用户名: 密码: 验证码:
白垩系地层冻结软岩的损伤和蠕变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国西部大开发战略的实施和能源需求的增长,煤矿建设重点也在向西部转移。西部矿区白垩系地层以砂岩和泥岩等为主,强度低、胶结弱,属于软岩。在白垩系地层中进行冻结法凿井时,冻结壁的变形和稳定性直接决定于软岩冻结后的力学性状。通过大量的岩石瞬时和蠕变试验,结合损伤和流变力学理论,建立能反映白垩系地层冻结软岩力学规律的本构模型。本文所做工作如下:
     对白垩系地层软岩在不同温度下进行三轴压缩试验,获得了瞬时力学参数与温度、围压的关系。在同温下,软岩峰值强度、弹性模量均随围压的增加而提高,而同压下两者则随温度的降低而增大。为正确描述白垩系地层冻结软岩的五阶段应力-应变曲线,假定软岩存在初始损伤,建立损伤恢复变量,获得了裂隙压密段的损伤表达式,认为软岩微元强度符合Weibull概率分布,并考虑到材料损伤部分应力由残余强度承担,建立了冻结软岩的增量型统计损伤本构模型,将模型嵌入ABAQUS有限元程序,对三轴试验进行模拟,验证了模型的正确性。
     通过不同温度下的三轴蠕变试验结果可知,白垩系地层冻结软岩具有明显的三阶段蠕变性质,且随着温度降低,软岩总蠕变量减少,长期强度升高。利用Mohr-Coulomb屈服准则修正西原模型的黏塑性元件,同时引入改进的Kachanov蠕变损伤律,建立了可描述冻结软岩三阶段蠕变特征的蠕变损伤本构模型。
     推导了蠕变损伤模型的有限元解析方法,对ABAQUS软件进行二次开发。利用ABAQUS对泊江海子矿井筒开掘进行数值模拟,并获得在不同段高条件下,冻结壁的应力场和位移场分布,确定了井帮最大径向位移与时间的关系,将模拟值与实测值比较,结果一致,证明了本文建立的蠕变损伤本构模型是可靠的,能够为冻结壁设计和施工提供指导。
Along with the implementation of west development strategy in our country and the growth of energy demand, the focus of coal mine construction is also moved to the west. The cretaceous strata of western mine is given priority to sandstone and mudstone which have many engineering characteristics such as argillaceous cementation, low strength, and they belong to soft rock. With shaft sinking by freezing method in the cretaceous strata, the deformation and stability of the frozen wall directly depend on mechanics properties of the soft rock after freezing. Through a large number of Instantaneous and creep experiments, the constitutive model which could describe the mechanics law of frozen soft rock of cretaceous formation is built combined with damage and rheological mechanics. This work is as follows:
     Many triaxial compression tests are conducted under different temperatures about soft rocks of cretaceous strata, by which the relationship between the instantaneous mechanic parameters and the temperature and confining pressure is acquired. At the same temperature, both the peak intensity and elasticity modulus of soft rock improve with the increasing of the confining pressure. At the same confining pressure,they increase with the decreasing of temperature.In order to correctly describe the stress-strain process of five stages for soft rock, damage recovery variable is established and damage expression of fracture pressure section is obtained presuming initial damage exists in soft rock. Supposing the infinitesimal strength is coincided with the weibull probability distribution,and considering the strength of material damage part as residual strength,an incremental statistical damage constitutive model describing the frozen soft rock is established. In order to conduct numerical simulation for triaxial test,the model is embedded in ABAQUS finite element program and correctness of the model is verified.
     Many triaxial creep tests under different temperatures are conducted. Through the analysis, the creep deformation curve of frozen soft rock of cretaceous formation has very obvious character of three stages. With the decreasing of the temperature, the total creep value reduces and the long-term strength increases.By introducing Mohr-Coulomb yield criterion, the viscoplastic element of XiYuan-model is improved, and creep damage constitutive model that can describe three stages of creep characteristics is established with the introduction of improved Kachanov creep damage rate.
     Finite element analysis method of the creep damage model is derived,and the constitutive model is embedded into ABAQUS finite element program.The simulation for the digging of tube of Bojianghaizi mine is conducted,by which the stress and displacement field distribution of frozen wall are abtained under different section high,and the relationship between maximum radial displacement of well sidewall and time is determined. Compared with the measured value, the results of simulation of displacement are coincident which proved the correctness of the creep damage constitutive model of this paper, and it could provide guidance for the design and construction of the frozen wall.
引文
[1]谢和平.岩石、混凝土损伤力学[M].北京:中国矿业出版社,1990.
    [2]卡恰诺夫著,杜善义,王殿富译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [3]Dougill J W, Lau J C, Burt N J. Mechanics in Eng, ASCE.EMD.1976,333-355.
    [4]吴政.基于损伤的Dougill拉压全过程本构模型研究[J].水利水电技术,1995,11:58-63.
    [5]Lemaitre J. How to use damage mechanics [J]. Nuclear Eng.& Design,1984, 80(1):233-245.
    [6]余天庆,钱济成.损伤理论及应用[M].北京:国防工业出版社,1993.
    [7]李浩,任林娥.岩石软化的细观损伤模型[J].武汉大学学报(工学版),2001,34(2):6-9.
    [8]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1):23-27.
    [9]李杭州,廖红建,盛谦.基于统一强度理论的软岩损伤统计本构模型研究[J].岩石力学与工程学报,2006,25(7):1331-1336.
    [10]杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,24(8):1275-1282.
    [11]袁小平,刘红岩,王志乔.基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究[J].岩土力学,2012,33(4):1103-1108.
    [12]朱乃龙,饶云刚.基于统计断裂理论的岩石类材料本构模型的研究[J].岩石力学与工程学报,2006,25(增2):3940-3944.
    [13]周峙,张家铭,刘宇航.巴东组紫红色泥质粉砂岩损伤特性三轴试验研究[J].水文地质工程地质,2012,39(2):56-73.
    [14]王利,高谦.基于强度理论的岩石损伤弹塑性模型[J].北京科技大学学报,2008,30(5):461-467.
    [15]蒋维,邓建,司庆.基于Mohr准则的岩石损伤本构模型及其修正研究[J].河北工程大学学报(自然科学版),2010,27(2):30-37.
    [16]韦立德,徐卫亚,杨春和.考虑塑性变形的岩石损伤本构模型初步研究[J].岩石力学与工程学报,2005,24(增2):5598-5603.
    [17]王贵荣,任建喜.基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版),2006,26(6):48-51.
    [18]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2097-2103.
    [19]黄国明,黄润秋.岩石弹塑性损伤耦合本构模型[J].西安矿业学院学报,1996,16(4):328-333.
    [20]周钟,王肖钧,刘文韬.岩石的损伤软化对应力波传播的影响[J].中国科学技术大学学报,2003,33(3):338-344.
    [21]陈蕴生.单轴压缩条件下非贯通裂隙介质损伤演化特征的试验研究[D].西安:西安理工大学,2002.
    [22]范华年,金丰年.岩石损伤定义中的有效模量法[J].岩石力学与工程学报,2000.19(4):432-435.
    [23]秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20(4):560-562.
    [24]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1990.
    [25]周小平,哈秋聆,张永兴等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245.
    [26]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [27]周维垣,剡公瑞,杨若琼等.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1998,20(5):54-57.
    [28]谢和平,鞠杨.分数维空间中的损伤力学研究初探[J].力学学报,1999,31(3):300-310.
    [29]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    [30]谢和平,彭瑞东,周宏伟等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展,2004,14(10):1086-1092.
    [31]孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-7.
    [32]李术才,王刚,王书刚等.加锚断续节理岩体断裂损伤模型在硐室开挖与支护中的应用[J].岩石力学与工程学报,2006,25(8):1582-1590.
    [33]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修 正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408.
    [34]曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006,27(1):41-46.
    [35]曹文贵,赵衡,李翔等.基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J].土木工程学报,2012,45(6):139-145.
    [36]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-447.
    [37]贾善坡,陈卫忠,于洪丹等.泥岩渗流-应力耦合蠕变损伤模型研究(Ⅱ):数值仿真和参数反演[J].岩土力学,2001,32(10):3163-3170.
    [38]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [39]葛修润,任建喜,蒲毅彬.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [40]康红普.水对岩石的损伤[J].水文地质工程地质,1994(3):39-41.
    [41]李长春,陈良森,李光霞.含微裂纹岩石的损伤本构模型[J].华中理工大学学报,1990,18(5):57-61.
    [42]韩放,纪洪广,张伟.单轴加卸荷过程中岩石声学特性及其与损伤因子关系[J].北京科技大学学报,2007,29(5):452-455.
    [43]于广明,潘永战,王国艳.岩石损伤协同特征分析[J].山东科技大学学报,2009,28(4):5-8.
    [44]唐春安,徐小荷.岩石全应力-应变过程的统计损伤理论分析[J].东北工学院学报,1987(2):191-195.
    [45]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1105.
    [46]孙钧.岩土材料流变及工程应用[M].北京:中国建筑工业出版社,1999.
    [47]范庆忠,高延法,崔希海.软岩非线性蠕变模型研究[J].岩土工程学报,2007,29(4):505-509.
    [48]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698.
    [49]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.
    [50]王如宾,徐卫亚,王伟等.坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J].岩石力学与工程学报,2010,29(5):960-969.
    [51]杨文东,张强勇,张建国等.基于FLAC3D的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学,2010,31(6):1957-1964.
    [52]杨文东,张强勇,陈芳等.辉绿岩非线性流变模型及蠕变加载历史的处理方法研究[J].岩石力学与工程学报,2011,30(7):1405-1413.
    [53]宋丽,廖红建,韩剑等.软岩三维弹黏塑性本构模型[J].岩土工程学报,2009,31(1):83-88.
    [54]沈明荣,谌洪菊,张清照.基于蠕变试验的结构面长期强度确定方法[J].岩石力学与工程学报,2012,31(1):1-7.
    [55]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2009,28(10):2006-2011.
    [56]刘正,高文华,刘栋.深部围岩流变特性试验研究及其模型辨识[J].岩石力学与工程学报,2012,39(4):43-48.
    [57]张向东,傅强.泥岩三轴蠕变实验研究[J].应用力学学报,2012,29(2):154-159.
    [58]张忠烈,罗居剑.分级加载下岩石蠕变特性研究[J].岩石力学与工程学报,2004,3(2):218-222.
    [59]范秋雁,阳克青,王渭明.泥质软岩蠕变机制研究[J].岩石力学与工程学报,2010,29(8):1555-1561
    [60]宋永军,雷胜友,韩铁林.一种新的岩石非线性黏弹塑性流变模型[J].岩土力学,2012,33(7):2076-2080.
    [61]丁志坤,吕爱钟.岩石黏弹性非定常蠕变方程的参数辨识[J].岩土力学,2004,25(增):37-40.
    [62]吕爱钟,丁志坤,焦春茂等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(1):16-21.
    [63]李栋伟,汪仁和,范菊红.白垩系冻结软岩非线性流变模型试验研究[J].岩土工程学报,2011,33(3):398-403.
    [64]李栋伟,汪仁和,范菊红.软岩屈服面流变本构模型及围岩稳定性分析[J].煤炭学报,2010,35(10):1604-1608.
    [65]黄小华,冯夏庭,陈炳瑞等.蠕变试验中黏弹组合模型参数确定方法的探讨 [J].岩石力学与工程学报,2007,26(6):1226-1231.
    [66]黄小华,冯夏庭.常泊松比下黏弹性体的算子代换法与黏弹对应原理的关系[J].岩石力学与工程学报,2006,25(12):2509-2514.
    [67]朱珍德,朱明礼,阮怀宁等.深埋长大隧洞围岩非线性蠕变模型研究[J].岩土力学,2011,32(S2):27-35.
    [68]袁海平,曹平,万文等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报,2006,25(8):1575-1581.
    [69]王登科,刘建,尹光志等.三轴压缩下含瓦斯煤样蠕变特性试验研究[J].岩石力学与工程学报,2010,29(2):349-356.
    [70]潘晓明,杨钊,雷春娟等.广义西原粘弹塑流变模型在ABAQUS中开发与应用[J].建筑结构学报,(增2):324-329.
    [71]叶冠林,张峰.堆积软岩的强度及蠕变特性的三轴及平面应变试验研究[J].岩石力学与工程学报,2008,27(12):2403-2410.
    [72]崔少东.岩石力学参数的时效性及非定常流变本构模型研究[D].北京:北京交通大学,2010.
    [73]王宇.软岩瞬时及流变力学特性试验研究[D].武汉:武汉大学,2012.
    [74]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院,2005.
    [75]李铀,朱维申,彭意等.某地红砂岩多轴受力状态蠕变松弛特性试验研究[J].岩土力学,2006,27(8):1248-1252.
    [76]李良权,徐卫亚,王伟等.基于流变试验的向家坝砂岩长期强度评价[J].工程力学,2010,27(11):127-136.
    [77]李良权,徐卫亚,王伟.基于西原模型的非线性黏弹塑性流变模型[J].力学学报,2009,41(5):671-679.
    [78]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3035.
    [79]李连崇,徐涛,唐春安等.单轴压缩下岩石蠕变失稳破坏过程数值模拟[J].岩土力学,2007,28(9):1978-1986.
    [80]赵宝云,刘东燕,郑志明等.基于短时三轴蠕变试验的岩石非线性黏弹塑性蠕变模型研究[J].采矿与安全工程学报,2011,28(3):446-451.
    [81]刘学增,王华牢,周敏等.板岩流变特性试验与模型辨识[J].同济大学学报 (自然科学版),2010,38(5):664-672.
    [82]黄耀英,郑宏.节理岩体等效损伤流变模型初步研究[J].岩土力学,2011,32(12):3566-3570.
    [83]王伟,吕军,王海成等.砂岩流变损伤模型研究及其工程应用[J].岩石力学与工程学报,2012,31(增2):3650-3658.
    [84]方焘,刘新荣,黄明.不同建模假定下岩石损伤黏弹模型的参数转换关系探讨[J].岩土力学,2012,33(7):2000-2006.
    [85]刘桃根,王伟,吴斌华等.基于损伤力学的砂岩蠕变模型研究与参数辨识[J].三峡大学学报(自然科学版),2010,32(6):55-60.
    [86]韩冰,王芝银,郝庆泽.某地区花岗石三轴蠕变试验及其损伤分岔特性研究[J].岩石力学与工程学报,2007,26(增2):4123-4129.
    [87]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [88]熊良宵,杨林德.硬脆岩的非线性粘弹塑性流变模型[J].同济大学学报(自然科学版),2010,38(2):188-193.
    [89]陈文玲,赵法锁.云母石英片岩蠕变模型参数选择研究[J].地球科学与环境学报,2010,32(2):200-204.
    [90]熊诗湖,周火明,钟作武.岩体载荷蠕变试验方法研究[J].岩石力学与工程学报,2009,28(10):2121-2127.
    [91]Jong Ryeol Kim. Laboratory development of a constitutive model for visco-elasto-plastic materials[J]. KSCE Journal of Civil Engineering,1999,3(3): 261-271.
    [92]M Haupt. A constitutive law for rock salt based on creep and relaxation tests[J]. Rock Mechanics and Rock Engineering,1991, (24):179-206.
    [93]M C Weng, L S Tsai, Y M Hsieh, etc. An associated elastic-viscoplastic constitutive model for sandstone involving shear-induced volumetric deformation[J]. International Journal of Rock Mechanics & Mining Sciences, 2010,(47):1263-1273.
    [94]L S Tsai, Y M Hsieh, M C Weng, etc. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics & Mining Sciences, 2008,(45):144-154.
    [95]Y L Chen, R Azzam. Creep fracture of sandstones[J]. Theoretical and Applied Fracture Mechanics,2007,(47):57-67.
    [96]Yongsheng Li, Caichu Xia. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2000,(37):467-475.
    [97]Kay B D, M Fukuda. The importance of water migration in the measurements of the thermal conductivity of unsaturated frozen soil[J]. Cold Regions Science and Technology,1981,(5):95-106.
    [98]Cary J W. A new method for calculating frost heave including solute effects[J]. Water Resources Research,1987,23(8):1620-1624.
    [99]Ma Wei. Review and prospect of the studies of ground freezing technology in china[J]. Journal of Glaciology and Geocryology,2010,23(3):90-99.
    [100]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil [J]. Water Resources Research,2003,9(5):102-108.
    [101]Daylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing [J]. Canadian Geotech,2008,15:542-549.
    [102]Konrad J M, Duquennoi C. A model for water transport and ice leasing in freezing soils[J]. Water Resource Research,1993,29 (9):346-350.
    [103]He Ping, Zhang Zhao, King Hui, etc. Process of Frost Heave and Characteristics of Frozen Fringe[J]. Journal of Glaciology and Geocryology,2004,26(supp): 21-25.
    [104]S L Huang. Effects of temperature on swelling of coal shell[J].5th International Symposium on Ground Freezing,1988,28(8):46-50.
    [105]徐学祖,王家澄等.温度梯度诱导薄膜水迁移的冻胀机理[J].科学通报,1997,42(9):576-579.
    [106]何平,程国栋,俞祁浩等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,2000,22(2):135-138.
    [107]仇文革,孙兵.冻土三轴冻胀应力应变试验方法研究[J].冰川冻土,2010,32(1):116-120.
    [108]陈飞熊,李宁,徐彬.非饱和正冻土的三场混合理论框架[J].力学学报,2005,37(2):204-214.
    [109]王铁行,李宁,谢定义.土体水热力耦合问题研究意义、现状及建议[J].岩土力学,2005,26(3):488-493.
    [110]程国栋.冻土力学与工程的国际研究新进展[J].地球科学进展,2001,25(3):293-299.
    [111]王家澄.单向冻结时土颗粒位移的热筛效应及对流迁移[J].冰川冻土,2008,18(3):252-255.
    [112]胡省三,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,30(1):1-7.
    [113]毛雪松,李宁,王秉纲等.多年冻土路基水热力耦合理论模型及数值模拟[J].长安大学学报(自然科学版),2006,26(4):16-19.
    [114]武文华.非饱和土的热-水力-力学本构模型及数值模拟[J].岩土工程学报,2002,24(4):411-416.
    [115]汪仁和,李栋伟.多圈管冻结模型试验及水热耦合数学模型研究[J].合肥工业大学学报(自然科学版),2007,30(11):1481-1484.
    [116]齐吉琳,马巍.冻土的力学性质及研究现状[J].岩土力学,2010,31(1):133-142.
    [117]吴紫汪,马巍,张长庆.冻土的强度与屈服准则[J].冰川冻土,1993,15(1):129-133.
    [118]李清泽,赖远明,徐湘田等.高温冻土三轴强度分布及损伤统计本构模型[J].冰川冻土,2010,32(6):1234-1241.
    [119]蔡中民,李芙蓉.冻结粉砂的弹粘塑本构关系[J].太原工业大学学报,1990,21(2):21-25.
    [120]刘世伟,张建明,张虎等.青藏高原多年冻土长期蠕变变形试验研究[J].岩石力学与工程学报,2012,31(增1):3245-3253.
    [121]赖远明,张耀,张淑娟等.超饱和含水率和温度对冻结砂土强度的影响[J].岩土力学,2009,30(12):3665-3670.
    [122]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994.
    [123]吴紫汪,马巍,张长庆等.冻结砂土的强度特性[J].冰川冻土,1994,16(1):15-20.
    [124]吴紫汪,蒲毅彬,马巍等.冻土蠕变过程体积变化的CT分析[J].冰川冻土,1995,17(增):41-46.
    [125]杨更社,奚家米,李慧军等.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(3):459-464.
    [126]宁建国,王慧,朱志武等.基于细观力学方法的冻土本构模型研究[J].北京理工大学学报,2005,25(10):847-851.
    [127]宁建国,朱志武.含损伤的冻土本构模型及耦合问题数值分析[J].力学学报,2007,39(1):70-76.
    [128]李栋伟,汪仁和.应力路径下人工冻砂土非线性流变本构模型研究[J].岩土工程学报,2008,30(10):1451-1456.
    [129]李栋伟,汪仁和.基于统计损伤理论的冻土蠕变本构模型研究[J].应用力学学报,2008,25(1):133-136.
    [130]Park C J, H Synn, D S Shin. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics&Mimng Science,2004,4(Supp.1):81-86.
    [131]Misnik L U, N D Kiev. Basic problems of frozen rock excavation by electric thermal drills(In Russian) [R]. New Investigations in Mining Lenin grad P, 1969,143-150.
    [132]Winkler. Frost damage to stone and concrete:geological considerations[J]. Engineering Geology,1968,2(5):315-323.
    [133]杨更社,张全胜,蒲毅彬.冻结温度对岩石细观损伤特性的影响[J].西安科技学院学报,2003,23(2):139-142.
    [134]杨更社,张全胜,蒲毅彬.冻结温度下岩石细观损伤演化CT扫描[J].长安大学学报(自然科学版),2004,24(6):40-46.
    [135]杨更社,张全胜,任建喜等.冻结温度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报,2004,23(24):4099-4104.
    [136]Neaupane K M, T Yamabe, R Yoshinaka. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Science,1999,36(5):363-580.
    [137]李宁,张平,程国栋.冻结裂隙砂岩的周循环动力特性实验研究[J].自然科学进展,2001,11(11):1175-1180.
    [138]吴刚,何国梁,张磊等.大理岩循环冻融实验研究[J].岩石力学与工程学报,2006,25(4):2929-2938.
    [139]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报,2008,27(8):1688-1694.
    [140]任建喜.冻结裂隙砂岩单轴压缩损伤特性CT实验[A].第九届全国岩石动力学学术会议论文集,2005.
    [141]刘慧,杨更社,田俊锋等.冻结岩石细观结构及温度场数值模拟研究[J].地下空间与工程学报,2007,3(6):486490.
    [142]王开林,杨圣奇,苏承东.冻结状态多级应变速率下凝灰岩力学特性的实验研究[J].矿山建设工程新进展-2006全国矿山建设学术会议文集(下册).
    [143]徐光苗,刘泉声,彭万巍等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,25(12):2502-2508.
    [144]朱杰,徐颖,李栋伟.白垩系软岩的一种增量型统计损伤本构模型[J].水文地质工程地质,2013,40(6):49-54.
    [145]王军.损伤力学的理论与应用[M].北京:科学出版社,1997.
    [146]郑颖人,孔亮.岩土塑性力学[M].北京:中国建筑工业出版社,2010.
    [147]费康,张健伟.ABAQUS在岩土工程中的应用[M].北京:水利水电出版社,2013.
    [148]伍国军,陈卫忠,曹俊杰等.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2008,29(6):1184-1191.
    [149]陈宗基.根据流变学与地球动力学观点研究新奥法[J].岩石力学与工程学报,1988,7(2):97-106.
    [150]张先伟,王常明,张淑华等.软土蠕变数据处理方法的对比分析[J].吉林大学学报(地球科学版),2010,40(6):1401-1408.
    [151]杨文东.复杂高坝坝区边坡岩体的非线性损伤流变力学模型及其工程应用[D].济南:山东大学,2011.
    [152]范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报,2007,26(7):1381-1385.
    [153]范庆忠,王素华,高延法.岩石流变试验与本构模型研究进展[J].山东农业大学学报(自然科学版),2006,37(1):136-140.
    [154]赵延林,曹平,文有道等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477486.
    [155]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研 究[J].岩石力学与工程学报,2009,28(9):1735-1744.
    [156]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [157]袁海平,曹平,许万忠等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [158]尤明庆.对“岩石非线性黏弹塑性流变模型(河海模型)及其应用”的讨论[J].岩石力学与工程学报,2007,26(3):637-640.
    [159]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [160]张强勇,张建国,杨文东等.软弱岩体蠕变模型辨识与参数反演[J].水利学报,2008,39(1):66-72.
    [161]高文华,陈秋南,黄自永等.考虑流变参数弱化综合影响的软岩蠕变损伤本构模型及其参数智能辨识[J].土木工程学报,2012,45(2):104-110.
    [162]李强,王奎华,谢康和.人工冻土流变模型的识别与参数反馈[J].岩石力学与工程学报,2004,23(11):1895-1899.
    [163]付凯敏,黄晓明.基于ABAQUS的修正Burgers蠕变模型二次开发[J].公路工程,2008,33(3):132-137.
    [164]沈沐.人工冻结壁蠕变变形和应力的数值分析[J].冰川冻土,1987,9(2):139-148.
    [165]王渭明,王磊,代春泉.基于强度分层计算的弱胶结软岩冻结壁变形分析[J].岩石力学与工程学报,2011,30(增2):4110-4116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700