用户名: 密码: 验证码:
表面功能化聚乳酸膜的构建及其细胞相容性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程的核心内容之一是构建细胞与支架材料的复合体,而细胞在材料上的粘附、增殖、分化等行为主要依赖于材料的表面物理化学性质,因此不同表面性质材料的制备及其与细胞之间的相互作用就成为目前国内外研究的热点。由于材料制备方法及表面改性技术的限制,目前大多数关于材料不同表面性质对细胞行为影响的研究仍以相对较易实现功能化,但在组织工程领域应用并不广泛的材料为基底,如聚苯乙烯(PS)、石英等,而以常用的生物材料例如聚乳酸(PLA)为基底进行的研究则较少报道,而后者恰恰对组织工程的研究与开发更具有实际意义。为了探讨常用组织工程支架材料表面与细胞的相互作用,本研究以目前组织工程领域常用的PLA为基质,考察了表面具有不同物理化学性质的PLA膜对细胞生物学性能的影响,为今后研制生物相容性良好的PLA材料与细胞的复合支架探索一些理论基础和实际技能。
     为了较系统的研究材料表面与细胞之间的相互作用,本研究构建了一系列表面形态和化学组成功能化的PLA膜。首先是在单模微波有机合成仪中,采用有别于传统减压封管热聚合的微波聚合方式,在常压氮气保护下合成了分子量约为4.86×10~4和10.47×10~4的PLA。其次,以此为原料,采用SNS(Solvent-Non-Solvent)技术构建了微孔孔径介于1μm—20μm的PLA膜和PS膜,并以多孔PS膜为模板,制备了表面具有微岛结构的PLA膜,微孔孔径的大小以及孔密度可通过改变溶液的浓度、非溶剂组成、环境温度和溶剂的挥发速率等方法进行控制。最后采用光氧化接枝法,以过氧化氢为光氧化剂,在紫外光辐照下成功的将丙烯酸(AA)、丙烯酰胺(AAm)、丙烯酸羟乙酯(HEA)等亲水性单体接枝到PLA膜表面,从而在PLA膜表面引入了羧基、酰胺基以及羟基等基团,接触角测定显示这些极性基团的引入改善了PLA膜的亲水性,提高了材料的表面自由能。
     作为骨组织工程支架材料,不仅材料与骨细胞的相互作用非常重要,而且材料表面性质对矿化性能及胶原蛋白吸附的影响也非常关键,因此本论文首先系统的研究了材料表面性质对生物矿化及胶原蛋白吸附性能的影响。对PLA膜的诱导矿化性能的研究结果显示纯PLA膜表面由于缺少成核位点而不利于矿化产物的形成,小分子量的PLA由于其表面羧基密度大于高分子量的PLA而矿化沉积的产物相对较多;对于物理形貌功能化的表面,具有1μm微岛结构的PLA膜上有大量的结晶性矿化物产生,显示此结构的表面有利于促进矿化产物的沉积,而另外三种形貌的表面均未见到有明显的结晶性矿化产物形成,其中又以20μm微孔结构的表面沉积的钙磷盐最少;对比不同基团功能化的表面,所引入的三种极性基团由于带有负电荷,因此能够诱导大量的结晶性钙磷产物形成,X射线衍射(XRD)显示此产物为具有一定结晶性的羟基磷灰石(HA)。采用石英晶体微天平(QCM)技术探讨了PLA膜的分子量及表面基团对胶原蛋白吸附的影响。研究结果显示胶原蛋白的吸附基本符合Langmuir等温吸附方程,胶原蛋白在引入功能化基团的表面能够更快的达到吸附平衡,并有较强的吸附力;对比三种功能化基团表面,胶原蛋白在羧基化表面的PLA膜上的吸附量最大;原子力显微镜(AFM)观察显示在小分子量PLA上吸附的胶原蛋白较少,呈弯曲状,而在较大分子量PLA上的胶原吸附量则相对较多,部分胶原蛋白形态呈直线形;在基团功能化表面,胶原蛋白在羧基化表面呈密集的网状分布,显示羧基化的表面有利于胶原蛋白的吸附。
     对成骨细胞在不同PLA膜表面的相容性评价显示,低分子量的PLA比高分子量PLA更有利于细胞粘附,但因前者的降解速率过快,对细胞的长期生长不利;表面具有微孔及微岛结构的PLA膜有利于细胞的粘附与铺展,但对细胞的增殖性能贡献不大。虽然细胞有贴壁的特性,但对直径小于20μm的微孔及微岛结构,细胞伪足均不会沿着孔壁及岛壁贴附生长,而是在微孔及微岛上方铺展;而对于不同表面基团的PLA膜,不论是细胞的粘附与铺展还是细胞的增殖性能都得到一定程度的改善,其中又以引入酰胺基的PLA膜的细胞相容性最好。
     最后,本研究还创新性的探讨了不同性质PLA膜对骨髓间充质干细胞(BMSCs)的诱导分化性能的影响。结果显示在诱导剂的存在下,BMSCs在纯PLA膜上均能够正常的向成骨细胞分化,而对于不同形貌的PLA膜,1μm微岛结构的表面对BMSCs分化性能的影响与纯PLA膜相似,而另外三种形貌则不同程度的对BMSCs朝成骨细胞分化产生抑制作用;更值得注意的是,在PLA膜表面引入酰胺基不仅能够促进BMSCs的诱导分化,甚至在无诱导剂的作用下,其自身也具有一定的诱导BMSCs分化为成骨细胞的功能。
One of the central contents of tissue engineering is to fabricate a composite containing cell and scaffold.The adhesion,proliferation and differentiation functions of cells depend mainly on the physical and chemical characters of materials surface,hence the preparation of different characters surface and the interaction between surfaces and cells become the research hotspot at present.Due to the restriction of preparation method and surface modification technique,most researches of the effect of surfaces characters on cells behavior use the easily functionlized materials which aren't applied widely in tissue engineering as substrate such as polystyrene(PS) and quartz,and few report utilizes frequently-used biomaterials like polylactide acid(PLA) as substrate,however the latter has more actual significant to the investigation and exploiture of tissue engineering.In order to discuss the interaction between the surface of popular scaffolds and cells,the PLA film is used as substrate to review the effects of different surfaces on the capability of cell in this study to offer some academic basics and actual skills in tissue engineering.
     In order to study the interactions between surface and cells systemically,the PLA films with different morphology and chemical compositive functionlized surfaces were prepared in this study.Firstly,the PLA with molecular weight of 4.86×10~4 and 10.47×10~4 were synthesized by microwave irradiation at natural pressure with nitrogen protection,which differed from traditional thermal polymerization.Afterwards the SNS(Solvent-Non-Solvent) technique was used to fabricate micro-pits surfaces of PLA film and PS film with different diameters between 1μm and 20μm,which could be controlled by changing the solution concentration,non-solvent, temperature and volatilization speed of solvent.The micro-pits PS film was used as template ulteriorly to fabricate micro-islands patterned PLA film.Finally the hydrophilic monomers like acrylic(AA),acrylamide(AAm) and hydroxyethyl acrylate(HEA) were grafted onto PLA surface to introduce carboxyl,amide and hydroxyl group respectively.The contact angel measurements appeared that the introduction of polar groups improved its hydrophilicity and increased its surface energy.
     As the bone tissue engineering scaffold,it is important to understand not only the interaction between materials and osteocyte but also the effect of surface characters on the biomineralization and collagen adsorption abilities.The results of induced mineralization showed that pure PLA film made against mineral formed on its surface because it lacked nuclear site,correspondingly the lower molecular weight PLA appeared better mineralization ability than higher molecular weight due to its higher carboxyl density.For the different patterned surfaces,a great number of crystallization mineral was aggraded on PLA film with 1μm micro-islands,proved that this structure would stimulate mineralization,however the other three kinds of patterned surfaces had no obvious crystallization mineral formed and the least mineral was aggraded on the patterned surface with 20μm micro-pits.Compared the group functionlized surfaces,plentiful of crystallization mineral,which was proved to be hydroxyapatite(HA) by X-ray diffraction(XRD), was formed on all of the surfaces because of their negative charges.Collagen adsorption on the surfaces of different molecular weight and group functionlized PLA films was measured by quartz crystal microbalance(QCM).The results showed that the collagen adsorption on these surfaces accorded with Langmuir isothermal adsorption equation.Collagen could achieve adsorption balance faster and the adsorption force was stronger on group functionlized PLA film than pure PLA film.Furthermore the most quality of collagen was adsorbed on the carboxyl surface among three kinds of group functionlized films.The images of atomic force microscope (AFM) appeared that the quantity of adsorbed collagen was less and the conformation was curly on lower molecular weight PLA surface,however,the adsorption quantity on higher molecular weight PLA surface was more and some of them were straight.The collagen adsorbed on the carboxyl functionlized surface appeared a compact dicyto-structure,which meant that carboxyl functionlized surface benefited collagen adsorption.
     The cytocompatibility of different PLA film was evaluated by osteoblast incubation in vitro. Although lower molecular weight PLA showed better adhesion for osteobalst than higher molecular weight,it restrained osteoblast extended growth because of its faster degradation.The PLA film with micro-patterned surface offered a better substrate for cells adhesion and spread, however,it contributed less for cells proliferation.In spite of having "adherence" ability,the pseudopodium of cells only spread on the top surface of PLA film and couldn't grow along the curvature walls of pits and islands.Both cells adhesion and proliferation abilities were improved on the group functionlized surfaces,and the best cytocompatibility surface was the amide functionlized film.
     Lastly,the effect of surface characters on the differentiation of bone mesenchymal stem cells (BMSCs) was investigated innovatively in this study.BMSCs could differentiate normally towards osteoblast direction on pure PLA film in existence of revulsant.The PLA film with 1μm micro-islands showed a same trend with pure PLA film to affect BMSCs differentiation,whereas the other morphologies restrained its differentiation;The introduction of amide could accelerate BMSCs differentiating to wards osteoblast on PLA film,it also had a weak ability to induce BMSCs differentiation in a certain extend without revulsant.
引文
[1]C.V.Vacanti,R.Langer,B.Schloo,et al.Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.Plastic and Reconstructive Surgery,1991,88:753-769.
    [2]L.E.Freed,J.C.Marquis,A.Nohria,J.Emmanual,A.K.Mikos,R.Langer.Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers.Journal Biomedical Materials Research.,1993,27:11-23.
    [3]W.S.Kim,J.P.Vacanti,L.Cima,D.Mooney,J.Upton,W.C.Puelacher,C.A.Vacanti.Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers.Plastic and Reconstructive Suregery,1994,94:233-237.
    [4]R.Langer,J.P.Vacanti.Tissue engineering.Science,1993,260:920-926.
    [5]周长忍.生物材料学.北京:中国医药科技出版社,2004,289-292.
    [6]L.L.Hench,J.M.Polak.Third-generation biomedical materials,Science,2002,295:1014-1017.
    [7]L.L.Hench,A.R.Boccaccini,R.M.Day.Third-generation gene-activating biomaterials.Materials Science Forum,2003,426-432:179-184.
    [8]姚康德,尹玉姬.组织工程相关生物材料.北京:化学工业出版社,2003:274-275.
    [9]廖凯荣,唐舫成,罗力力,卢泽俭,黄会刚.甲壳素和甲壳胺对聚乳酸体外降解的影响.生物医学工程学杂志,1999,16:267-270.
    [10]L.H.Li,S.Ding,C.R.Zhou.Preparation and degradation of PLA/chitosan composite materials.Journal of Applied Polymer Science,2003,91:274-277.
    [11]李立华,焦延鹏,李志忠,丁珊,邓德礼,周长忍.聚乳酸/壳聚糖复合支架材料的生物相容性研究.中国生物医学工程学报,2005,24:503-506.
    [12]L.G.Liu,L.H.Zhang,B.Z.Ren,F.J.Wang,Q.Q.Zhang.Preparation and Characterization of Collagen-hydroxyapatite composite used for bone tissue engineering scaffold.Artificial Cells,Blood Substitutes,and Biotechnology,2005,31:435-448.
    [13]S.S.Liao,F.Z.Cui,W.Zhang,Q.L.Feng.Hierarchically biomimetic bone scaffold materials:Nano-HA/collagen/PLA composite.Journal of Biomedical Materials Research,2004,69B:158-165.
    [14]A.M.Rouni.Contemporary biomaterials.Chem.Eng.News,1999,3:51-59.
    [15]S.D.Hauschka,I.R.Konigsberg.The influence of collagen on the development of muscle colonies.Proc.Natl.Acad.Sci.,1966,55:119-126.
    [16]N.K.Wessells,J.H.Cohen.Effect of collagenase on developing epithelia in vitro:Lung,ureteric bud,and pancreas.Dev.Biol.,1968,18:294-309.
    [17]M.R.Bernfield,R.H.Cohn,S.D.Banerjee.Glycosaminoglycans and epithelial organ formation.Am.Zool.,1973,13:1067-1083.
    [18]M.J.Bissell,H.G.Hall,G.Parry.How does the extracellular matrix direct gene expression.J.Tbeor.Biol.,1982,99:31-68.
    [19]C.Rosales,R.L.Juliano.Signal transduction by cell adhesion receptors in leukocytes.J.Leukocyte Biol.,1995,57:189-198.
    [20]J.Wei,L.M.Shaw,A.M.Mercurio.Integrin signaling in leukocytes:Lessons from the alpha6betal integrin.J.Leukocyte Biol.,1997,61:397-407.
    [21]秦延武,杨志明,蔡绍皙.组织工程中细胞与材料的黏附作用.中国修复重建外科杂志,1999,1:31-37.
    [22]D.L.Elber,J.A.Hubbell.Surface treatment of polymers for biocompatibility.Annu.Rev.Mater.Sci.,1996,26:365-394.
    [23]R.O.Hynes.Integrins:A family of cell surface receptors.Cell,1987,48:549-554.
    [24]R.O.Hynes.Integrins:Versatility,modulation,and signaling cell adhesion.Cell,1992,69:11-25.
    [25]D.Gullberg,P.Ekblom.Extracellular matrix and its receptors during development.Int.J.Dev.Biol,1995,39:845-854.
    [26]M.D.Pierschbacher,E.Ruoslahti.Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule.Nature,1984,309:30-33.
    [27]U.Hersel,C.Dahmen,H.Kessler.RGD modified polymers:biomaerials for stimulated cell adhension and beyond.Biomaterials,2003,24:4385-4415.
    [28]E.A.Vogler.Structure and reactivity of water at biomaterial surfaces.Advances in Colloid and Interface Science,1998,74:69-117.
    [29]E.Ruoslahti,M.D.Pierschbacher.New perspectives in cell adhesion:RGD and Intergrin.Science,1987,238:491-497.
    [30]A.Curtis,C.Wilkinson.Topographical control of cells.Biomaterials,1997,18:1573-1583.
    [31]翟中和,王喜中,丁明孝.细胞生物学,高等教育出版社,2000,100.
    [32]K.Anselme.Osteoblast adhesion on biomaterials.Biomaterials,2000,21:667-681.
    [33]B.Kasemo.Biological surface science.Surface Science,2002,500:656-677.
    [34]林思聪.蛋白质的天然构象与高分子生物材料的生物相容性.高分子通报,1998,1:1-10.
    [35]D.J.Lyman,J.L.Brash,S.W.Chaikin,K.G.Klein,M.Carini.The effect of chemical structure and surface properties of synthetic polymers on the coagulation of blood.Ⅱ.Protein and platelet interaction with polymer su(?)es.Trans.Am.Soc.Artif.Intern Organs,1968,14:250-255.
    [36]J.L.Brush,D.J.Lyman.Adsorption of plasma proteins in solution to uncharged,hydrophobic polymer surf(?) J.Biomed.Mater.Res.,1969,3:175-189.
    [37]H.Y.K.Chuang,J.D.Andrade.Immunochemical detection by specific antibody to thrombin of prothrombin conformational changes upon adsorption to artificial surfaces.J.Biomed.Mater.Res.,1985,19:813-825.
    [38]S.Kochwa,R.S.Litwak,R.E.Rosenfield,E.F.Leonard.Blood elements at foreign surfaces:A biochemical approach to the study of the adsorption of plasma proteins.Annals of the New York Academy of Sciences,1977,283:37-49.
    [39]S.E.Woodcock,W.C.Johnson,Z.Chen.Collagen adsorption and structure on polymer surfaces observed by atomic force microscopy.Journal of Colloid and Interface Science,2005,292:99-107.
    [40]I.Jacquemart,E.Pamula,V.M.D.Cupere,P.G.Rouxhet,C.C.Dupont-Gillain.Nanostructured collagen layers obtained by adsorption and drying.Journal of Colloid and Interface Science,2004,278:63-70.
    [41]A.S.Curtis,M.Varde.Control of cell behavior:Topological factors.J.Natl.Cancer Inst.,1964,33:15-26.
    [42]P.Clark,P.Connolly,A.S.Curtis,J.A.Dow,C.D.Wilkinson.Topographical control of cell behaviour:Ⅱ. Multiple grooved substrata. Development, 1990, 108: 635-664.
    
    [43] P. Clark. Cell behaviour on micropatterened surfaces. Biosensors and Bioelectronics, 1994, 9: 657-661.
    
    [44] A. Curtis, C. Wilkinson. Topographical control of cells. Biomaterials, 1997, 18: 1573-1583.
    
    [45] M. Lampin, R. Warocquier, C. Legris, M. Degrange, M.F. Sigot-Luizard. Correlation between substratum roughness and wettability, cell adhension, and cell migration. J. Biomed. Mater. Res., 1997: 36: 99-108.
    
    [46] D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, Y.F. Missirlis. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 2001, 22: 87-96.
    
    [47] Y.Q. Wan, X. Qu, J. Lu, C.F. Zhu, L.J. Wan, J.L. Yang, J.Z. Bei, S.G. Wang. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials, 2004, 25: 4777-4783.
    
    [48] C.C. Berry, G. Campbell, A. Spadiccino, M. Robertson, A.S.G. Curtis. The influence of microscale topography on fibroblast attachment and motility. Biomaterials, 2004, 25: 5781-5788.
    
    [49] D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y.F. Missirlis. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001, 22: 1241-1251.
    
    [50] J. Tan, W.M. Saltzman. Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials, 2002,23: 3215-3225.
    
    [51] R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nearly. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999, 20: 573-580.
    
    [52] K. Fujimoto. Nano-biotechnology and functional materials. Creation of nano-biomaterials for cell activation. Chemical Industry, 2003, 54: 334-338.
    
    [53] C.D.W. Wilkinsonson, M. Richie, M. Wood, J. Gallagher, A.S.G. Curtis. The use of materials patterned on a nono- and micro-matric scale in cellular engineering. Mater. Sci. Eng. C, 2002, 19: 263-269.
    
    [54] A.S.G. Curtis, B. Caseyb, J.O. Gallaghera, D. Pasquic, M.A. Wooda, C.D.W. Wilkinson. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?. Biophysical Chemistry, 2001, 94: 275-283.
    
    [55] T.W. Chuang, D.Z. Liu, S.Y. Wang, S.S. Wang. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, 2003, 24: 4655-4661.
    
    [56] A.Thapa, T.J. Webster, K.M. Haberstroh. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J. Biomed. Mater. Res., 2003, 67A: 1374-1383.
    
    [57] M.J. Dalby, M.O. Richie, H.J.H. Johnstone, S. Affrossman, A.S.G. Curtis. Polymer demixed nano-topography: control of fibroblast spreading and proliferation. Tissue Engineering, 2002, 8: 1099-1108.
    
    [58] M.J. Dalby, S.J. Yarwood, M.O. Richie, H.J.H. Johnstone, S. Affrossman, A.S.G. Curtis. Increasing fibroblast response to materials using nano-topography: morphplogical and genetic measurements of cell response to 13nm high polymer demixed islands. Exp. Cell Res, 2002, 276: 1-9.
    
    [59] M.J. Dalby, S. Childs, M.O. Richie, H.J.H. Johnstone, S. Affrossman. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials, 2003, 24: 927-935.
    
    [60] A. Curtis, C. Wilkinson. Nanotechniques and approaches in biotechnology. Trend in Biotechnology, 2001, 19:97-101.
    
    [61] V.H. Barocas, R.T. Tranquillo. An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance. Journal of Biomechanical Engineering, 1997, 119: 137-145.
    
    [62] P.B. van Wachem, T. Beugelling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 1985, 6: 403-408.
    
    [63] J.H. Lee, S.K. Lee, G. Khang, H.B. Lee. The effect of fluid sheer stress on endothelial cell adhesiveness tp polymer surfaces with wettability gradient. Journal of Colloid and Interface Science, 2000, 230: 869-876.
    
    [64] M. Dahm, B.J. Chang, O. Pruker. Surface attached ultrathin polymer monolayers for control of cell adhesion. Annals of Thoracic Surgery, 2001, 71: 437-440.
    
    [65] R.S. Chen, Y.J. Chen, M.H. Chen, T.H. Young. Cell-surface interactions of rat tooth germ cells on various biomaterials. J. Biomed. Mater. Res. A, 2007, 83: 241-248.
    
    [66] G. Khang, S.J. Lee, J.H. Lee, Y.S. Kim, H.B. Lee. Interaction of fibroblast cells on poly(lactide-co-glycolide) surface with wettability chemogradient. Bio-Medical Materials and Engineering, 1999,9: 179-187.
    
    [67] J.H. Lee, G. Khang, J.W. Lee, H.B. Lee. Interaction of different types of cells on polymer surfaces with wettability gradient. Journal of Colloid and Interface Science, 1998, 205: 323-330.
    
    [68] J.P. Ranieri, R. Bellamkonda, J. Jacob, T.G. Vargo, J.A. Gardella, P. Aebischer. Selective neuronal cell attachment to a covalently patterned monoamine on fluorinated ethylene propylene films. J. Biomed. Mater. Res, 1993,27:917-925.
    
    [69] G. Altankov, T. Groth. Fibronectin matrix formation and the biocompatibility of materials. J. Mater. Sci., 1996,7:425-429.
    
    [70] J.G. Steele, W.D. Norris, P.A. Underwood, G. Johnson. Adhesion and growth of cultured human endothelial cells on perfluorosulphonate : role of vitronection and fibronection in cell attachment. Biomaterials, 1991, 12:531-539.
    
    [71] J.M. Schakenraad, H.J. Busscher, C.R.H. Wildevuur , J. Arends. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J. Biomed. Mater. Res., 1986, 20: 773-784.
    
    [72] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res., 2005, 74: 49-58.
    
    [73] R.E. Baier, A.E. Meyer, J.R. Natiella, R.R. Natiella, J.M. Carter. Surface properties determine bioadhesive outcomes: Methods and results. J. Biomed. Mat. Res., 1984, 18: 337-355.
    
    [74] P. van der Valk, A.W.J. van Pelt, H.J. Busscher, H.P. de Jong, Ch.R.H. Wildevuur, J. Arends. Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblast spreading. J. Biomed. Mat. Res., 1983: 17:807-817.
    
    [75] G.B. Schneider, A. English, M. Albraham, R. Zaharias, C. Standford, J. Keller. The effect of hydrogel charge density on cell attachment. Biomaterials, 2004, 25:3023-3028.
    
    [76] J.H. Lee, H.W. Jung, I.K. Kang, H.B. Lee. Cell behavior on polymer surfaces with different functional groups. Biomaterials, 1994, 15: 705-712.
    
    [77] K.J. Bundy, N.J. Hallab, K. O'Connor, R. Clark, R.L. Moses. Cell adhesion to biomaterials correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. Journal of Long-term Effects of Medical Implants, 1995, 5: 209-231.
    
    [78] P.B. van Wachem, A.H. Hoget, T. Beugelling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken. Adhesion of cultured human endouthelial cells onto methacrylate polymers with varying surface wettability and charge.Biomaterials,1987,8:323-328.
    [79]R.M.Shelton,A.C.Rasmussen,J.E.Davies.Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts.Biomaterials,1988,9:24-29.
    [80]C.B.Lombello,A.R.Santos Jr.,S.M.Malmonge,S.H.Barbanti,M.L.F.Wada,E.A.R.Duek.Adhesion and morphology of fibroblastic cells cultured on different polymeric,J.Mat.Sci.,2002,13:867-874.
    [81]S.Vandevondele,J.Voros,J.A.Hubbell.RGD-grafted poly-l-lysine-graft-(polyethylene glycol)copolymers block non-specific protein adsorption while promoting cell adhesion.Biotechnology and Bioengineering,2003,82:784-790.
    [82]S.P.Baldwin,W.M.Saltzman.Polymers for tissue engineering.Trend in Polymer Science,1996,4:177-182.
    [83]Y.Imai,A.Watanabe,E.Masuhara,Y.Imai.Structure - biocompatibility relationship of condensation polymers.J.Biomed.Mat.Res.,1982,17:905-912.
    [84]Y.Tamada,Y.Ikada.Fibroblast growth on polymer surfaces and biosynthesis of collagen.J.Biomed.Mat.Res.,1994,28:783-794.
    [85]K.Smetana.Cell biology of hydrogels.Biomaterials,1993,14:1046-1050.
    [86]J.H.Lee,H.W.Jung,I.K.Kang,H.B.Lee.Cell behaviour on polymer surfaces with different functional groups.Biomaterials,1994,15:705-711.
    [87]S.t.Ertel,A.Chilkoti,T.A.Horbett,B.D.Ratner.Endothelial cell growth on oxygen-containing films deposited by radio-frequency plasmas:the role of surface carbonyl groups.J.Biomater.Sci.Polymer.Edn.,1991,3:163-172.
    [88]B.Gupta,J.Hilborn,I.Bisson,P.Frey.Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films.Journal of Applied Polymer Science,2001,81:2993-3001.
    [89]H.J.Griesser,R.C.Chatelier,T.R.Gengenbach,G.Johuson,J.G.Steele.Growth of human cells on plasma polymers:putative role of amine and amide groups.J.Biomater.Sci.Polym.Ed.,1994,5:531-554.
    [90]R.A.Quirk,W.C.Chan,M.C.Davis,S.J.B.Tendler,K.M.Shakesheff.Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid).Biomateriais,2001,22:865-872.
    [91]余贯华,计剑,王东安,沈家骢.RGD改性聚醚氨酯及其内皮细胞相容性的研究.高等学校化学学报,2005,26:1156-1161.
    [92]J.Yang,J.Z.Bei,S.G.Wang.Enhanced cell affinity of poly(D,L-lactide) by combining plasma treatment with collagen anchorage.Biomaterials,2002,23:2607-2014.
    [93]D.Klee,Z.Ademovic,A.Bosserhoff,H.Hoecker,G.Maziolis,H.J.Erli.Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion.Biomaterials,2003,24:3663-3670.
    [94]李笃信,贾德明.等离子体技术对高分子材料的表面改性.高分子材料科学与工程,1999,15:172-175.
    [95]J.Yang,J.Z.Bei,S.G.Wang.Improving cell affinity of poly(D,L-lactide) film modified by anhydrous ammonia plasma treatment.Polymers for Advanced Technologies,2002,13:220-226.
    [96]Y.Q.Wan,X.Qu,J.Lu,C.F.Zhu,L.J.Wan,J.L.Yang,J.Z.Bei,S.G.Wang.Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment.Biomaterials,2005,24:4777-4783.
    [97]Y.Q.Wan,C.F.Tu,J.Yang,J.Z.Bei,S.G.Wang.Influences of ammonia plasma treatment on modifying depth and degradation of poly(1-lactide) scaffolds.Biomaterials,2006,27:2699-2704.
    [98] Y.H. Hu, S.R. Winn, I. Krajbich, J.O. Hollinger. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J. Biomed. Mater. Res., 2002, 64A: 583-590.
    
    [99] J.P. Bearinger, D.G. Castner, K.E. Healy. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. J. Biomater. Sci. Polym. Ed., 1998, 9: 629-652.
    
    [100] S. Patel, R.G. Thakar, J. Wong, S.D. Mcleod, S. Li. Control of cell adhesion on poly(methyl methacrylate). Biomaterials, 2006, 27: 2890-2897.
    
    [101] A. Hiroko, O. Chiharu, Y. Ruriko. Grafting of zwitterion-type polymers onto silica gel surface and their properties. Reactive and Functional Polymers, 2004, 61: 153-161.
    
    [102] K. Fujimoto, Y. Takebayashi, H. Inoue, Y. Ikada. Ozone-induced graft polymerization onto polymer surface. J. Polymer Sci., 2003, 31: 1035-1043.
    
    [103] Y. Tesema, D. Raghavan, J. Stubbs. Bone cell viability on methacrylic acid grafted and collagen immobilized porous poly(3-hydroxybutrate-co-3-hydroxyvalerate. Journal of Applied Polymer Science, 2005, 98:1916-1921.
    
    [104] R.S. Benson. Use of radiation in biomaterials science. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 191: 752-757.
    
    [105] Z.M. Liu, Z.K. Xu, J.Q. Wang, J. Wu, J.J. Fu. Surface modification of polypropylene microfiitration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European Polymer Journal, 2004, 40: 2077-2087.
    
    [106] J.J. Guan, C.Y. Gao, L.X. Feng J.C. Sheng. Surface photo-grafting of polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelial cell adhesion and growth. J. Biomat. Sci., 2000, 11: 523-536.
    
    [107] Y. Zhu, C.Y. Gao, J.C. Shen. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials, 2002, 23: 4889-4895.
    
    [108] S.H. Hsu, W.C. Chen. Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface. Biomaterials, 2000, 21: 359-367.
    
    [109] B. Gupta, C. Plummer, I. Bisson, P. Frey, J. Hilborn. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 2002, 23: 863-871.
    
    [110] A.S. Aroca, M.M. Pradas, J.L.G. Ribelles. Plasma-induced polymerisation of hydrophilic coatings onto macroporous hydrophobic scaffolds. Polymer, 2007, 48: 2071-2078.
    
    [111] J. Gao, L. Niklason, R. Langer. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res., 1998, 42: 417-424.
    
    [112] T.I. Croll, A.J. O'Connor, G.W. Stevens, J.J. Cooper-White. Controllable surface modification of poly(lactic-co-glycolicacid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules, 2004, 5: 463-473.
    
    [113] Y.B. Zhu, C.Y. Gao, X.Y. Liu, S.J. Shen. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules, 2002, 3: 1312-1319.
    
    [114] C.Y. Gao, A. Li, X.S. Yi, J.C. Shen. Construction of cell-compatible layer and culture of human umbilical vascular endothelial cells on porous membranes. Journal of Applied Polymer Science, 2001, 81: 3523-3529.
    [115]C.D.Tidwell,S.I.Ertel,B.D.Ratner.Endothelial Cell Growth and Protein Adsorption on Terminally Functionalized,Self-Assembled Monolayers of Alkanethiolates on Gold.Langmuir,1997,13:3404-3413.
    [116]T.O.Acarturk,M.M.Peel,P.Petrosko,W.LaFramboise,P.C.Johnson,P.A.DiMilla.Control of attachment,morphology,and proliferation of skeletal myoblasts on silanized glass.J.Biomed.Mater.Res.,1999,44:355-370.
    [117]G.Decher.Fuzzy nanoassemblies:toward layered polymeric multicomposites.Science,1997,277:1232-1237.
    [118]M.R.Kreke,A.S.Badami,J.B.Brady,R.M.Akers,A.S.G01dstein.Modulation of protein adsorption and cell adhesion by poly(allylamine hydrochloride) heparin films.Biomaterials,2005,26:2975-2981.
    [119]H.G.Zhu,J.Ji,M.A.Barbosa,J.C.Shen.Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth.J.Biomed Mater.Res.,2004,71 B:159-165.
    [120]J.C.Middleton,A.J.Tipton.Synthetic biodegradable polymers as orthopedic devices.Biomateriais,2000,21:2335-2346.
    [121]李曹,王远亮.聚乳酸制备研究进展.国外医学生物医学工程分册,2002,25:274-278.
    [122]J.Lunt.Large-scale production,properties and commercial applications of polylactic acid polymers.Polymer Degradation and Stability,1998,59:145-152.
    [123]D.Garlotta.A literature review of poly(lactic acid).Journal of Polymers and the Environment,2001,9:63-84.
    [124]K.R.Carter.Nickel(O)-mediated coupling polymerizations via microwave-assisted chemistry.Macromolecules,2002,35:6757-6759.
    [125]D.D.Wisnoski,W.H.Leister,K.A.Strauss,Z.J.Zhao,C.W.Lindsley.Microwave-initiated living free radical polymerization:rapid formation of custom Rasta resins.Tetrahedron Letters,2003,44:4321-4325.
    [126]H.L.Chia,J.Jacob,F.Y.C.Boey.The microwave radiation effect on the polymerization of styrene.Journal of Polymer Science:Part A Polymer Chenistry,1996,34:2087-2094.
    [127]李杰,赵建青,沈家瑞.微波作用下的甲基丙烯酸甲酯的本体聚合.高分子材料科学与工程,1999,15:155-156.
    [128]R.Nagahata,D.Sano,H Suzuki,K.Takeuchi.Microwave-assisted single-step synthesis of poly(iactic acid) by direct polycondensation of lactic acid.Macromol.Rapid Commun,2007,28:437-442.
    [129]张科,王鹏,李文科,舒静.聚乳酸的微波辐射合成方法研究.高分子材料科学与工程,2004,20:46-48.
    [130]曾庆慧.常压低温微波辐射下CS-g-PLLA的制备与性能研究.硕士学位论文,暨南大学,2007:16
    [131]L.X.Chen,Y.H.Jiang,S.P.Li.The ring-opening polymerization of D,L- lactide initiated with stannous octoate.Journal of Wuhan University of Technology-Mater Sci Ed,2001,16:10-13.
    [132]D.R.Witzke,R.Narayan,J.J.Kolstad.Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with 2-ethylhexanoic acid tin(Ⅱ) salt.Macromolecules,1997,30:7075-7085.
    [133]赵衡柱,杨青芳,艾莉,马强.聚DL-乳酸的合成及其热性能分析.合成化学,2005,13:368-371.
    [134]W.L.Wade,R.J.Mammone,M.Binder.Surface properties of commercial polymer films following various gas plasma treatments.Journal of Applied Polymer Science,1991,43:1589-1591.
    [135]A.Asif,C.H.Huang,W.F.Shi.UV curing behaviors and hydrophilic characteristics of UV curable waterborne hyperbranched aliphatic polyesters.Polymers for Advanced Technologies,2003,14:609-615.
    [136] J.F. Elman, B.D. Johs, T.E. Long, J.T. Koberstein. A neutron reflectivity investigation of surface and interface segregation of polymer functional end groups. Macromolecules, 1994, 27: 5341-5349.
    
    [137] H.H. Liao, A.S. Anderson, D. Sutherland, S. Petronis, B. Kascemo, P. Thomsen. Response of rat osteoblast like cells to microstructured model surface in vitro. Biomaterials, 2003, 24: 649-654.
    
    [138] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer. Effects of topography and composition of titanium surfaces oxides on osteoblast response. Biomaterials, 2004, 25: 4087-4103.
    
    [139] C.E. Campbell, A.F. Von Recum. Microtopography and soft issue response. J. Invest. Surg., 1989, 2: 51-74.
    
    [140] E. Richter, G. Fuhr, T. Muller, S. Shirley, S. Rogaschewski, K. Reimer, C. Dell. Growth of anchorage-dependent mammalian cells on microstructures and microperforated silicon membranes. J. Mater. Sci., 1996,7:85-97.
    
    [141] P.F. Chauvya, P. Hoffmannb, D. Landolt. Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide. Applied Surface Science, 2003, 211: 113-127.
    
    [142] G. Vozzia, C. Flaimb, A. Ahluwalia, S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials, 2003, 24: 2533-2540.
    
    [143] C.J. Lee, M.S. Blumenkranz, H.A. Fishman, S.F. Bent. Controlling cell adhension on human tissue by soft lithography. Langmuir, 2004, 204: 155-4161.
    
    [144] H.G. Zhu, J. Ji, Q.G. Tan, M.A. Barbosa, J.C. Shen. Surface engineering of poly(DL-lactide) via electrostatic self assembly of extracellular matrix-like molecules. Biomacromolecules, 2003, 4: 378-386.
    
    [145] H. Otsuka, Y. Nagasaki, K. Kataoka. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications. Current Opinion in Colloid &Interface Science, 2001, 6: 3-10.
    
    [146] M.H. Stenzel, C. Barner-Kowollik, T.P. Davis. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry, 2006,44:2363-2375.
    
    [147] B.H. Zhao, C.X, Lu, X.D. Wang, Z.L. Liu. Formation of ordered macroporous membranes from random copolymers by the breath figure method. Polymer, 2005, 46: 9508-9513.
    
    [148] Y. Wang, Z.M. Liu, B.X. Han, Z.Y. Sun, J.L. Zhang, D.H. Sun. Phase-seperation-induced micropatterned polymer surfaces and their application. Advanced Functional Materials, 2005, 15: 655-663.
    
    [149] H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II.Membrane morphology. J. Appl. Polym. Sci., 1999, 74: 171-178.
    
    [150] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004, 37: 573-578.
    
    [151] H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura. Preparation of polyimide honeycomb patterned films by self-organization. Langmuir, 2003, 19: 6297-6300.
    
    [152] M. Nosonovsky, B. Bhushan. Roughness optimization for biomimetic superhydrophobic surfaces. Microsystem Technologies, 2005, 11: 535-549.
    
    [153] A. Luckea, J. Teβmara, E. Schnellb, G. Schmeerb. A. Gopferich. Biodegradable poly(,-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials, 2000, 21: 2361-2370.
    [154]X.M.Deng,Z.X.Zhu,C.D.Xiong,L.L.Zhang.Synthesis and characterization of biodegradable block copolymers of-caprolactone and D,L-lactide initiated by potassium poly(ethylene glycol)ate.Journal of Polymer Science,1997,35:703-708.
    [155]R.A.Quirk,M.C.Davies,S.J.B.Tendler,W.C.Chan,K.M.Shakesheff.Controlling biological interactions with poly(lactic acid) by surface entrapment modification.Langmuir,2001,17:2817-2820.
    [156]H.Otsuka,Y.Nagasaki,K.Kataoka.Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers.Biomacromolecules,2000,1:39-48.
    [157]J.J.Guan,C.Y.Gao,L.X.Feng,J.C.Shen.Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers.Journal of Applied Polymer Science,2000,77:2505-2512.
    [158]吴越,张洪生,薛志云,何斌,张利中,胡福增.等离子接枝处理超高分子量聚乙烯纤维.功能高分子学报,2001,14:76-80.
    [159]Y.M.Lee,J.K.Shim.Plasma surface graft of acrylic acid onto a porous poly(vinylidene fluoride)membrance and its riboflavin permeation,1996,61:1245-1250.
    [160]T.S.Suh,C.K.Joo,Y.C.Kim,M.S.Lee,H.K.Lee.Surface modification of polymethyl methacrylate intraocular lenses with the mixture of acrylic acid and acrylamide via plasma-induced graft copolymerization.Journal of Applied Polymer Science,2002,85:2361-2366.
    [161]S.Santo,K.Kato,Y.Ikada.Introduction of functional groups onto the surface of polyethylene for protein immobilization.Biomaterials,1993,14:817-822.
    [162]T.Kokubo.Novel biomedical materials based on glasses.Materials Science Forum,1999,293:65-82.
    [163]L.L.Hench.Biomaterials:A forecast for the future.Biomaterials,1998,19:1419-1423.
    [164]赵铭,郑启新.骨组织工程材料的表面仿生矿化.国外医学生物医学工程分册,2004,27:371-374.
    [165]A.H.Heuer,D.J.Fink,V.J.Laraia,J.L.Arias,P.D.Calvert,K.Kendall,G.L.Messing,J.Blackwell,P.C.Rieke,D.H.Thompson.Innovative materials processing strategies:a biomimetic approach.Science,1992,255:1098-1105.
    [166]H.M.Kim.Bioactive ceramics:challenges and perspectives.J.Ceram.Soc.Jpn.,2001,109:49-57.
    [167]R.Y.Zhang,P.X.Ma.Porous poly(L-lactic acid)/apatite composites created by biomimetic process.Journal of Biomedical Materials Research,1999,45:285-293.
    [168]张敏,崔俊锋,尹玉姬,姚康德.磷酸化壳聚糖膜的仿生复合修饰.高等学校化学学报,2005,26:550-553.
    [169]A.A.Sawyer,K.M.Hennessy,S.L.Bellis.Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins.Biomaterials,2005,26:1467-1475.
    [170]S.Gronthos,K.Stewart,S.E.Graves,S.Hay.Integrin expression and function on human osteoblast-like cells.J.Bone Miner.Res.,1997,12:1189-1197.
    [171]杨志明,余希杰,黄富国,解慧琪.外源性I型胶原对人胚骨膜成骨细胞生物学特性的影响.华西医科大学学报,2001,32:1-4.
    [172]E.Jansson,P.Tengvall.Adsorption of albumin and IgG to porous and smooth titanium.Colloids and Surfaces B:Biointerfaces,2004,35:45-51.
    [173]J.L.Yu,S.Johansson,A.Ljungh.Fibronectin exposes different domains after adsorption to a heparinized and an unheparinized poly(vinyl chloride) surface.Biomaterials,1997,18:421-427.
    [174] K.K. Chittur. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials, 199.8, 19: 357-369.
    
    [175] M.S. Lord, M.H. Stenzel, A. Simmons, B.K. Milthorpe. The effect of charged groups on protein interactions with poly (HEMA) hydrogels. Biomaterials, 2006, 27: 567-575.
    
    [176] S.H. Brewer, W.R. Glomm, M.C. Johnson, M.K. Knag, S. Franzen. Probing BSA binding to citrate-coated Gold nanoparticles and surfaces. Langmuir, 2005, 21, 9303-9307.
    
    [177] 黄苏萍,黄伯云,周科朝,李志友.有机功能团及矿化液离子对羟基磷灰石晶体生长的影响.中国有色金属学报,2004,14:1064—1068.
    
    [178] M. Tanahashi, T. Matsuda. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res., 1997, 34: 305-315.
    
    [179] P. Ying, G. Jin, Z. Tao. Competitive adsorption of collagen and bovine serum albumin—effect of the surface wettability. Colloids and Surfaces B: Biointerfaces, 2004, 33: 259-263.
    
    [180] J.T. Elliott, J.T. Woodward, A. Umarji, Y. Mei, A. Tona. The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials, 2007, 28: 576-585.
    
    [181] T. Kokubo, H.M. Kim, M. Kawashita, T. Nakamura. Process of calcification on artificial materials. Zeitschrift fur Kardiologie, 2001, 90: 86-91.
    
    [182] T. Nomura, M. Iijima. Electrolytic determination of nanomolar concentration of silver in solution with a piezoelectric quartz crystal. Anal. Chim. Acta, 1981, 131: 97-102.
    
    [183] K.K. Kanazawa, J.G. Gordon. Frequency of quartz microbalance in contact with liquid. Anal. Chen, 1985, 57: 1770-1771.
    
    [184] Y. Ebara, Y. Okahata. A kinetic-study of concanvlin-A binding to glycolipid monolayer by using quartz-crystal microbalance. J. Am. Chem. Soc, 1994, 116: 11209-11212.
    
    [185] T. Sato, T. Serizawa, Y. Okahata. Binding of influenza A virus to monosialoganglioside (GM(3)) reconstituted in glucosylceramide and spingomylein membranes. Biochim. Biophs. Acta, 1996, 1285: 14-20.
    
    [186] X.D. Su, Y. Zong, R. Richter, W. Knoll. Enzyme immobilization on poly (ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring. J. Colloid and Inter. Sci., 2005, 287: 35-42.
    
    [187] M.C. Fritz, G. Hahner, N.D. Spencer, R. Burli, A. Vasella. Self-assembled hexasaccharides: surface characterization of thiol-terminated sugars adsorbed on a gold surface. Langmuir, 1996, 12: 6074-6082.
    
    [188] M.A. Aronow, L.C. Gerstenfeld, T.A. Owen, M.S. Tassinari, G.S. Stein, J.B. Lian. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. Journal of Cellular Physiology, 1990, 143: 213-221.
    
    [189] A. Owen, R. Bortell, S.A. Yocum, S.L. Smock, M. Zhang, C. Abate, V. Shalhoub, N. Aronin, K.L. Wright, A.J. van Wijnen. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA, 1990, 87: 9990-9994.
    
    [190] M. Ernst, M.G. Parker, G.A. Rodan. Functional estrogen receptors in osteoblastic cells demonstrated by transfection with a reporter gene containing an estrogen response element. Molecular Endocrinology, 1991, 5: 1597-1606.
    
    [191] L.E. Coopre, T. Masuda, S.W. Whitson. Formation of mineralizing osteoblast cultures on machined titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Inr. J. Oral Maxillofac Implants, 2002, 17: 371-373.
    [192]W.Hofstetter,H.L.Guenther,A.Stutzer,R.Schenk,H.Fleisch,R.Friis.Establishment and characterization of two immortalized cell lines of the osteoblastic lineage.J.Bone Miner.Res.,1991,6:609-622.
    [193]陈伟良,藕小平,王建广,杨朝晖,李海刚.人颌骨骨膜成骨细胞复合异体部分脱钙骨的成骨实验研究.口腔颌面外科杂志,2004,14:112-114.
    [194]司徒镇强,吴军正.细胞培养.西安:世界图书出版西安公司,2004,250-251.
    [195]刘艳鸣,杨力,王红兵,叶志义.原子力显微镜在细胞生物学中应用的现状.分析仪器,2007,3:5-8.
    [196]H.Wan,R.L.Williams,P.J.Doherty,D.E Williams.A study of cell behaviour on the surfaces of multifilament materials.Journal of Materials Science:Materials in Medicine,1997,8:45-51.B.D.Boyan,T.W.
    [197]Hummert,D.D.Dean,Z.Schwartz.Role of material surfaces in regulating bone and cartilage cell response.Biomaterials,1996,17:137-146.
    [198]Y.Ikada.Surface modification of polymers for medical applications.Biomaterials,1994,15:725-736.
    [199]Y.Q.Wan,Y.Wang,Z.M.Liu,X.Qu,B.X.Han,J.Z.Bei,S.G.Wang.Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).Biomaterials,2005,26:4453-4459.
    [200]H.J.Griesser,R.C.Chatelier,J.G.Steele.Growth of human cell on plasma polymers:Putative role of amine and amide groups.J.Biomater.Sci.Polymer.Edn.,1994,5:531-554.
    [201]I.I.Slukvin,M.A.Vodyanik,J.A.Thomson,M.E.Gumenyuk,K.D.Choi.Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway.The Journal of Immunology,2006,176:2924-2932.
    [202]斐国献,金丹.骨组织工程学种子细胞研究进展.中华创伤骨科杂志,2003,5:55-58.
    [203]S.Kadiyala,R.G.Young,M.A.Thiede,S.P.Bruder.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.Cell Transplantation,1997,6:125-134.
    [204]D.Chen,X.Ji,M.A.Harris,J.Q.Feng,G.Karsenty,A.J.Celeste,V.Rosen,G.R.Mundy,S.E.Harris.Differential roles for bone morphogenetic protein(BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages.J.Cell Biol.,1998,142:295-305.
    [205]R.J.Deans,A.B.Moseley.Mesenchymal stem cells Biology and potential clinical uses.Experimental Hematology,2000,28:875-884.
    [206]A.H.Reddi.Bone morphogenetic proteins from basic science to clinical applications.J.Bone Joint Surg.Am.,2001,83:1-6.
    [207]郭若霖,贾雷鸣,温学红,程瑞芳,胡永成,张福江,谈志龙,王学谦.骨髓间充质干细胞经不同时间成骨细胞诱导后细胞性质比较.基础医学与临床,2005,25:802-806.
    [208]程志安,周敦华,宋少云,吴燕峰,沈慧勇,曾志勇,刘尚礼.脐血与骨髓间充质干细胞的成骨细胞定向诱导及其成骨活性比较.中国临床康复,2004,8:7973-7975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700