-727.
    [115] He L., Zhang L., Xia A., Liang H. Effect of nanorods on the mesophase structure of diblockcopolymers. J. Chem. Phys.,2009,130(14):144907-144911.
    [116] He L., Zhang L., Liang H. Mono-or bidisperse nanorods mixtures in diblock copolymers.Polymer,2010,51(14):3303-3314.
    [117] Listak J., Hakem I. F., Ryu H. J., Rangou S., Politakos N., Misichronis K., Avgeropoulos A.,Bockstaller M. R. Effect of chain architecture on the compatibility of blockcopolymer/nanoparticle blends. Macromolecules,2009,42(15):5766-5773.
    [118] Milner S. T.: Polymer brushes. Science,1991,251(4996):905-914.
    [119] Fischer S., Salcher A., Kornowski A., Weller H., F rster S. Completely miscible nanocomposites.Angew. Chem., Int. Ed.,2011,50(34):7811-7814.
    [120] Kumar S. K., Krishnamoorti R. Nanocomposites: structure, phase behavior, and properties. Annu.Rev. Chem. Biomol. Eng.,2010,1(1):37-58.
    [121] Bieligmeyer M., Taheri S. M., German I., Boisson C., Probst C., Milius W., Altst dt V., Breu J.,Schmidt H.-W., D’Agosto., F rster S. Completely miscible polyethylene nanocomposites. J.Am. Chem. Soc.,2012,134(44):18157-18160.
    [122] Smith G. D., Bedrov D. Dispersing nanoparticles in a polymer matrix: are long, dense polymertethers really necessary? Langmuir,2009,25(19):11239-11243.
    [123] Hamley I. W. The physics of block copolymers. Oxford University Press: NewYork1998.
    [124] Xia Y., Xiong Y., Lim B., Skrabalak S. E. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angew. Chem., Int. Ed.,2009,48(1):60-103.
    [125] Keys A. S., Iacovella C. R., Glotzer S. C. Characterizing structure through shape matching andapplications to self-assembly. Annu. Rev. Chem. Biomol. Eng.,2011,2(2):263-285.
    [126] Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Sundaresan G., Wu A.M., Gambhir S. S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics.Science,2005,307(5709):538-544.
    [127] Gao X., Cui Y., Levenson R. M., Chung L. W., Nie S. In vivo cancer targeting and imaging withsemiconductor quantum dots. Nature Biotechnol.,2004,22(8):969-976.
    [128] Warren S. C., Messina L. C., Slaughter L. S., Kamperman M., Zhou Q., Gruner S. M., DiSalvo F.J., Wiesner U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science,2008,320(5884):1748-1752.
    [129] Warren S. C., Perkins M. R., Adams A. M., Kamperman M., Burns A. A., Arora H., Herz E.,Suteewong T., Sai H., Li Z., Werner J., Song J., Werner-Zwanziger U., Zwanziger J. W., Gr tzelM., DiSalvo F. J., Wiesner U. A silica sol–gel design strategy for nanostructured metallicmaterials. Nat. Mater.,2012,11(5),460-467.
    [130] Zhou J., Sun Y., Du X., Xiong L., Hu H., Li F. Dual-modality in vivo imaging using rare-earthnanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence andmagnetic resonance properties. Biomaterials2010,31(12),3287-3295.
    [131] Wang Y., Xu H., Zhang X. Tuning the amphiphilicity of building blocks: controlled self-Assembly and disassembly for functional supramolecular materials. Adv. Mater.,2009,21(28):2849-2864.
    [132] Li Z., Sai H., Warren S. C., Kamperman M., Arora H., Gruner S. M., Wiesner U. Metalnanoparticle/block copolymer composite assembly and disassembly. Chem. Mater.,2009,21(23):5578-5584.
    [133] Zhao Y., Thorkelsson K., Mastroianni A. J., Schilling T., Luther J. M., Rancatore B. J.,Matsunaga K., Jinnai H., Wu Y., Poulsen D., Frechet J. M. J., Paul Alivisatos A., Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater.,2009,8(12):979-985.
    [134] Warren S. C., Disalvo F. J., Wiesner U. Nanoparticle-tuned assembly and disassembly ofmesostructured silica hybrids. Nat. Mater.,2007,6(2):156-161.
    [135] Nie Z. H., Petukhova A., Kumacheva E. Properties and emerging applications of self-assembledstructures made from inorganic nanoparticles. Nat. Nanotechnol.,2010,5(1):15-25.
    [136] Kim B. J., Chiu J. J., Yi G. R., Pine D. J., Kramer E. J. Nanoparticle-induced phase transitions indiblock-copolymer films. Adv. Mater.,2005,17(21):2618-2622.
    [137] Li Q., He J., Glogowski E., Li X., Wang J., Emrick T., Russell T. P. Responsive assemblies: goldnanoparticles with mixed ligands in microphase separated block copolymers. Adv. Mater.,2008,20(8):1462-1466.
    [138] Yeh S.-W., Wei K.-H., Sun Y.-S., Jeng U. S., Liang K. S. CdS nanoparticles induce amorphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packedcylinders to a lamellar structure. Macromolecules,2005,38(15):6559-6565.
    [139] Ai H., Flask C., Weinberg B., Shuai X. T., Pagel M. D., Farrell D., Duerk J., Gao J. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater.,2005,17(16):1949-1952.
    [140] Euliss L. E., Grancharov S. G., O'Brien S., Deming T. J., Stucky G. D., Murray C. B., Held G. A.Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media.Nano Lett.,2003,3(11):1489-1493.
    [141] Hayward R. C., Pochan D. J. Tailored assemblies of block copolymers in solution: It is all aboutthe process. Macromolecules,2010,43(8):3577-3584.
    [142] Qian J., Zhang M., Manners I., Winnik M. A. Nanofiber micelles from the self-assembly of blockcopolymers. Trends Biotechnol.,2010,28(2):84-92.
    [143] Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics,therapies and toxicity. Chem. Soc. Rev.,2009,38(6):1759-1782.
    [144] Geng Y., Dalhaimer P., Cai S., Tsai R., Tewari M., Minko T., Discher D. E. Shape effects offilaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol.,2007,2(4):249-55.
    [145] Cui H., Chen Z., Zhong S., Wooley K. L., Pochan D. J. Block copolymer assembly via kineticcontrol. Science,2007,317(5838):647-650.
    [146] Jana N. R., Gearheart L., Murphy C. J. Seeding growth for size control of540nm diameter goldnanoparticles. Langmuir,2001,17(22):6782-6786.
    [147] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. Synthesis of thiol-derivatised goldnanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun.,1994,10:801-802.
    [148] Yockell-Lelièvre H., Desbiens J., Ritcey A. M. Two-dimensional self-organization ofpolystyrene-capped gold nanoparticles. Langmuir,2007,23(5):2843-2850.
    [149] Nie Z., Fava D., Rubinstein M., Kumacheva E."Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes. J.Am. Chem. Soc.,2008,130(11):3683-3689.
    [150] Rucareanu S., Maccarini M., Shepherd J. L., Lennox R. B., Polymer-capped gold nanoparticles byligand-exchange reactions. J. Mater. Chem.,2008,18(47):5830-5834.
    [151] Mattoussi H., Mauro J. M., Goldman E. R., Anderson G. P., Sundar V. C., Mikulec F. V.,Bawendi M. G. Self-assembl of CdSe ZnS quantum dot bioconjugates using an engineeredrecombinant protein. J. Am. Chem. Soc.,2000,122(49):12142-12150.
    [152] Lee J.-Y., Zhang Q., Emrick T., Crosby A. J. Nanoparticle alignment and repulsion during failureof glassy polymer nanocomposites. Macromolecules,2006,39(21):7392-7396.
    [153] de Moel K., Alberda van Ekenstein G. O. R., Nijland H., Polushkin E., ten Brinke G., M ki-OnttoR., Ikkala O. Polymeric nanofibers prepared from self-organized supramolecules. Chem. Mater.,2001,13(12):4580-4583.
    [154] Lee J. W., Lee C., Choi S. Y., Kim S. H. Block copol mer surfactant complexes in thin films formultiple usages from hierarchical structure to nano-objects. Macromolecules,2010,43(1):442-447.
    [155] Woehrle G. H., Brown L. O., Hutchison J. E., Thiol-functionalized,1.5-nm gold nanoparticlesthrough ligand exchange reactions: Scope and mechanism of ligand exchange. J. Am. Chem. Soc.,2005,127(7):2172-2183.
    [156] Fischer S., Salcher A., Kornowski A., Weller H., Forster S. Completely miscible nanocomposites.Angew. Chem., Int. Ed.,2011,50(34):7811-7814.
    [157] Leroux F., Gysemans M., Bals S., Batenburg K. J., Snauwaert J., Verbiest T., Van HaesendonckC., Van Tendeloo G. Three-dimensional characterization of helical silver nanochains mediated byprotein assemblies. Adv. Mater.,2010,22(19):2193-2197.
    [158] Shenhar R., Norsten T. B., Rotello V. M. Polymer-mediated nanoparticle assembly: Structuralcontrol and applications. Adv. Mater.,2005,17(6):657-669.
    [159] Ghosh S. K., Pal T. Interparticle coupling effect on the surface plasmon resonance of goldnanoparticles: from theory to applications. Chem. Rev.,2007,107(11):4797-4862.
    [160] Maki-Ontto R., de Moel K., de Odorico W., Ruokolainen J., Stamm M., Ten Brinke G., Ikkala O."Hairy tubes": Mesoporous materials containing hollow self-organized cylinders with polymerbrushes at the walls. Adv. Mater.,2001,13(2):117-121.
    [161] Warren S. C., Disalvo F. J., Wiesner U. Nanoparticle-tuned assembly and disassembly ofmesostructured silica hybrids. Nat. Mater.,2007,6(2):156-161.
    [162] Gaines M. K., Smith S. D., Samseth J., Bockstaller M. R., Thompson R. B., Rasmussen K..,Spontak R. J. Nanoparticle-regulated phase behavior of ordered block copolymers. Soft Matter,2008,4(8):1609-1612.
    [163] Rubinstein M., Colby R. Polymer Physics,2003, New York, Oxford, pp.51-54.
    [164] Butt H.-J., Graf K., Kappl M. Physics And Chemistry of Interfaces,2003, Berlin, WILEY-VCH,pp.108.
    [165] Bockstaller M. R., Mickiewicz R. A., Thomas E. L. Block copolymer nanocomposites:perspectives for tailored functional materials. Adv. Mater.,2005,11(17):1331-1349.
    [166] Jones M. R., Osberg K. D., Macfarlane R. J., Langille M. R., Mirkin C. A. Templated techniquesfor the synthesis and assembly of plasmonic nanostructures. Chem. Rev.,2011,111(6):3736-3827.
    [167] Mai Y., Eisenberg A. Selective localization of preformed nanoparticles in morphologicallycontrollable block copolymer aggregates in solution. Acc. Chem. Res.,2012,45(10):1657-1666.
    [168] Hickey R. J., Haynes A. S., Kikkawa J. M., Park S. J. Controlling the self-assembly structure ofmagnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J. Am.Chem. Soc.,2011,133(5):1517-1525.
    [169] Zhu J., Hayward R. C. Spontaneous generation of amphiphilic block copolymer micelles withmultiple morphologies through interfacial Instabilities. J. Am. Chem. Soc.,2008,130(23):7496-7502.
    [170] Lin Y., Daga V. K., Anderson E. R., Gido S. P., Watkins J. J. Nanoparticle-driven assembly ofblock copolymers: a simple route to ordered hybrid materials. J. Am. Chem. Soc.,2011,133(17):6513-6516.
    [171] Claridge S. A., Castleman A. W., Khanna S. N., Murray C. B., Sen A., Weiss P. S. Cluster-assembled materials. ACS Nano,2009,3(2):244-255.
    [172] Qiu P., Jensen C., Charity N., Towner R., Mao C. Oil phase evaporation-induced self-assembly ofhydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles.J. Am. Chem. Soc.,2010,132(50):17724-17732.
    [173] Sanson C., Diou O., Thevenot J., Ibarboure E., Soum A., Brulet A., Miraux S., Thiaudiere E., TanS., Brisson A., Dupuis V., Sandre O., Lecommandoux S. Doxorubicin loaded magneticpolymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano,20115(2):1122-1140.
    [174] Berret J.-F., Schonbeck N., Gazeau F., El Kharrat D., Sandre O., Vacher A., Airiau M. Controlledclustering of superparamagnetic nanoparticles using block copolymers: design of new contrastagents for magnetic resonance imaging. J. Am. Chem. Soc.,2006,128(5):1755-1761.
    [175] Wei Q., Lin Y., Anderson E. R., Briseno A. L., Gido S. P., Watkins J. J. Additive-driven assemblyof block copolymer-nanoparticle hybrid materials for solution processable floating gate memory.Acs Nano,2012,6(2):1188-1194.
    [176] Li W., Liu S., Deng R., Zhu J. Encapsulation of nanoparticles in block copolymer micellaraggregates by directed supramolecular assembly. Angew. Chem., Int. Ed.,2011,50(26):5865-5868.
    [177] Kuila B. K., Rama M. S., Stamm M. Supramolecular assembly of poly(styrene)-b-poly(4-vinylpyridine) and ferroceneacetic acid: an easy way to large-scale controllable periodic arrays ofiron oxide nanomaterials. Adv. Mater.,2011,23(15):1797-1800.
    [178] Sary N., Richard F., Brochon C., Leclerc N., Leveque P., Audinot J. N., Berson S., Heiser T.,Hadziioannou G., Mezzenga R. A new supramolecular route for using rod-coil block copolymersin photovoltaic applications. Adv. Mater.,2010,22(6),763-768.
    [179] Huang W.-H., Chen P.-Y., Tung S.-H. Effects of annealing solvents on the morphology of blockcopolymer-based supramolecular thin films. Macromolecules,2012,45(3):1562-1569.
    [180] Ikeda M., Nobori T., Schmutz M., Lehn J. M. Hierarchical self-assembly of a bow-shapedmolecule bearing self-complementary hydrogen bonding sites into extended supramolecularassemblies. Chem. Eur. J.,2005,11(2):662-668.
    [181] Wu S., Shi F., Zhang Q., Bubeck C. Stable hydrogen-bonding complexes of poly(4-vinylpyridine)and polydiacetylenes for photolithography and sensing. Macromolecules,2009,42(12):4110-4117.
    [182] Valkama, S., Ruotsalainen T., Nyk nen A., Laiho A., Kosonen H., ten Brinke G., Ikkala O.,Ruokolainen, J. Self-assembled structures in diblock copolymers with hydrogen-bondedamphiphilic plasticizing compounds. Macromolecules,2006,39(26):9327-9336.
    [183] Gaines M. K., Smith S. D., Samseth J., Bockstaller M. R., Thompson R. B., Rasmussen K. O.,Spontak R. J. Nanoparticle-regulated phase behavior of ordered block copolymers. Soft Matter,2008,4(8):1609-1612.
    [184] Cheng W., Campolongo M. J., Cha J. J., Tan S. J., Umbach C. C., Muller D. A., Luo D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater.,2009,8(6):519-525.
    [185] Tavakkoli K. G. A., Gotrik K. W., Hannon A. F., Alexander-Katz A., Ross C. A., Berggren K. K.Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science,2012,336(6086):1294-1298.
    [186] Wu H., Bai F., Sun Z., Haddad R. E., Boye D. M., Wang Z., Fan H. Pressure-driven assembly ofspherical nanoparticles and formation of1D-nanostructure arrays. Angew. Chem., Int. Ed.2010,49(45):8431-8434.
    [187] Daga V. K., Watkins J. J. Hydrogen-bond-mediated phase behavior of complexes of smallmolecule additives with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblockcopolymer surfactants. Macromolecules,2010,43(23):9990-9997.
    [188] Tang C., Lennon E. M., Fredrickson G. H., Kramer E. J., Hawker C. J. Evolution of blockcopolymer lithography to highly ordered square arrays. Science,2008,322(5900):429-432.
    [189] Park S., Lee D. H., Xu J., Kim B., Hong S. W., Jeong U., Xu T., Russell T. P. Macroscopic10-terabit-per-square-inch arrays from block copolymers with lateral order. Science,2009,323(5917):1030-1033.
    [190] Zhu J. T., Zhao J. C., Liao Y. G., Jiang W. Multiscale dewetting of triblock copolymer thin filminduced by solvent vapor. J. Polym. Sci. Polym. Phys.,2005,43(20):2874-2884.
    [191] Lacava J., Born P., Kraus T. Nanoparticle clusters with Lennard-Jones geometries. Nano Lett.,2012,12(6):3279-3282.
    [192] Calvo F., Doye J. P., Wales D. J. Energy landscapes of colloidal clusters: thermodynamics andrearrangement mechanisms. Nanoscale,2012,4(4):1085-1100.
    [193] Lacava J., Born P., Kraus T. Nanoparticle clusters with Lennard-Jones geometries. Nano Lett.,2012,12(6):3279-3282.
    [194] Chen Y. Shaped hairy polymer nanoobjects. Macromolecules,2012,45(6):2619-2631.
    [195] Nikolic M. S., Olsson C., Salcher A., Kornowski A., Rank A., Schubert R., Fromsdorf A., WellerH., Forster S. Micelle and vesicle formation of amphiphilic nanoparticles. Angew. Chem. Int. Ed.,2009,48(15):2752-2754.
    [196] Tung S.-H., Xu T. Templated assembly of block copolymer toward nonequilibrium nanostructuresin thin films. Macromolecules,2009,42(15):5761-5765.
    [197] Grzelczak M., Vermant J., Furst E. M., Liz-Marzan L. M. Directed self-assembly of nanoparticles.Acs Nano,2010,4(7):3591-3605.
    [198] Zhang H., Liu Y., Yao D., Yang B. Hybridization of inorganic nanoparticles and polymers tocreate regular and reversible self-assembly architectures. Chem. Soc. Rev.,2012,41(18):6066-6088.
    [199] Langner K. M., Sevink G. J. A. Mesoscale modeling of block copolymer nanocomposites. SoftMatter,2012,8(19):5102-5118.
    [200] Vigderman L., Khanal B. P., Zubarev E. R. Functional gold nanorods: synthesis, self-assembly,and sensing applications. Adv. Mater.,2012,24(36):4811-4841.
    [201] Huynh W. U., Dittmer J. J., Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science,2002,295(5564):2425-2427.
    [202] Chen H., Shao L., Li Q., Wang J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev.,2013, DOI:10.1039/C2CS35367A.
    [203] Liu Z., Huang H., He T. Large-Area2D gold nanorod arrays assembled on block copolymertemplates. Small,2013,9(4):505-510.
    [204] Umadevi S., Feng X., Hegmann T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater.,2013, DOI:10.1002/adfm.201202727.
    [205] Zhang C. L., Lv K. P., Cong H. P., Yu S. H. Controlled assemblies of gold nanorods in PVAnanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small,2012,8(5):647-653.
    [206] Wang T., Zhuang J., Lynch J., Chen O., Wang Z., Wang X., LaMontagne D., Wu H., Wang Z.,Cao Y. C. Self-assembled colloidal superparticles from nanorods. Science,2012,338(6105):358-363.
    [207] Nepal D., Onses M. S., Park K., Jespersen M., Thode C. J., Nealey P. F., Vaia R. A. Control overposition, orientation, and spacing of arrays of gold nanorods using chemically nanopatternedsurfaces and tailored particle–particle–surface interactions. ACS Nano,2012,6(6):5693-5701.
    [208] Son J. G., Bae W. K., Kang H., Nealey P. F., Char K. Placement control of nanomaterial arrays onthe surface-reconstructed block copolymer thin films. ACS Nano2009,3(12):3927-34.
    [209] Frischknecht A. L. Forces between nanorods with end-adsorbed chains in a homopolymer melt. J.Chem. Phys.,2008,128(22):224902.
    [210] Trombly D. M., Ganesan V. Curvature effects upon interactions of polymer-grafted nanoparticlesin chemically identical polymer matrices. J. Chem. Phys.,2010,133(15):154904.
    [211] Kim J., Green P. F. Phase behavior of thin film brush-coated nanoparticles/homopolymermixtures. Macromolecules,2010,43(3):1524-1529.
    [212] Zhao B., Zhu L. Mixed polymer brush-grafted particles: a new class of environmentallyresponsive nanostructured materials. Macromolecules,2009,42(24):9369-9383.
    [213] Edgecombe S. R., Gardiner J. M., Matsen M. W. Suppressing autophobic dewetting by using abimodal brush. Macromolecules,2002,35(16):6475-6477.
    [214] Gao B., Arya G., Tao A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions.Nat. Nanotechnol.,2012,7(7):433-437.
    [215] Nikoobakht B., El-Sayed M. A. Preparation and growth mechanism of gold nanorods (NRs) usingseed-mediated growth method. Chem. Mater.,2003,10(15):1957-1962.
    [216] Ni W., Kou X., Yang Z., Wang J. Tailoring longitudinal surface plasmon wavelengths, scatteringand absorption cross sections of gold nanorods. ACS Nano,2008,2(4):677-686.
    [217] Khanal B. P., Zubarev E. R. Rings of nanorods. Angew. Chem., Int. Ed.,2007,46(13):2195-2198.
    [218] Hickey R. J., Sanchez-Gaytan B. L., Cui W., Composto R. J., Fryd M., Wayland B. B., Park S. J.Morphological transitions of block-copolymer bilayers via nanoparticle clustering. Small,2010,6(1):48-51.
    [219] He L., Zhang L., Xia A., Liang H. Effect of nanorods on the mesophase structure of diblockcopolymers. J. Chem. Phys.,2009,130(14):144907.
    [220] Chen K., Ma Y.-q. Ordering stripe structures of nanoscale rods in diblock copolymer scaffolds. J.Chem. Phys.,2002,116(18):7783-7786.
    [221] Liu K., Nie Z., Zhao N., Li W., Rubinstein M., Kumacheva E. Step-growth polymerization ofinorganic nanoparticles. Science,2010,329(5988):197-200.
    [222] Fava D., Nie Z., Winnik M. A., Kumacheva E. Evolution of Self-assembled structures ofpolymer-terminated gold nanorods in selective solvents. Adv. Mater.,2008,20(22):4318-4322.
    [223] Nie Z., Fava D., Kumacheva E., Zou S., Walker G. C., Rubinstein M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater.,2007,6(8):609-614.
    [224] Lee A., Andrade G. F., Ahmed A., Souza M. L., Coombs N., Tumarkin E., Liu K., Gordon R.,Brolo A. G., Kumacheva E. Probing dynamic generation of hot-spots in self-assembled chains ofgold nanorods by surface-enhanced Raman scattering. J. Am. Chem. Soc.,2011,133(19):7563-7570.
    [225] Funston A. M., Novo C., Davis T. J., Mulvaney P. Plasmon coupling of gold nanorods at shortdistances and in different geometries. Nano Lett.,2009,9(4):1651-1658.
    [226] Zijlstra P., Chon J. W., Gu M. Five-dimensional optical recording mediated by surface plasmonsin gold nanorods. Nature,2009,459(7245):410-413.
    [227] Gennes P.-G. de. Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY1979.
    [228] Victor Pryamitsyn V. G. Strong segregation theory of block copolymer-nanoparticle composites.Macromolecules,2006,39(24):8499-8510.
    [229] Horsch M. A., Zhang Z., Glotzer S. C. Self-assembly of polymer-tethered nanorods. Phys. Rev.Lett.,2005,95(5):056105.
    [230] Horsch M. A., Zhang Z. L., Glotzer S. C. Self-assembly of end-tethered nanorods in a neat systemand role of block fractions and aspect ratio. Soft Matter,2010,5(6):945-954.
    [231] Ye X., Jin L., Caglayan H., Chen J., Xing G., Zheng C., Doan-Nguyen V., Kang Y., Engheta N.,Kagan C. R., Murray C. B. Improved size-tunable synthesis of monodisperse gold nanorodsthrough the use of aromatic additives. ACS Nano,2012,6(3):2804-2817.
    [232] Grzelczak M., Sanchez-Iglesias A., Mezerji H. H., Bals S., Perez-Juste J., Liz-Marzan L. M.Steric hindrance induces crosslike self-assembly of gold nanodumbbells. Nano Lett.,2012,12(8):4380-4384.
    [233] Damasceno P. F., Engel M., Glotzer S. C. Predictive self-assembly of polyhedra into complexstructures. Science,2012,337(6093):453-457.
    [234] Macfarlane R. J., Lee B., Jones M. R., Harris N., Schatz G. C., Mirkin C. A. Nanoparticlesuperlattice engineering with DNA. Science,2011,334(6053):204-208.
    [235] Ming T., Kou X., Chen H., Wang T., Tam H. L., Cheah K. W., Chen J. Y., Wang J. Ordered goldnanostructure assemblies formed by droplet evaporation. Angew. Chem., Int. Ed.,2008,47(50):9685-9690.
    [236] Gao B., Arya G., Tao A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions.Nat. Nanotechnol.,2012,7(7):433-437.
    [237] Wu J., Zhang X., Yao T., Li J., Zhang H., Yang B. Improvement of the stability of colloidal goldsuperparticles by polypyrrole modification. Langmuir,2010,26(11):8751-8755.
    [238] Park S. Y., Lytton-Jean A. K., Lee B., Weigand S., Schatz G. C., Mirkin C. A. DNA-programmable nanoparticle crystallization. Nature,2008,451(7178):553-556.
    [239] Guerrero-Martinez A., Perez-Juste J., Carbo-Argibay E., Tardajos G., Liz-Marzan L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices.Angew. Chem., Int. Ed.,2009,48(50):9484-9488.
    [240] Mehdizadeh Taheri S., Fischer S., F rster S. Routes to nanoparticle-polymer superlattices.Polymers,2011,3(2):662-673.
    [241] Ng K. C., Udagedara I. B., Rukhlenko I. D., Chen Y., Tang Y., Premaratne M., Cheng W. Free-standing plasmonic-nanorod superlattice sheets. ACS Nano,2012,6(1):925-934.
    [242] Chen Y., Fu J., Ng K. C., Tang Y., Cheng W. Free-Standing Polymer–nanoparticle superlatticesheets self-assembled at the air–liquid interface. Cryst. Growth Des.,2011,11(11):4742-4746.
    [243] Gupta S., Zhang Q., Emrick T., Russell T. P."Self-corralling" nanorods under an applied electricfield. Nano Lett.,2006,6(9):2066-2069.
    [244] Baranov D., Fiore A., van Huis M., Giannini C., Falqui A., Lafont U., Zandbergen H., Zanella M.,Cingolani R., Manna L. Assembly of colloidal semiconductor nanorods in solution by depletionattraction. Nano Lett.,2010,10(2):743-749.
    [245] Alvarez-Puebla R. A., Agarwal A., Manna P., Khanal B. P., Aldeanueva-Potel P., Carbó-ArgibayE., Pazos-Pérez N., Vigderman L., Zubarev E. R., Kotov N. A., Liz-Marzán L. M. Gold nanorods3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapiddetection of scrambled prions. Proc Nat. Acad. Sci.,2011,108(20):8157-8161.
    [246] Luyten M. C., Alberda van Ekenstein G. O. R., ten Brinke G., Ruokolainen J., Ikkala O., TorkkeliM., Serimaa R. Crystallization and cocrystallization in supramolecular comb copolymer-likes stems: blends of poly(4-vinylpyridine) and pentadecylphenol. Macromolecules,1999,32(13):4404-4410.
    [247] van Zoelen W., Alberda van Ekenstein G., Ikkala O., ten Brinke G. Incorporation of PPE inlamellar self-assembled PS-b-P4VP(PDP) supramolecules and PS-b-P4VP diblock copolymers.Macromolecules,2006,39(19):6574-6579.
    [248] Ruokolainen J., ten Brinke G., Ikkala O., Torkkeli M., Serimaa R. Mesomorphic structures inflexible pol mer surfactant systems due to hydrogen bonding: poly(4-vin lp ridine) pentadecylphenol. Macromolecules,1996,29(10):3409-3415.
    [249] Zhang Y., Lu F., van der Lelie D., Gang O. Continuous phase transformation in nanocubeassemblies. Phys. Rev. Lett.,2011,107(13):135701.
    [250] Tang Z., Zhang Z., Wang Y., Glotzer S. C., Kotov N. A. Self-assembly of CdTe nanocrystals intofree-floating sheets. Science,2006,314(5797):274-278.
    [251] Zhu J., Ferrer N., Hayward R. C. Tuning the assembly of amphiphilic block copolymers throughinstabilities of solvent/water interfaces in the presence of aqueous surfactants. Soft Matter,2009,5(12):2471-2478.
    [252] Liu S., Deng R., Li W., Zhu J. Polymer microparticles with controllable surface textures generatedthrough interfacial instabilities of emulsion droplets. Adv. Funct. Mater.,2012,22(8):1692-1697.
    [253] Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures underequilibrium and non-equilibrium conditions. Nat. Mater.,2009,8(10):781-792.
    [254] Babu S. S., Mohwald H., Nakanishi T. Recent progress in morphology control of supramolecularfullerene assemblies and its applications. Chem. Soc. Rev.,2010,39(11):4021-4035.
    [255]25years of C60. Nat. Nanotechnol.,2010,5(10):691.
    [256] Markovic Z., Trajkovic V. Biomedical potential of the reactive oxygen species generation andquenching by fullerenes (C60). Biomaterials,2008,29(26):3561-3573.
    [257] Fan J., Fang G., Zeng F., Wang X., Wu S. Water-dispersible fullerene aggregates as a targetedanticancer prodrug with both chemo-and photodynamic therapeutic actions. Small,2012,9(4):613-621.
    [258] Giacalone F., Martin N. Fullerene polymers: synthesis and properties. Chem. Rev.,2006,106(12):5136-5190.
    [259] Phillips M. A., Gran M. L., Peppas N. A. Targeted nanodelivery of drugs and diagnostics. NanoToday,2010,5(2):143-159.
    [260] Tan J. P., Kim S. H., Nederberg F., Appel E. A., Waymouth R. M., Zhang Y., Hedrick J. L., YangY. Y. Hierarchical supermolecular structures for sustained drug release. Small,2009,5(13):1504-1507.
    [261] Jenekhe S. A. Self-assembled aggregates of rod-coil block copolymers and their solubilization andencapsulation of fullerenes. Science,1998,279(5358):1903-1907.
    [262] Fujita N., Yamashita T., Asai M., Shinkai S. Formation of [60]fullerene nanoclusters withcontrolled size and morphology through the aid of supramolecular rod-coil diblock copolymers.Angew. Chem., Int. Ed.,2005,44(8):1257-1261.
    [263] Zhang X., Takeuchi M. Controlled fabrication of fullerene C60into microspheres of nanoplatesthrough porphyrin-polymer-assisted self-assembly. Angew. Chem., Int. Ed.,2009,48(51):9646-9651.
    [264] Wang X. S., Metanawin T., Zheng X. Y., Wang P. Y., Ali M. Vernon D. Structure-definedC60/polymer colloids supramolecular nanocomposites in water. Langmuir,2008,24(17):9230-9232.
    [265] Mountrichas G., Pispas S., Xenogiannopoulou E., Aloukos P., Couris S. Aqueous dispersions ofC60fullerene by use of amphiphilic block copolymers: preparation and nonlinear opticalproperties. J. Phys. Chem. B.,2007,111(17):4315-4319.
    [266] poles-Duarte J. M., pe-Sandoval R. n., Gorbatchev A. Y., Reyes-Reyes M., Carroll D. L.Encapsulation of the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester insidemicellar structures. J. Phys. Chem. C.,2009,113(31):13677-13682.
    [267] Laiho A., Ras R. H. A., Valkama S., Ruokolainen J., sterbacka R., Ikkala O. Control of self-assembly by charge-transfer complexation between C60fullerene and electron donating units ofblock copolymers. Macromolecules,2006,39(22):7648-7653.
    [268] Wang M., Kumar S., Lee A., Felorzabihi N., Shen L., Zhao F., Froimowicz P., Scholes G. D.,Winnik M. A., Nanoscale co-organization of quantum dots and conjugated polymers usingpolymeric micelles as templates. J. Am. Chem. Soc.,2008,130(29):9481-9491.
    [269] Koh H. D., Lee J. P., Lee J. S. Well-organized CdS/C60in block copolymer micellar cores.Macromol. Rapid. Commun.,2009,30(12):976-980.
    [270] Brown P., Kamat P. V. Quantum dot solar cells. Electrophoretic deposition of CdSe-C60composite films and capture of photogenerated electrons with nC60cluster shell. J. Am. Chem.Soc.,2008,130(28):8890-8891.
    [271] Gorris H. H., Wolfbeis O. S. Photon-Upconverting Nanoparticles for Optical Encoding andMultiplexing of Cells, Biomolecules, and Microspheres. Angew. Chem., Int. Ed.,2013, DOI:10.1002/anie.201208196.
    [272] Wang W., Cheng D., Gong F., Miao X., Shuai X. Design of multifunctional micelle for tumor-targetedintracellular drug release and fluorescent imaging. Adv. Mater.2012,24(1):115-120.
    [273] Yavuz M. S., Cheng Y., Chen J., Cobley C. M., Zhang Q., Rycenga M., Xie J., Kim C., Song K. H.,Schwartz A. G., Wang L. V., Xia Y. Gold nanocages covered by smart polymers for controlled releasewith near-infrared light. Nat. Mater.,2009,8(12):935-939.
    [274] Eustis S., El-Sayed M. A. Why gold nanoparticles are more precious than pretty gold: noble metalsurface plasmon resonance and its enhancement of the radiative and nonradiative properties ofnanocrystals of different shapes. Chem. Soc. Rev.,2006,35(3):209-217.
    [275] Scholl J. A., Koh A. L., Dionne J. A. Quantum plasmon resonances of individual metallic nanoparticles.Nature,2012,483(7390):421-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700