用户名: 密码: 验证码:
卸荷条件下岩石破坏宏细观机理与地下工程设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包含两个部分:一是针对地下工程开挖的复杂加、卸荷过程,尤其是卸荷过程,弄清卸荷路径下的岩石破坏机理,重点研究不同卸荷路径下岩石宏细观破坏机理,包括:不同卸荷条件破坏过程中能量演化规律;岩石卸荷破坏过程中声发射特征演化规律与量化分析;基于颗粒流方法岩石卸荷破坏过程数值模拟等。二是针对岩石地铁工程设计计算的实际问题,应用数值极限分析方法,开展对岩石地铁工程的围岩分级与设计计算方法的研究,包括:改进岩石地铁工程围岩分级的基本质量指标;考虑跨度对围岩分级的影响;初衬混凝土的抗剪强度;岩石地铁工程设计计算方法等。
     论文的研究成果如下:
     (1)采用能量原理自编程序,研究不同卸荷条件下大理岩卸荷破坏过程中的能量演化规律,取得以下主要研究成果:岩样卸荷破坏过程的轴向吸收能量曲线非线性变化,经历了缓慢增长-快速增长-缓慢增长-释放的演化过程。总能量曲线经历了缓慢增长-快速增长-缓慢减小-释放等阶段。不同卸荷应力路径对破坏过程中能量演化规律的影响主要表现在屈服弱化阶段。围压高的岩样消耗更多的能量,轴向能量曲线增长速率增加;卸荷速率越低,轴向能量增长速率升高,卸荷点处轴向能量曲线转折更明显;卸荷水平接近岩样承载能力峰值时,轴向能量增长速率增大,总能量曲线负向增长速率高,岩样破坏越剧烈。
     (2)研究不同卸荷条件下岩样破坏过程中的声发射特征演化规律,采用分形的方法自编程序进一步量化声发射特征,取得以下主要研究成果:不同卸荷路径试验过程中,声发射事件计数率最大值都出现在岩样破坏处,达到最大值前,岩样均会出现一段声发射相对平静期。围压越高,岩样的声发射活动水平越高,声发射相对平静期会缩短,声发射事件最大值也增加;卸荷速率越高,相对平静期的振铃计数率越高,持续时间越短;越接近岩样承载力峰值卸荷,岩样破坏前的声发射事件相对平静期持续时间越短。岩样破坏前存在声发射分维值较低区域,破坏处附近的分维值,加轴压、卸围压路径>恒轴压、卸围压路径>常规三轴路径。
     (3)基于颗粒流方法,利用FISH语言实现大理岩加、卸荷破坏过程数值模拟,从细观角度有利地补充宏观的室内试验分析,其创新点为:通过FISH语言设计不同的卸荷应力路径方案,有效实现岩样复杂卸荷试验的数值模拟,研究卸荷破坏过程中摩擦能、动能、黏结能与应变能等细观能量与应力路径之间的联系,破坏过程中细观裂纹数与岩石破坏前兆的关系,以及岩石微观裂纹产生、发展与贯通的过程。通过不同卸荷应力路径试验模拟分析,给出细观参数与岩样宏观强度参数之间的非线性关系;围压主要影响颗粒间摩擦滑动引起的摩擦能,进而改变试样的破坏形式。卸荷速率越高,试样内部裂纹发展越不充分,黏结能越少;试样破坏时颗粒运动引起的动能越大。卸荷破坏过程是由压破坏形成贯通剪切面,与拉剪破坏共同作用引起试样破坏。压破坏剪切面都是由破坏面两端向中间发展,逐渐贯通,试样内部主要破坏形式都表征为压力引起的损伤破坏,拉剪破坏伴随压破坏,在压破坏裂纹尖端有集中的趋势。
     (4)从细观角度分析卸荷破坏过程,并通过实例验证围岩卸荷分析的可行性,其主要结论:经典强度准则中Mogi-Coulomb准则相对适合加轴压、卸围压路径下的试验分析;将裂纹考虑成椭圆形,从细观力学和单连通域的解析函数出发分析卸荷路径下的强度准则;从单元体裂纹生成的复合应力状态出发,建立卸荷过程中的应力-应变关系。
     (5)在国标《工程岩体分级标准》和《地下工程围岩稳定分析与设计理论》一书对国标改进意见的基础上,提出岩石地铁工程围岩分级设想,其主要结论:一是对围岩分级表中围岩定性特征进行了改进和调整,改进了各级围岩基本质量BQ值,使定性分级和定量分级协调一致,发展与完善了围岩岩体基本质量标准。二是在围岩分级中反映了地下工程跨度对围岩稳定性的影响,提出按岩体质量和工程跨度为基准的围岩分级思想,结合地铁工程特点,给出区间隧道与车站隧道的亚级分级,量化了亚级的基本质量指标。采用了由安全系数反映围岩自稳性的量化指标和通过反算得到各级围岩物理力学参数。对重庆轨道1#、6#线的岩体物理力学参数和围岩分级进行了调研,采用本文提出的分级方法与国标相比:区间隧道砂岩由III、IV级围岩提升为II、III级围岩;区间隧道砂质泥岩有1/3的Ⅳ级围岩提升为Ⅲ级围岩;车站隧道砂岩约有80%的IV级围岩提升为III级围岩。
     (6)采用数值极限分析新方法发展与完善了地铁隧道的设计计算方法,提出了合理的设计计算参数和初衬二衬的计算方法。其主要结论是:一是依据现有试验设备条件,提出了将直剪试验与单轴抗压试验相结合的混凝土剪切试验方法,从而确定不同强度等级混凝土剪切强度指标c、φ值;二是依据摩尔库伦公式和数值方法,提出混凝土剪切强度和抗压强度之间的关系,验证了混凝土剪切强度试验结果的可靠性,并将混凝土强度的标准值与设计值换算成剪切强度的标准值与设计值。结合实例,讨论了荷载释放量的确定、不同深浅埋分界标准的适用范围、应力释放后的围岩安全系数、初衬围岩与二衬结构的安全系数计算过程。最后对重庆地铁、青岛地铁车站进行的计算分析表明,Ⅲ级围岩以上可比现行衬砌厚度约减少30%,而Ⅳ、Ⅴ级围岩初衬厚度或强度尚需适当增加,以确保施工安全。
In my essay, the developing of my thinking is just based on two subjects. First,failure mechanism of rock under unloading stress paths, especially rock macroscopicand mesoscopic failure mechanism have been studied for complex loading andunloading processes caused by engineering excavation, especially unloading process,including the evolution law of energy during different unloading processes, theevolution law and quantitative characteristics of AE during rock unloading failureprocesses, numerical simulation of rock unloading failure process based on particle flowcode. Then, using numerical limit method, rock classification and designing andcalculating methods of rock underground engineering have been discussed for practicalproblems in designing and calculating methods of rock underground engineering,including improving basic quality index in rock classification, the influence of span onsurrounding rock classification, the shear strength of concreter lining, designing andcalculating methods in rock underground engineering.
     The following achievements have been obtained:
     (1) Based on strain energy principle, energy evolution rules during the unloadingdamage process of marble under different unloading stress paths have been studied withprogramming method, as follows: axial energy curve during damage process changesnon-linearly, transforms from slow growth to rapid growth, then to slow growth andfinally to release. The total energy curve transforms from slow growth to rapid growth,then to slow decrease and finally to release. The main influence of different unloadingstress paths on energy evolution law during failure process focuses on yield andweakening stage. More energy are consumed by rock as confining pressure increasingas well as increasing rate of axial energy curve significant increases. The lowerunloading rate is, the higher increasing rate of axial energy is, more obvious transitionof axial energy curve at unloading point is; The increasing rate of axial energy increaseswhile unloading stress level is closed to bearing capacity peak, negative growing rate oftotal energy curve is higher.
     (2) The evolution law of acoustic emission characteristics has been analyzedduring failure processes under different unloading conditions, further quantized withprogramming method based on fractal theory, as follows: AE count rate maximizes at failure point during different failure processes and there is a relatively tranquil period ofAE before AE count rate reaching to maximum. The higher confining pressure is, theshorter relatively tranquil period endures, the higher maximum of acoustic count ratebecomes. The higher unloading rate is, the higher count rate of relatively tranquil periodis, the shorter time of duration is. When unloading point is in plastic stage, there will bea shorter relatively tranquil period before failure. Fractal dimension of AE is lowerbefore failure, stress path with maximum of fractal dimension is loading axialcompression and unloading confining pressure, path with smallest is conventionaltriaxial loading path.
     (3) Numerical simulations of rock loading and unloading failure process are carriedout by modifying FISH based on particle flow code, powerfully compensatemacroscopical lab tests from the microscopic view, as follows: numerical simulations ofcomplex unloading tests can be done effectively by designing different unloading stresspath. Relationship between stress path and mesoscopic energy such as friction energy,kinetic energy, bond energy and strain energy, relationship between mesoscopic cracksand failure precursors, and process of generating, propagating and penetratingmesoscopic cracks are studied, as follows: There is quite complicated nonlinearrelationship between meso-structure parameters and macroscopic strength parametersby simulating different unloading tests. Confining pressure has great influence onfriction energy caused by sliding friction between particles, further changes failuremode. The higher unloading rate is, the more cracks in rock interior developinadequately, the less bond energy is. Failure process is caused by combination effect ofboth compression failure and tensile-shear failure. Tensile-shear failure develops withdevelopment of compression failure, there is a concentrating trend of tensile-shearfailure along main shear surface.
     (4) The damage process of unloading rock has been studied from the microscopicview, the results of the examples show that analysis of unloading surrounding rockisfeasible, as follows: Mogi-Coulomb rule in classical failure rules is relatively moresuitable for experimental analysis under loading axial stress and unloading confiningpressure path; microcracks of rock can generally be assumed to be elliptic which candescribe more exactly strength criterion under unloading stress path from the point ofview of micromechanics and analytic function of single connectivity domain; thestress-strain relationship has been established during unloading failure process based on complex stress state of cracks of unit.
     (5) The assumption of surrounding rock classification about rock undergroundengineering has been put forward based on standard for engineering classification ofrock masses and the stability analysis and design theory of surrounding rock ofunderground engineering, as follows: first, qualitative characteristics of surroundingrock are improved and tweaked in table of surrounding rock classification. Forcorresponding to basic quality BQ values of different levels surrounding rock areadjusted for qualitative classifications corresponding to quantitative classifications.Then, surrounding rock classification ideas are put forward, benchmarked against rockmass quality and engineering span, to reflect the impact of span on stability ofsurrounding rock. Sub-classifications of station tunnel and running tunnel are provided,basic quality indicators of sub-classification are quantified, combined with characters ofunderground engineering. Quantitative indicators of rock self-stability are reflected bysafety factor and physico-mechanical indices of rock are obtained by the way ofinversion. By researching physico-mechanical indices and surrounding rockclassification of Chongqing Metro1#and6#, compared to national standard, theclassification method can get the following main conclusions: sandstone classificationof running tunnel promotes from III and IV to II and III, about a third of sandymudstone classification of running tunnel promotes from IV to III, about80%ofsandstone classification of station tunnel promotes from IV to III.
     (6) Designing and calculating methods of rock underground engineering have beendeveloped and perfected using numerical limit method, then reasonable designing andcalculating parameters and calculation method about lining have been discussed, asfollows: first, a new method of concrete shear strength is presented combing shear testsand uniaxial compressive tests under the present condition of laboratory, to determineshear strength indexes c、φ of several different strength grades of concrete; then, therelationship between shear strength and compressive strength of concrete has beendiscussed, stability of shear strength test results is validated and standard value anddesign value of concrete strength are taken usually into shear strength based onmohr-coulomb theory and numerical method. Some parameters such as loading burstsize, standard of dividing line, safety factors of rock about stress release and computingmethod of safety factor of surrounding rock and lining structure are determined withexamples.Finally, calculated results of Chongqing Metro and Qingdao Metro show that thickness of lining may be decreased in the III level surrounding rock; thickness orstrength of initial support should properly increase to ensure construction safety.
引文
[1]佘诗刚,董陇军.从文献统计分析看中国岩石力学进展[J].岩石力学与工程学报,2013,32(3):442-464.
    [2]郑颖人,朱合华,方正昌等.地下工程围岩稳定分析与设计理论[M].北京:人民交通出版社,2012:308-330.
    [3]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003:60-65.
    [4]蔡美峰.岩石力学与工程[M].北京:科学出版社,2004:129-175.
    [5]哈秋舲.加载岩体力学与卸荷岩体力学[J].岩土工程学报,1998,20(1):114.
    [6]哈秋舲,李建林.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998:40-41.
    [7]李建林.岩体卸荷力学特性的试验研究[J].水利水电技术,2001,32(5):48-51.
    [8] Lau Josep S.O,Chandler N.A. Innovative laboratory testing[J]. International Journal of RockMechanics and Mining Science,2004,41(8):1427-1445.
    [9] Shimamoto T. Confining pressure reduction experiments[J]. International Journal of RockMechanics and Mining Science,1985,22(4):227-236.
    [10]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [11]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [12]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [13]汪斌,朱杰兵,邬爱清等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
    [14]苏承东,李怀珍,张盛等.应变速率对大理岩力学特性影响的试验研究[J].岩石力学与工程学报,2013,23(5):943-950.
    [15]武尚,刘佑荣,李世佳.三轴压缩条件下灰岩力学特性试验及力学模型研究[J].长江科学院院报,2013,30(2):30-34.
    [16]王鹏,许金余,刘石等.高温下砂岩动态力学特性研究[J].兵工学报,2013,34(2):203-208.
    [17]魏伟,沈军辉,苗朝等.风化、蚀变对花岗斑岩物理力学特性影响分析[J].工程地质学报,2012,20(4):599-606.
    [18] Crouch S.L. A note on post-failure stress-strain path dependence in norite[J]. InternationalJournal of Rock Mechanics and Mining Science,1972,9(2):197-204.
    [19] Swanson S.R,Brown W.S. An observation of loading path independence of fracture in rock[J].International Journal of Rock Mechanics and Mining Science,1971,8(3):277-231.
    [20]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1):27-44.
    [21]吴玉山,李纪鼎.大理岩卸载力学特性研究[J].岩土力学,1984,5(1):30-36.
    [22]许东俊,耿乃光.岩体变形和破坏的各种应力路径[J].岩土力学,1986,7(2):17-25.
    [23]尹光志,李贺,鲜学福等.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报,1987,9(2):20-27.
    [24]刘立鹏,汪小刚,贾志欣等.锦屏二级水电站大理岩复杂加卸载应力路径力学特性研究[J].岩土力学,2013,34(8):2287-2294.
    [25]李新平,肖桃李,汪斌等.锦屏二级水电站大理岩不同应力路径下加卸载试验研究[J].岩石力学与工程学报,2012,31(5):882-889.
    [26]韩铁林,陈蕴生,宋勇军等.不同应力路径下砂岩力学特性的试验研究[J].岩石力学与工程学报,2012,31(supp.2):3959-3966.
    [27]陈金锋,徐明,宋二祥等.不同应力路径下石灰岩碎石力学特性的大型三轴试验研究[J].工程力学,2012,29(8):195-201.
    [28]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [29]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [30]王学滨,潘一山,马瑾.剪切带内部应变(率)分析及基于能量准则的失稳判据[J].工程力学,2003,20(2):111-115.
    [31]王学滨.基于能量原理的岩样单轴压缩剪切破坏失稳判据[J].工程力学,2007,24(1):153-156.
    [32]高红,郑颖人,冯夏庭.岩土材料能量屈服准则研究[J].岩石力学与工程学报,2007,26(12):2437-2443.
    [33] LI QM. Strain energy density failure criterion[J]. International Journal of Solids and Structures,2001,38(38):6997-7013.
    [34]苏承东,张振华.大理岩三轴压缩的塑性变形与能量特征分析[J].岩石力学与工程学报,2008,27(2):273-280.
    [35]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [36]张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
    [37]姜永东,郑权,刘浩等.煤与瓦斯突出过程的能量分析[J].重庆大学学报(自然科学版),2013,36(7):98-101.
    [38]尹土兵,李夕兵,叶洲元等.温-压耦合及动力扰动下岩石破碎的能量耗散[J].岩石力学与工程学报,2012,32(6):1197-1202.
    [39]赵闯,武科,李术才等.循环荷载作用下岩石损伤变形与能量特征分析[J].岩土工程学报,2013,35(5):890-896.
    [40]刘天为,何江达,徐文杰.大理岩三轴压缩破坏的能量特征分析[J].岩土工程学报,2013,35(2):395-400.
    [41]柴波,殷坤龙,李想.巴东组岩石能量耗散规律的实验研究[J].工程地质学报,2013,20(6):1013-1019.
    [42]梁昌玉,李晓,王声星等.岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J].岩石力学与工程学报,2012,31(9):1830-1838.
    [43] SUJATHAL V,CHANDRA-KISHEN J M. Energy release rate due to friction at biomaterialinterface in dams[J]. Journal of Engineering Mechanics,2003,129(7):793-800.
    [44] STEFELER E D,EPSTEIN J S,CONLEY E G.. Energy partitioning for crack under remoteshear and compression[J]. International Journal of Fracture,2003,120(4):563-580.
    [45] Blake W. Microseismic applications for mining–a practical guide[R]. United States Bureau ofMines,1982.
    [46]袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
    [47]秦四清,李造鼎,张倬元等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [48] Tang CA,Xu X H. Evolution and propagation of material defects and Kaiser effect function[J].Journal of Seismological Research,1990,13(2):203-213
    [49] Pestman B. J,Munster V. J. G.. An acoustic emission study of damage development andstress-memory effects in sandstone[J]. Int. J. Rock Mech. Sci.&Geomech.Abstr.,1996,33(6):585-593.
    [50] Mansurov V. A. Acoustic emission from failing rock behavior[J]. Rock Mechanics and RockEngineering,1994,27(3):173-182.
    [51] Holcomb D.J,Costin L.S. Detecting damage surfaces inbrittle materials using acousticemissions[J]. Transactions of theASME,1986,53:536-544.
    [52]李庶林,尹贤刚,王泳嘉等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [53]付小敏.典型岩石单轴压缩变形及声发射特性试验研究[J].成都理工大学学报(自然科学版),2005,32(1):17-21.
    [54]陈景涛.岩石变形特征和声发射特征的三轴试验研究[J].武汉理工大学学报,2008,30(2):94-96.
    [55] Chang S.H,Lee C.I. Estimation of cracking and damage mechanisms in rock under triaxialcompression by moment tensor analysis of acoustic emission[J]. International Journal of RockMechanics and Mining Sciences,2004,41:1069-1086.
    [56]陈忠辉,傅宇方,唐春安.岩石破裂过程声发射过程的围压效应[J].岩石力学与工程学报,1997,16(1):65-70.
    [57]苏承东,高保彬,南华等.不同应力路径下煤样变形破坏过程声发射特征的试验研究[J].岩石力学与工程学报,2009,28(4):757-766.
    [58]苏承东,翟新献,李宝富等.砂岩单三轴压缩过程中声发射特征的试验研究[J].采矿与安全工程学报,2011,28(2):225-230.
    [59]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [60]张晖辉,颜玉定,余怀忠等.循环载荷下大试件岩石破坏声发射试验—岩石破坏前兆的研究[J].岩石力学与工程学报,2004,23(21):3621-3628.
    [61]余贤斌,谢强,李心一等.直接拉伸、劈裂及单轴压缩试验下岩石的声发射特性[J].岩石力学与工程学报,2007,26(1):137-142.
    [62]张黎明,王在泉,石磊等.不同应力路径下大理岩破坏过程的声发射特性[J].岩石力学与工程学报,2012,31(6):1230-1236.
    [63]姚强岭,李学华,何利辉等.单轴压缩下含水砂岩强度损伤及声发射特征[J].采矿与安全工程学报,2013,30(5):717-722.
    [64]王晓南,陆菜平,薛俊华等.煤岩组合体冲击破坏的声发射及微震效应规律试验研究[J].岩土力学,2013,34(9):2569-2575.
    [65]张泽天,刘建锋,王璐等.煤的直接拉伸力学特性及声发射特征试验研究[J].煤炭学报,2013,38(6):960-965.
    [66]孙强,薛晓辉,朱术云.岩石脆性破坏临界信息综合识别[J].固体力学学报,2013,34(3):311-319.
    [67]尹光志,秦虎,黄滚.不同应力路径下含瓦斯煤岩渗流特性与声发射特征实验研究[J].岩石力学与工程学报,2013,32(7):1315-1320.
    [68]纪洪广,穆楠楠,张月征.冲击地压事件AE与压力耦合前兆特征分析[J].煤炭学报,2013,38(supp.1):1-5.
    [69]宫宇新,何满潮,汪政红.岩石破坏声发射时频分析算法与瞬时频率前兆研究[J].岩石力学与工程学报,2013,32(4):787-799.
    [70]孙强,张卫强,薛雷等.砂岩损伤破坏的声发射准平静期特征分析[J].采矿安全与工程学报,2013,30(2):237-242.
    [71]吴刚,王德咏,翟松韬.单轴压缩下高温后砂岩的声发射特征[J].岩土力学,2012,33(11):3237-3242.
    [72]赵伏军,王宏宇,彭云等.动静组合载荷破岩声发射能量与破岩效果试验研究[J].岩石力学与工程学报,2012,31(7):1363-1368.
    [73]许江,吴慧,陆丽丰等.不同含水状态下砂岩剪切过程中声发射特性试验研究[J].岩石力学与工程学报,2013,31(5):914-920.
    [74]孙强,薛雷,朱术云.砂岩脆性临界破坏声发射信息应力比分析[J].岩土力学,2012,33(9):2575-2580.
    [75] Mandelbrot B.B. How long is the coast of Britain? Statistical self-similarity and fractaldimension[J]. Science,1967.
    [76] Mandelbrot B.B. The Fractal Geometry of Nature[M]. W H Freeman,SanFraneisco,1983.
    [77]谢和平,张永平,宋晓秋等.分形几何:数学基础与应用[M].重庆:重庆大学出版社,1991.
    [78]谢和平,W.G. Pariseau.岩石节理粗糙系数(JRC)的分形估计[J].中国科学:B辑,1994,24(5):524-530.
    [79]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24.
    [80]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):503-506.
    [81]刘京红,姜耀东,赵毅鑫等.基于CT图像的岩石破裂过程裂纹分形特征分析[J].河北农业大学学报,2011,34(4):104-107.
    [82]何满潮,杨国兴,苗金丽等.岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(8):1521-1529.
    [83]李德建,贾雪娜,苗金丽等.花岗岩岩爆试验碎屑分形特征分析[J].岩石力学与工程学报,2010,29(1):3280-3289.
    [84]孙洪泉,谢和平.岩石断裂表面的分形模拟[J].岩土力学,2008,29(2):347-352.
    [85]易成,王长军,张亮等.基于两体相互作用问题的粗糙表面形貌描述指标系统的研究[J].岩石力学与工程学报,2006,25(12):2481-2492.
    [86]周宏伟,谢和平,KWASNIEWSKI M.A.粗糙表面分维计算的立方体覆盖法[J].摩擦学学报,2000,20(6):455-459.
    [87]张亚衡,周宏伟,谢和平.粗糙表面分维数估算的改进的立方体覆盖法[J].岩石力学工程学报,2005,24(17):3192-3196.
    [88]孙辅庭,佘成学,蒋庆仁.一种新的岩石节理面三维粗糙度分形描述方法[J].岩土力学,2013,34(8):2238-2248.
    [89]冯增朝,赵阳升.岩体裂隙分维数与岩体强度的相关性研究[J].岩石力学与工程学报,2003,22(supp.1):2180-2182.
    [90] Feranie S, Fauzi U, Bijaksana S.3D fractal dimension and flow properties in the pore structureof geological rocks[J]. Fractuals,2011,19(3):291-297.
    [91]李延芥,王耀辉,张梅英.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000,19(1):6-10.
    [92]黄达,谭清,黄润秋.高围压卸荷条件下大理岩破碎块度及分形特征及其与能量相关性研究[J].岩石力学与工程学报,2012,31(7):1380-1389.
    [93]易顺民,赵文谦.单轴压缩条件下三峡坝基岩石破裂的分形特征[J].岩石力学与工程学报,1999,18(5):520-523.
    [94]易顺民,唐辉明.三轴压缩条件下三峡坝基岩石破裂的分形特征[J].岩土力学,1999,20(3):24-28.
    [95]刘京红,姜耀东,祝捷等.煤岩单轴压缩声发射试验分形特征分析[J].北京理工大学学报,2013,33(4):335-338.
    [96]刘京红,姜耀东,赵毅鑫等.煤岩破裂过程CT图像的分形描述[J].北京理工大学学报,2012,32(12):1219-1222.
    [97]曹平,宁果果,范祥等.不同温度的水岩作用对岩石节理表明形貌特征的影响[J].中南大学学报:自然科学版,2013,44(4):1510-1516.
    [98]王其胜,李夕兵.动静组合加载作用下花岗岩破碎的分形特征[J].实验力学,2009,24(6):587-591.
    [99]单晓云,李占金.分形理论和岩石破碎的分形研究[J].河北理工学院学报,2003,25(2):11-17.
    [100]刘石,许金余,白二雷等.基于分形理论的岩石冲击破坏研究[J].振动与冲击,2013,32(5):163-166.
    [101]郑颖人,沈江珠,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002:1-11.
    [102]郑颖人,孔亮.岩土塑性力学[M].北京:中国建筑工业出版社,2010:1-13.
    [103]周小平,张永兴.卸荷岩体本构理论及其应用[M].北京:科学出版社,2007:1-10.
    [104]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:180-219.
    [105]黄达.大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D].成都:成都理工大学,2007.
    [106]Zienkiewicz O.C. Analysis of non-linear problems in rock mechanics with particular referenceto jointed rock systems[M]. Proc.2nd Int. Cong. on Rock mechanics,1970:501-509.
    [107]郑颖人,沈江珠,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002:174-208.
    [108]郑颖人,孔亮.岩土塑性力学[M].北京:中国建筑工业出版社,2010:227-270.
    [109]Dawson P.R,Munson D.E. Numerical simulation of creep deformations around a room in adeep potash mine[J]. Int. J. Rock Mech. Min. Sci&Geomech.Abstr,1983,20:33-42.
    [110]Dragon A,Mroz Z. Amodel for plastic creep of rock-like materials accounting for the kineticsof fracture.[J] Int. J. Rock Mech. Min. Sci&Geomech.Abstr,1979,16:253-259.
    [111]Giode G. A finite element solution of non-linear creep problems in rocks[J]. Int. J. Rock Mech.Min. Sci&Geomech.Abstr,1981,18:35-46.
    [112]Kaiser P.K,Morgenstern N.R. Phenomenological model for rock with time-dependentstrength[J]. Int. J. Rock Mech. Min. Sci&Geomech.Abstr,1981,18:153-165.
    [113]李新平,朱维申.多裂隙岩体的损伤断裂分析与工程应用[J].岩土工程学报,1992,14(2):1-8.
    [114]沈新普,慕容子,徐秉业.岩土材料弹塑性正交异性损伤耦合本构理论[J].应用数学和力学,2001,22(9):927-932.
    [115]Nemat-Nasser S,Horii H. Compression-induced nonplanar crack extension with application tosplitting, exfoliation and rockburst[J]. J. Geophy. Res,1982,87:6805-6821.
    [116]Kawamoto T,Ichikawa Y,Kyoya T. Deformation and fracturing behavior of discontinuousrockmass and damage mechanics theory[J]. Int. J. Num.Analy. Geo,1998,12:1-30.
    [117]Basista M,Gross D. The sliding crack model of brittle deformation: an internal variableapproach[J]. Int. J. Solide Struct,1998,35(3):487-509.
    [118]Li Shucai,Zhu Weishen,Chen Weizhong,et al. Mechanical model of multicrack rockmass andits engineering application[J].Acta Mechanica Sinica,2000,16(3):357-362.
    [119]Ravichandran G,Subhash G. A micromechanical model for high strain rate behavior ofceramics[J]. Int. J. Solids Structures,1995,32:2627-2646.
    [120]Zhou Xiaoping,Ha Qiuling,Zhang Yongxing,et al.Analysis of deformation localization andthe complete stress-strain relation for brittle rock subjected to dynamic compressive loads[J].International Journal of Rock Mechanics&Ming Sciences,2004,41(2):311-319.
    [121]周小平,哈秋舲,张永兴.考虑裂隙间相互作用情况下围压卸荷过程应力应变关系[J].力学季刊,2002,23(2):227-235.
    [122]周小平,哈秋舲,张永兴等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3244.
    [123]CAI M,H. Horii. A constitutive model of highly jointed rockmasses[J]. Journal of MechanicsMaterial,1992,13:217-246.
    [124]CAI M,KAISER P.K.Assessment of excavation damaged zone using a micromechanics model[J]. Tunnelling and Underground Space Technology,2005,20:301-310.
    [125]陈忠辉,林忠明,谢和平等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报,2004,29(1):31-35.
    [126]Wu Gang,Zhang Lei. Studying unloading failure charactersitics of a rock mass using thedistured state concept[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2A18):1-7.
    [127]刘恩龙,沈珠江.岩土材料不同应力路径下脆性变化的二元介质模拟[J].岩土力学,2006,27(2):261-267.
    [128]颜峰,姜福兴.卸荷条件下的裂隙岩体力学特性研究[J].金属矿山,2008,6:36-40.
    [129]张明,王菲,杨强.基于三轴压缩试验的岩石统计损伤本构模型[J].岩土工程学报,2013,35(11):1965-1971.
    [130]刘恩龙,罗开泰,张树祎.初始应力各向异性结构性土的二元介质模型[J].岩土力学,2013,34(11):3103-3109.
    [131]卢兴利,刘泉声,苏培芳.考虑扩容碎胀特性的岩石本构模型研究与验证[J].岩石力学与工程学报,2013,32(9):1886-1893.
    [132]杨光华,姚捷,温勇.考虑拟弹性塑性变形的土体弹塑性本构模型[J].岩土工程学报,2013,35(8):1496-1503.
    [133]陈亮,陈寿根,张恒等.基于分数阶微积分的非线性黏弹塑性蠕变模型[J].四川大学学报:工程科学版,2013,3:7-11.
    [134]杨光华,温勇,钟志辉.基于广义位势理论的类剑桥模型[J].岩土力学,2013,34(6):1521-1528.
    [135]曹瑞琅,贺少辉,韦京等.基于残余强度修正的岩石损伤软化统计本构模型研究[J].岩土力学,2013,34(6):1652-1660.
    [136]谢理想,赵光明,孟祥瑞.软岩及混凝土材料损伤型黏弹性动态本构模型研究[J].岩石力学与工程学报,2013,32(4):857-864.
    [137]王东,刘长武,王丁等.基于破坏类型的本溪灰岩本构关系研究[J].四川大学学报:工程科学版,2013,2:62-67.
    [138]张振南,葛修润.一种新的岩石多尺度本构模型:增强虚内键模型及其应用[J].岩石力学与工程学报,2012,31(10):2037-2041.
    [139]付金伟,朱维申,王向刚等.节理岩体裂隙扩展过程一种新改进的弹脆性模拟方法及应用[J].岩石力学与工程学报,2012,31(10):2088-2095.
    [140]袁克阔,陈卫忠,于洪丹等.考虑黏聚特性和拉压不等效应的修正剑桥模型及数值实现[J].岩石力学与工程学报,2012,31(8):1574-1579.
    [141]袁小平,李波涛,刘红岩等.基于压缩载荷下微裂纹扩展的微观力学岩石弹塑性损伤模型研究[J].中南大学学报:自然科学版,2012,43(8):3200-3208.
    [142]袁小平,刘红岩,王志乔.单轴压缩非贯通节理岩石尖端塑性区及弹塑性断裂模型研究[J].岩土力学,2012,33(6):1679-1688.
    [143]袁小平,刘红岩,王志乔.基于Drucker Prager准则的岩石弹塑性损伤本构模型研究[J].岩土力学,2012,33(4):1103-1108.
    [144]李亚丽,于怀昌,刘汉东.三轴压缩下粉砂质泥岩蠕变本构模型研究[J].岩土力学,2012,33(7):2035-2040.
    [145]宋勇军,雷胜友,韩铁林.一种新的岩石非线性黏弹塑性流变模型[J].岩土力学,2012,33(7):2076-2080.
    [146]曹文贵,赵衡,李翔等.基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J].土木工程学报,2012,45(6):139-145.
    [147]张学亮,张会军,徐刚. PFC3D数值试验及其应用[J].煤炭技术,2010,29(5):61-63.
    [148]Potyondy D.O.,Cundall P.A. A bonded-particle model for rock[J]. International Journal ofRock Mechanics and Mining Sciences,2004,41(8):1329-1364.
    [149]耿丽,黄志强,苗雨.粗粒土三轴试验的细观模拟[J].土木工程与管理学报,2011,28(4):24-29.
    [150]王光谦,倪晋仁.颗粒流研究评述[J].力学与实践,1992,14(1):7-19.
    [151]杜鹃.二维颗粒流程序PFC2D特点及其应用现状综述[J].安徽建筑工业学院学报,2009,17(5):68-70.
    [152]周喻,吴顺川,马聪等.基于颗粒流理论的露天矿排土场稳定性分析[J].中国矿业,2010,19(7):94-101.
    [153]陈建峰,李辉利,周健.黏性土宏细观参数相关性研究[J].力学季刊,2010,31(2):304-309.
    [154]周健,杨永香,刘洋等.循环荷载下砂土液化特性颗粒流数值模拟[J].岩土力学,2009,30(4):1083-1088.
    [155]唐洪祥,张兴,管毓辉等.颗粒材料变形破坏与影响因素细宏观分析[J].大连理工大学学报,2013,53(4):543-550.
    [156]朱焕春. PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报,2005,25(9):1927-1931.
    [157]徐金明,谢芝蕾,贾海涛.石灰岩细观力学特性的颗粒流模拟[J].岩土力学,2010,31(2):390-395.
    [158]倪小东,王媛,陆宇光.隧洞开挖过程中渗透破坏细观机制研究[J].岩石力学与工程学报,2010,29(supp.2):4194-4201.
    [159]吴顺川,周喻,高利立等.等效岩体技术在岩体工程中的应用[J].岩石力学与工程学报,2010,29(7):1489-1495.
    [160]An B,Tannant D. Discrete element method contact model for dynamic simulation of inelasticrock impact[J]. Comput. Geosci,2007,33(4):513-521.
    [161]Cai M,Kaiser P.K.,Martin C.D. Quantification of rock mass damage in undergroundexcavation from microseismic event monitoring[J]. International Journal of Rock Mechanicsand Mining Science,2001,38(8):1135-1145.
    [162]Cai M,Kaiser P.K,Tasaka Y. Peak and residual strengths of jointed rock mass and theirdetermination for engineering design[J]. Rock Mechanics,2007:259-267.
    [163]刘宁,张春生,褚卫江.深埋大理岩破裂扩展时间效应的颗粒流模拟[J].岩石力学与工程学报,2011,12(10):1989-1996.
    [164]姚涛,任伟,阙坤生等.大理岩三轴压缩试验的颗粒流模拟[J].土工基础,2012,23(2):70-73.
    [165]孟京京,曹平,张科等.基于颗粒流的平台圆盘巴西劈裂和岩石抗拉强度[J].中南大学学报:自然科学版,2013,44(6):2449-2454.
    [166]余华中,阮怀宁,褚卫江.岩石节理剪切行为的颗粒流数值模拟[J].岩石力学与工程学报,2013,32(7):1482-1490.
    [167]余华中,阮怀宁,褚卫江.大理岩脆-延-塑转换特性的细观模拟研究[J].岩石力学与工程学报,2013,32(1):55-64.
    [168]武军,廖少明,张迪.基于颗粒流椭球体理论的隧道极限松动区与松动土压力[J].岩土工程学报,2013,35(4):714-721.
    [169]刘广,荣冠,彭俊等.矿物颗粒形状的岩石力学特性效应分析[J].岩土工程学报,2013,35(3):540-550.
    [170]黄达,岑夺丰,黄润秋.单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J].岩土力学,2013,34(2):535-545.
    [171]刘宁,张春生,褚卫江等.深埋大理岩脆性破裂细观特征分析[J].岩石力学与工程学报,2012,31(supp.2):3557-3565.
    [172]郑颖人,朱合华,方正昌等.地下工程围岩稳定分析与设计理论[M].北京:人民交通出版社,2012:362-430.
    [173]铁道第二勘察设计院.铁路隧道设计规范(TB10003-2005)[S].北京:中国铁道出版社,2005.
    [174]原国家冶金工业局.锚杆喷射混凝土支护技术规范(GB50086-2001)[S].北京:中国计划出版社,2001.
    [175]重庆交通科研设计院.公路隧道设计规范(JTGD70-2004)[S].北京:人民交通出版社,2004.
    [176]中华人民共和国水利部.工程岩体分级标准(GB50218-94)[S].北京:中国计划出版社,1995.
    [177]陈炜滔,王明年,王玉锁等.黏质土隧道围岩分级的指标选取研究[J].岩土力学,2008,29(4):901-910.
    [178]陈炜滔,王明年,魏龙海等.黏质土围岩分级指标的界限值确定[J].岩土力学,2008,29(9):2446-2456.
    [179]李苍松,王石春.坝陵河大桥西锚洞岩溶围岩分级[J].岩石力学与工程学报,2009,28(6):1208-1212.
    [180]沈冬冬.高地应力围岩分级方法适宜性分析探讨[J].现代隧道技术,2009,46(6):43-47.
    [181]梁庆国,李洁,李德武等.黄土隧道围岩分级研究的若干问题[J].岩土工程学报,2011,33(supp.1):170-176.
    [182]王明年,魏龙海,李海军等.公路隧道围岩亚级物理力学参数研究[J].岩石力学与工程学报,2012,27(11):2252-2259.
    [183]王明年,刘大刚,刘彪等.公路隧道围岩岩质围岩亚级分级方法研究[J].岩土工程学报,2009,31(10):1590-1594.
    [184]中华人民共和国住房和城乡建设部.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2011.
    [185]张琦,过镇海.混凝土剪切强度和剪切变形的研究[J].建筑结构学报,1992,13(5):17-24.
    [186]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [187]董毓利,张洪源,钟超英.混凝土剪切应力-应变曲线的研究[J].力学与实践,1999,(06):35-37.
    [188]马玉平,胡志平,周天华等.混凝土剪切强度参数试验研究[J].混凝土,2009,(09):40-43.
    [189]王明年,郭军,罗禄森等.高速铁路大断面黄土隧道深浅埋分界深度研究[J].岩土力学,2010,31(4):1157-1162.
    [190]杨建民,喻渝,谭忠盛等.大断面深浅埋黄土隧道围岩压力试验研究[J].铁道工程学报,2009,125(2):76-79.
    [191]宋玉香,贾晓云,朱永全等.地铁隧道竖向土压力荷载的计算研究[J].岩土力学,2007,28(10):2240-2244.
    [192]赵占广,谢永利.土质隧道深浅埋界定方法研究[J].中国工程科学,2005,7(10):84-86.
    [193]曲星,李宁.松散岩体竖向压力计算方法剖析及隧洞深浅埋划分方法研究[J].岩石力学与工程学报,2011,30(supp.1):2749-2757.
    [194]程小虎.土质隧道深浅埋分界的理论解析[J].地下空间与工程学报,2012,8(1):37-42.
    [195]李鸿博,郭小红.公路连拱隧道土压力荷载的计算方法研究[J].岩土力学,2009,30(11):3429-3434.
    [196]吴铭芳,章慧健,仇文革.大断面隧道深浅埋划分方法研究[J].现代隧道技术,2010,47(4):1-5.
    [197]郑颖人,徐浩,王成等.隧洞破坏机理及深浅埋分界标准[J].浙江大学学报(工学版),2010,44(10):1851-1856.
    [198]中华人民共和国电力工业部.工程岩体试验方法标准(GB/T50266-99)[S].北京:中国建筑工业出版社,1999,15-20.
    [199]长江水利委员会长江科学院.水利水电工程岩石试验规程(SL264-2001)[S].北京:中国水力水电出版社,2001,33-40.
    [200]长江水利委员会长江科学院.水电水利工程岩石试验规程(DL/T5368-2007)[S].北京:中国电力出版社,2007,19-30.
    [201]Solecki R. Conant R.J. Advanced Mechanics of Materials[M]. London: Oxford University Press,2003,63-75.
    [202]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特征[J].岩石力学与工程学报,2004,23(11):1810-1818.
    [203]LI C,NORDLUND E. Experimental verification of the Kaiser effect in rocks[J]. RockMechanics and Rock Engineering,1993,26(4):331-351.
    [204]LABUZ J.F,BRIDELL J.M. Reducing frictional constrain in compression testing throughlubrication[J]. International Journal of Rock Mechanics and Mining Sciences andGeomenchanicsAbstracts,1993,30(4):451-455
    [205]刘宝县,赵宝云,姜永东.单轴压缩煤岩变形损伤及声发射特性研究[J].地下空间与工程学报,2007,3(4):647-650.
    [206]杨永杰,陈绍杰,韩国栋.煤岩压缩破坏过程的声发射试验[J].煤炭学报,2006,31(5):362-365.
    [207]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(supp.1):2794-2799.
    [208]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996,1-25.
    [209]朱传镇,安镇文,王林瑛等.地震分形特征及其在地震预测中的意义[J].地震研究,1991,14(1):73-88.
    [210]阮吉寿,沈世谥.弱Takens嵌入定理[J].高校应用数学学报A辑,2002,17(4):419-424.
    [211]Sumarac D,Krajcinovic D A. Self-consistent model for microcrack-weakened solids[J].Mechanics of Materials,1987,6(1):39-52.
    [212]Ju J W. On two-dimensional self-consistent micro mechanical damage model for brittlesolids[J]. International Journal of Solids and Structures,1991,27(2):227-258.
    [213]周小平,张永兴,哈秋舲等.单轴拉伸条件下细观非均匀性岩石变形局部化分析及其应力-应变全过程研究[J].岩石力学与工程学报,2004,23(1):1-6.
    [214]中国建筑科学研究院.普通混凝土力学性能试验方法标准(GB/T50081-2002)[S].北京:中国建筑工业出版社,2003.
    [215]中华人民共和国城乡建设环境保护部.混凝土强度检验评定标准(GB/T50107-2010)[S].北京:中国建筑工业出版社,2010.
    [216]中国建筑科学研究院.混凝土结构工程施工质量验收规范(GB50204-2002)[S].北京:中国建筑工业出版社,2002.
    [217]Iosipescu N.,Negotia A. A new method for determining the pure shearing strength ofconcrete[J]. Concrete Journal of the Concrete Society,1969,3(3):31-33.
    [218]Bresler B, Pister K S. Strength of concrete under combined stresses[C].ACI,1958:321-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700