用户名: 密码: 验证码:
快速公交时空优先策略及其建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市地区交通拥挤的加剧,快速公交(Bus Rapid Transit, BRT)在许多城市得到了长足发展。到2009年底,我国已有11个城市正式运营了快速公交系统,更多城市正在积极规划、设计和建设。
     快速公交系统通过设置专用道和信号优先控制分别实现路段“空间优先”通行和交叉口“时间优先”通行,同时也不可避免地给竞争方向车流运行带来了负面影响。因此,开展快速公交优先通行问题研究,实现快速公交优先通行和竞争方向车流负面影响小的双赢,不仅有利于深刻认识“以人为本”、“效率优先”及“路权优先”等公交优先理念内涵,丰富和深化优先通行理论体系,具有重要的学术价值,对于促进现代智能交通系统的发展,缓解城市交通拥堵也具有重要现实意义。
     本文在对国内外相关研究进行分析的基础上,重点针对快速公交优先通行的信号优先控制策略、信号优先控制方法、专用道设置方法及优先通行效益评估等方面进行了一些有益探讨,主要研究内容及结论如下:
     ①在分析快速公交特征及优先控制系统结构和功能的基础上,探讨了快速公交不同类型专用道的规划技术及其适应性;结合我国城市道路交通的特征,研究信号优先控制模式、控制策略和车辆检测/定位技术的主要特征,提出了相应的发展策略;论文以北京市南中轴快速公交系统为例,说明了优先通行措施的有效性。
     ②构建了基于元胞自动机的快速公交信号优先策略仿真模型,提出了以平均速度、车流密度及车流量等为指标来评价交叉口交通流特征变化的方法,建立了快速公交信号优先参数(最大绿灯延长时间gbrtmax和最大红灯早断时间rbrtmax)、信号优先检测器离交叉口距离L及产生概率αbrt对交叉口车流影响的模拟模型。算例研究表明,在信号周期固定的条件下,信号优先控制需要优先考虑增大gbrtmax,或少rbrtmax,以降低对社会车流的影响程度;另一方面,在给定gbrtmax和rbrtmax的条件下,L需控制在合理的范围内。L过短会使信号优先绿灯延长的时间很短,受益的快速公交车辆较少,同时受随机因素影响明显,波动性增强。L过大会使快速公交车辆要求的绿灯延长时间大于gbrtmax的限制,信号优先失效;其次,在给定gbrtmax、rbrtmax及L的条件下,过度地增大αbrt,会使快速公交车流密度急剧增大,车流速度相应降低。特别是随着αbrt的增大,快速公交实施信号优先的频次增高,要求延长的信号时长逐步接近gbrtmax直到不满足信号优先条件,等同于固定信号配时。
     ③构建了考虑信号优先条件的快速公交信号优先两级模糊控制模型,并给出了控制的流程及算法的具体实现方法。与传统的单级模糊控制相比,该方法具有2个特点:一是设置了信号优先条件,即以快速公交车辆到达时刻偏离时刻表时间、满载率及系统综合效益等作为信号优先控制的准入条件,可以屏蔽效率相对较低时的信号控制优先程度,减少无效控制,提高控制效率;二是兼顾了非优先相位车流效益,即通过信号优先相位下的快速公交车流和社会车流运行情况来修正了相位绿灯的优先程度,通过红灯相位下排队等待通行的社会车辆数和下一个即将点亮的绿灯相位等待排队的车辆数考虑了非优先相位的车流拥挤程度。
     ④以路阻函数和车流通行能力计算为基础,在考虑专用道的设置产生诱增交通流的前提下,构建了快速公交专用道设置前后车流行驶时间变化模型,并分析了压缩现有车道、扩宽道路等增加专用道情况下的车流行驶时间变化。算例研究表明,压缩既有车道增加专用道,随着压缩程度的增大,系统和公交车流受到的负面影响将急剧增加;而扩宽道路增加专用道则可整合了原有公交线路,改善社会车流的行驶环境。在此基础上,从宏观、中观和微观等三个层面,提出了快速公交专用道设置的框架,并阐述了各个层面的具体工作内容与方法。与传统的专用道设置方法相比,该框架能够充分吸收不同层次规划人员的经验,便于把握专用道设置的总体架构,使上层和下层之间具有指导和反馈的作用。
     ⑤以路口通过率为基础,从“线”的角度构建了快速公交线路优先通行的效益变化评估模型,提出了车流总体收益变化率和单位成本车流收益变化率等评估指标,并模拟了优先通行效益变化对路段运行速度、非优先相位信号压缩比例系数及车流红灯平均等待时间比例系数的敏感度分析。与既有的效益评估模型相比,该模型从整体上研究了快速公交实施优先通行带来的效益变化,不仅考虑了实施信号优先控制和专用道设置的效益变化,也考虑了快速公交沿线的社会车流效益的变化,弥补了既有研究仅考虑信号优先控制收益,未考虑专用道设置的收益和对社会车流负面影响的不足,进一步完善了快速公交优先通行的效益评估方法。
     ⑥从“点”的角度构建了快速公交优先通行条件下单交叉口车流的绿灯延长、红灯早断优先策略的车流效益变化评估模型,提出了当量小汽车折算、人均折算的效益变化的计算方法,并以绿灯延长策略进行了算例分析。算例研究表明,交叉口实施绿灯延长信号优先策略,提升了快速公交车辆的路口通过率,使交叉口的当量小汽车折算延误和人均折算延误均减少了11.3%。随着绿灯延长时间的增长,整个交叉口延误呈“U”型变化,先降低后升高。对既有配时方案延长绿灯时间8s,整个系统延误最低,当量小汽车折算和人均延误折算分别为67.53s和9.29s。
As traffic congestion in urban areas is getting worse, Bus Rapid Transit (BRT) has been significantly developed in many cities. By the early 2009, BRT system has been opened and operated in eleven cities of China, and more cities are actively planning, designing and constructing BRT system.
     While BRT system can achieve "space priority" by setting bus only lane in the section and "time priority" by implementation of signal priority control in the intersection, it can not avoid the negative impacts on other traffic in the competition direction. Therefore, study on the BRT priority to realize win-win in access priority and less negative impacts on other traffic, will not only have significant academic value in conducing to a profound understanding of "people-oriented", "efficiency priority" and "the right way priority" in bus priority concept, deepening and raising priority access theoretical system, but also has important practical significance in promoting the development of modern intelligent transportation system and relieving urban traffic congestion.
     The paper focuses on signal priority control strategies and methods, bus-only lane planning methods, benefit assessment of priority access and other aspects about BRT have been researched, based on the analysis of domestic and foreign research, the main contents and conclusions are as follows:
     ①It is discussed that planning techniques and adaptability of different types of bus-only lane、signal priority control mode and strategies and features of vehicle detection/ positioning technology, based on the analysis of characteristics of BRT and structure and function of priority control system, and the corresponding development strategies have been proposed. At last, the effectiveness of BRT priority access measures has been verified by case study of the south axis of Beijing BRT.
     ②Signal priority strategy simulation model is constructed based on cellular automata in the paper, and some evaluation indicators such as the average speed, traffic density and traffic flow have been proposed to assess the changes of the traffic flow characteristics in the crossing, and BRT signal priority parameters (the maximum time of green extension gbrtmax and the biggest time of red truncation rbrtmax)、the signal priority detector distance L from the intersection and the impact of the generation probabilityαbrt to the intersection have been simulated. Case studies show that, on the one hand, the signal priority control need to give priority to increase gbrtmax and decrease rbrtmax so that can reduce the impact on society traffic flow which is in the fixed signal cycle condition; on the other hand, the reasonable range need to be controlled when given the gbrtmax and rbrtmax.As it is too short, it will make signal priority green time extension very short and the benefit of BRT vehicles less while significantly affected by random factors, volatility increases. When it is too long, it makes the green extended time requested by BRT more than the limited of gbrtmax, signal priority will lapse; Secondly, under the condition of given gbrtmax, rbrtmax and L, excessively increasingαbrtmax, the traffic density of BRT is sharply increase and traffic speed reduced. Especially with the increase ofαbrt, the frequency of BRT signal priority implementation is more and more, and request for time extension is gradually closed to gbrtmax, until the green light extend priority does not meet the conditions, the equivalent of fixed signal timing.
     ③Two level fuzzy control method of BRT signal priority is constructed considering the conditions of signal priority, then the process of control and concrete realization of the algorithm have been detailed. With the single-stage fuzzy control, the proposed method has the following characteristics:signal priority conditions are set and non-priority phase of traffic flow efficiency is taken into account. Signal priority control access conditions have been constructed from deviation of the BRT arriving time and the schedule、load factor, and system comprehensive benefits, so that the relatively low efficiency of signal priority control have been shielded, and also reduce the ineffective control and improve the control efficiency. Taking into account of BRT signal priority phase and social traffic flow, which means both considering the busy degree of the green light of signal priority phase and also non-priority phase urgency degree between the red light phase of the social movement and the next number of vehicles queued to wait for the green light.
     ④Considering the induced traffic flow generated under the premise of bus-only lane planning, traffic time model of traffic flow has been constructed before and after the planning of BRT lane, and travel time change has been analyzed in some cases of increasing bus lane such as compressing existing lanes, widening roads, etc, all base on impedance function and the calculation of road capacity. Case studies show that as the degree of bus lane compression, systems, and the negative impact of bus traffic will be dramatically increased. Road widening to increase BRT lane, the integration of the existing bus routes, improve the social traffic flow environment. On this base, from the macro, macro and micro three levels, BRT planning framework has been proposed, and all levels of content and methods have also been elaborated. Compared to traditional method of bus lane's planning, the framework can fully absorb the experience of planners at different levels, easy to grasp the lane planning as the general framework, between the upper and lower planning guidance and feedback role.
     ⑤Based on the intersection through rate, benefit of evaluation model of BRT priority access has been build from the "line" point, and evaluation indicators such as the change rate of traffic overall revenue、rate change of the unit cost of revenue in traffic flow, then sensitivity analysis included benefit of priority access to the road travel speed、non-priority phase of the signal compression ratio coefficient and the average wait time at red traffic light scale factor through simulation. Compared to existing models, the proposed model has been overall considered benefits of BRT priority access control, not only considering the implementation of signal priority control and planning of the effectiveness of lane changes, but also considered benefits of social traffic flow changes along the BRT corridor. It makes up inadequate of existing research which only considering the revenue of signal priority control but lack of the considering on benefits of bus-lane planning and impact on social traffic flow, and benefit assessment methods of BRT priority access have been further improved.
     ⑥Benefit of evaluation model about the green light to extend in a single intersection have been constructed and red light off early priority strategy have been constructed from the "point" perspective under BRT priority, and calculation methods of equivalent car conversion, benefit of average person conversion have also been proposed, then a numerical example for green extension strategy has been analyzed. The results show that when green extension signal priority strategy has been implemented in the intersection, the through rate of BRT vehicles has been increased, which makes the equivalent car conversion delay and average people delay reduce by 11.3% in the intersection. With the growth of green time extension, delay changes of the overall intersection have been at first decreased and then increased. When green time extension was 8s, the entire system's delay is minimum, the equivalent car conversion delay and average people delay are 67.53s and 9.29s.
引文
[1]Skabardonis A. Control strategies for transit priority[C]. Transportation Research Board. Washington D.C.,1999,1-3.
    [2]Davol A P. Modeling of traffic signal control and transit signal priority strategies in a microscopic simulation laboratory[D]. The Master Dissertation of the Massachusetts Institute of Technology,2001.
    [3]Ceder A. A framework for deployment planning of bus rapid transit[C]. Beijing Jiaotong University Seminar,27 Oct,2008.
    [4]Benevelli D A, Radwan A E. Evaluation of bus preemption strategy by use of computer simulation. Transportation Research Board,1983,60-67.
    [5]Bhskar. A Methodology for travel time estimation on a signalize arterial [C]. Young researchers' seminar, Czech Republic,2007.
    [6]Steve C. Tri-Met's transit signal priority system and evaluation. The 81th Annual Meeting of the Transportation Research Board, Washington, DC,2002.
    [7]Chada S, Newland R. Effectiveness of Bus Signal Priority Final Report[R]. National Center for Transit Research Center for Urban Transportation Research, Washington D.C.,2002.
    [8]Chang J. Evaluation of service reliability impacts of traffic signal priority for bus transit[D]. Virginia Polytechnic Institute and State University,2002.
    [9]Chou C H, Teng Jenchao. A fuzzy logic controller for traffic junction signals[J]. Information Sciences,2002,143(4):73-7.
    [10]Cisco B A., Khasnabis S. Techniques to assess delay and queue length consequences of bus preemption. Transportation Research Record,1994,167-175
    [11]Conrad M, Dion F, Yagar S. Real-time traffic Signal optimization with transit Priority:recent advances in the signal priority procedure for optimization in real-time model [J]. Transportation Research Board,1998.
    [12]Jeason D, Ferreira L. Assessing travel time impacts of measure to enhance bus operation, part2:study methodology [J]. Road & Transport Research Journal,2005,8(4):41-54.
    [13]DeshPande V. Evaluating the imPacts of transit signal priority strategies on traffic flow characteristics:case study along fairfax county, virginia[D]. Dissertation applied for Virginia Polytechnic Institute and State University,2003.
    [14]Deshpande V. Evaluating the impacts of transit signal priority strategies on traffic flow characteristics:case study along U. S. A., Fairfax County, Virginia D. Fails Church, Virginia: Virginia Polytechnic Institute and State University,2003.
    [15]Dion F, Hell I, Ga B. A rule based real time traffic responsive signal control system with transit priority:application to an isolated intersection[J].Transportation Research Part B,2002, 36 (4):325-343.
    [16]Dion F, Hellinga B. A rule-based real-time traffic responsive signal control system with transit priority:application to an isolated intersection[J]. Transportation Research Part B,2002, 325-343.
    [17]Weeraroooriya G N. An improved bus signal priority model[J].2008,60(4):355-359.
    [18]Menckhoff G. Latin American experience with bus rapid transit (BRT)[C]. Annual Meeting-Institute of Transportation Engineers Melbourne,2005,8.
    [19]Goodman L. Bus Rapid Transit Progress in the USA, ARRB Proceedings, Volume 6. Part 1, 1972.
    [20]Zhou G W. Optimization of adaptive traffic signal control with Transit signal priorit at isolated intersections using parallel genetic algorithms[D]. The Doctoral dissertation of The Florida International University,2006.
    [21]Hatzopoulou M, Miller E J. Institutional integration for sustainable transportation policy in Canada[J]. Transport Policy,2008,15(3):149-162.
    [22]Herber S L, Scott R, Eric B. Board TCRP report 90, bus rapid transit[R]. Transportation Research Board,2003.
    [23]Herbert S L, Samuel Z, Jennifer C. Bus rapid transit:An overview[J] Journal of Public Transportation,2002,5(2):16-22.
    [24]Rakha H, Zhang Y H. Sensitivity analysis of transit signal priority impacts on operation on isolated signalized intersections[C]. Transportation Research Board,2004.
    [25]Hong K L. A cell-based traffic control formulation:strategies and benefits of dynamic timing plan[J]. Transportation Science,2001,35(2):148-164.
    [26]Hounsell N B, McLeod, F N. Shrestha, B. P.. Bus priority at traffic signals:Investigation the options[J]. IEE Conference Publication,2004,287-294.
    [27]Institute for Transportation & Development Policy(ITDP). Bus rapid transit planning guide[R]. New York,2007.
    [28]Its America. An overview of transit signal priority[M]. United States, Department of Transportation,2004.
    [29]Its America. Transit Signal Priority (TSP):A planning and implementation,2004.
    [30]Daniel J, Lieberman E, Srinivasan R. Access impacts and benefits of traffic signal priority for buses[R]. FHWA-NJ-2004-013, New York:National Center for Transportation and Industrial Productivity,2005.
    [31]Japan Society of Traffic Engineers (JSTE). Manual on traffic signal control[M]. Tokyo:JSTE, 2006.
    [32]Wu J P, Hounsell N. Bus priority using pre-signals[J]. Transportation Research Part A,1998, 32(8):563-583.
    [33]Wu J P, Hounsel N. Analysis of traffic at pre-signalized intersections (Part Ⅰ)[J]. Journal of Transportation Engineering and Information,2003,1(1):37-40.
    [34]Wu J P, Hounsel N. Bus priority using pre-signals[J]. Transportation Research Part A,1998, 32(5):63-83.
    [35]Collura J, Rakha H, Gifford J. Guidelines for the planning and deployment of emergency vehicle preemption and transit priority strategies[R]. Prepared as part of a Research Project, 2003.
    [36]Nagel K, Schreckenberg M. Acellular automation model for freeway traffic[J]. J. Phys. I France.1992,2:2221-2229.
    [37]Kevin N, Conrad L, et al. Development and evaluation of an intelligent bus priority concept[C]. Transportation Research Board. Washington D.C.,2000,12-19.
    [38]Abdelghany K F. A modeling framwork for bus rapid transit operations evaluation and serviee planning[C].83th Annual Meeting of Transportation Research Board,2004.
    [39]Abdelghany K F. A modeling framework for bus rapid transit operation evaluation and service planning[C].83th Annual Meeting of Transportation Research Borad.2004.
    [40]Kim W. An improved bus signal priority system for networks with nearside bus stops[D] College Station:Texas A & M University,2004.
    [41]Kittelson. TCRP web Document6:Transit capacity and quality of service manual, transportation research board, National Research Council, Washington, D. C.,1999.
    [42]Koyamada K, Tamura S, Osamu O. Performance Analysis for Priority Signal Control of Fast Emergency Vehicle Preemption Systems(FAST) in Malaysia[C]. Proceedings of Asia Simulation conference,2006,275-276.
    [43]Levinson H S. NCHRP Reports 143 and 155:bus use of highways, highway Research board, National Research Council, Washington D. C.,1975.
    [44]Li M, Yin Y, et al. Adaptive transit signal priority on actuated signalized corridors.84th Transportation Research Board Meeting, Compendium of papers CD-ROM, TRB, National Research Council, Washington, D. C.,2005.
    [45]Liu H C. Research and development of an adaptive bus signal priority on california highway82[R]. Departments of Civil and Environmental Engineering, Technology University, 2006.
    [46]Liu H, Skabardonis, et al. A dynamic model for adaptive bus signal priority[C]. Transportation Research Board 82nd Annual Meeting, Washington, D.. C.,2003.
    [47]Madeleine L B. Bandera, et al.. A statistical evaluation of traffic flow data obtained from the Sydney coordinated adaptive traffic system prior to decision support system implementation[J]. DLSU Engineering Journal,2007,1(1):55-69.
    [48]Vasudevan M, Chang G L. Design framework for integrating real-time bus priority control with robust arterial signal progression[J]. Transportation Research Board 80th Annual Meeting Washington, D.C.,2001.
    [49]Gartner N H, Tranoff P J et al. Evaluation of the optimized policies for adaptive control(OPAC)strategy[J].Transportation Research Record,2000,105-114
    [50]Nicholas E, Lownes. A procedure for evaluating the impact of transit signal priority implementation on corridor person-delay. TRB Annual Meeting CD-ROM,2005.
    [51]Pappis C P, Mamdani E H. A fuzzy logic controller for a traffic junction[J]. IEEE Transactions on Systems, Man and Cybernetics,1977,7(10):707-717.
    [52]Custodio P S. Case Study TransJakarta[R]. Jakarta:Paulo Sergio Custodio,2006.
    [53]Peter G F, Theo H J. Muller. Conditional bus priority at signalized intersection:better service quality with less traffic disruption[J]. Transportation Research Record,2000,23-30.
    [54]Peter K, John R. Detection range setting methodology for signal priority[J]. Journal of Public Transportation,2002,5(2):116-117.
    [55]Mirchandani P. An approach towards the intergration of bus priority and traffic adaptive signal control[C], Transportation Research Board,2001.
    [56]Rodrigo A C. High flow bus rapid transit:conceptual analysis simulation[C]. The 84th Annual Meeting of Transportation Research Board,2005.
    [57]RTA. SCATS 6.0 user manual[M]. Strawberry:Roads and Traffic Authority of New South Wales,2007.
    [58]Shalaby A, Lee J, Greenou G H J, et al. Development, evaluation, and selection of advanced transit signal priority concept directions [J]. Journal of Public Transportation,2006,9(5):97-120.
    [59]Siemens. Scoot user guide[M]. SIEMENS Traffic Controls Ltd.,2001.
    [60]Skehan S. Traffic signal priority for metro rapid buses:The Los Angeles experience, compendium of technical papers [C].2001 Institute of Transportation Engineers Annual Meeting, Chicago, IL,2001.
    [61]Jacques S, Kevin, Herbert S L. TCRP Report 26:operational analysis of bus lanes on arterials[R]. Washington, D. C.:National Academy Press,1997.
    [62]Jacques S, Kevin, Herbert S L. TCRP research results digest 38:operational analysis of bus lanes on arterials:application and refinement[R]. National Research Council, Washington, D. C., 2000.
    [63]Taale H, Fransen W C M, Dibbits J. The second asswssment of the SCOOT system in Nijmegen[C]. IEEE Road Transport Information and Control,1998.
    [64]Papanreou T N. Wilshire bus rapid transit more than just a dedicated bus lane[C].82th Annual Meeting of Transportation Research Board,2003.
    [65]Trabia M B, Kaseko M S, Ande M. A fuzzy logic controller for two-stage traffic signals[J]. Transport Research Part C,1999,7:353-367.
    [66]Tranportation Resarch Board(TRB). Bus Rapid Transit Planning Guide[M],2006.
    [67]Tranportation Resarch Board(TRB). TCRP REPORT 100:transit capcity and quality of service manual[R],2003.
    [68]Tranportation Resarch Board(TRB). TCRP REPORT 90 bus rapid transit Volume 1:case studies in bus tapid transit,2003.
    [69]Transportation Research Board (TRB). Transportation research circular 212:Interim materials in highway Capacity, National Academy Press, Washington, D. C.,1980.
    [70]Transportation Research Board(TRB). Bus Rapid Transit Volume2:Implement Guidelines[R]. 2003.
    [71]Transportation Research Board(TRB). Highway Capacity Manual[M]. National Research Council,2005.
    [72]Transportation Research Board(TRB). Special report 209:highway capacity manual[R]. National Research Council, Washington, D. C.,1985.
    [73]Transportation Research Board(TRB). TCRP Web Document 6:Transit Capacity and Quality of Service Manual, First Edition[R], Washington, D. C.,1999.
    [74]Transportation Research Board(TRB). Transit capacite and quality of service manual[R], Washingtion, D. C.,2003.
    [75]US FTA. Characteristics of bus rapid transit for decision-making[R]. Washington, D.C: Federal Transit Administration,2004,2-13.
    [76]Vukan R V. Bus semi rapid transit mode development and evaluation[J]. Journal of Public Transportation,2002,5(2):74-91.
    [77]Weerasooriya G, Bajwa S, Kuwahara, M and Sarvi, M. An improved bus signal priority model, Seisan Kenkyu,2008,60(4):355-359.
    [78]Smith W. Study of Evolutionary Urban Transportation (VolumesI, II and III)[R]. U.S.Department of Housing and Urban Development,1968.
    [79]Kim W. An improved bus signal priority system for networks with nearside bus stops[D], Dissertation applied for Texas A&M University,2004.
    [80]Kim W. An improved transit signal priority system for networks with nearside bus stops[C]. Transportation Research Board 84th Annual Meeting Washington, D.C.,2005.
    [81]Yin Y F, Mark A. Miller. A framwork for development planning of bus rapid transit system[C]. 84th Annual Meeting of Transportation Research Board,2005.
    [82]Yagar S, Han B. A procedure for real-time signal control that considers transit interference and priority. Transportation Research,1999,28(4):315-331.
    [83]鲍国栋,关蕾,刘淼,等.基于两级模糊控制的交义路口多相位控制[J].中国科技论文在线.http://www.paper.edu.cn/index.php/default/releasepaper/content/201005-489, Accessed on2011-3-20.
    [84]鲍小奎,关宏志,严海,等.公交专用道施划效果仿真分析[C].2007系统仿真技术及其应用学术会议论文集,2007,379-381.
    [85]北京航空航天大学.北京市南中轴路快速公交线(BRT)智能公交系统设计说明[R].北京,2004.
    [86]北京交通发展研究中心.2010北京市交通发展年度报告[R].北京,2010.
    [87]北京交通发展研究中心.国内外快速公交系统发展经验研究[R].北京:北京交通发展研究中心,2004.
    [88]北京市地方标准.快速公共汽车交通系统-第1部分:工程建设技术规范[S],北京市质量技术监督局,2009.
    [89]北京市公共交通研究所.北京南中轴大容量公交示范工程实施效果评估[R].北京:北京市公共交通研究所,2006.
    [90]北京市市政工程设计总院.北京南中轴大容量快速公交线路示范工程可行性研究报告[R],北京,2005.
    [91]蔡志理.快速公交系统及其主要技术[J].山东交通学院学报,2008,16(1):39-43.
    [92]曹世华,赵方.快速公交信号优先系统的设计与实现[J].计算机工程,2009,35(8):259-263.
    [93]陈光勤.快速公交车辆平面交义口信号优先实现方法[J].同济大学学报(自然科学版)2006,34(1):41-46.
    [94]陈建宗.快速公交信号交叉口优先通行技术研究[D].长安大学硕士学位论文,2008.
    [95]陈军.公交信号优先控制及其在BRT中的应用[D].中南大学硕士学位论文,2009.
    [96]陈磊.快速公交BRT在我国大城市的应用研究[D].西安建筑科技大学硕士学位论文,2006.
    [97]陈龙.公交优先技术及适应性研究[D].浙江大学硕士学位论文,2006.
    [98]陈群,晏克非.考虑公交优先的城市交义口遗传算法信号配时研究[J].系统工程理论与实践,2005,11:133-138.
    [99]陈森发,陈洪,徐吉谦.城市单路口交通的两级模糊控制及仿真[J].系统仿真学报,1995,10(2):35-40.
    [100]陈艳艳.美洲快速公交技术概述[J].城市公共交通,2002,1:33-35.
    [101]陈章元,石京,袁健.北京市快速公交用户满意度调布与比较分析[J].武汉理工大学学报(交通科学与工程版),2008,32(5):802-805.
    [102]仇保兴.中国城市交通模式的正确选择[J].城市交通,2008,6(2):6-11.
    [103]戴继锋,赵延峰,张国华,等.机动车流路段阻抗函数参数标定与校核方法研究[J].城市交通,2007,5(1):41-45.
    [104]戴英姿.快速公交(BRT)系统的交义口优化控制与设计[D].西南交通大学硕士论文,2005.
    [105]邓伟骥,陈钦水,丁明.快速公交系统在我国城市中的适应性研究[J].城市规划,2010,34(10):70-73.
    [106]鼎汉国际工程顾问股份有限公司.台湾公交捷运化设计手册之研究[S].中国台湾,2005.
    [107]冯浚,徐康明.快速公交系统通行能力计算方法研究[J].城市交通,2007,5(5):81-86.
    [108]高昆,张海.城市交通中的公交优先策略[J].交通运输系统工程与信息,2006,6(2):23-26.
    [109]高杨斌,李旭宏,朱彦东.快速公交中央专用道的适应性研究[J].城市交通,2005,3(1):9-14.
    [110]龚永罡,陈涛.基于模糊控制规则的元胞自动机模型[J].计算机应用,2008,28(9):2366-2368.
    [111]顾志康.大城市快速公交线网规划理论与方法研究[D].东南大学博士学位论文,2005.
    [112]关伟,申金升,葛芳.公交优先的信号控制策略研究[J].系统工程学报,2001,16(3):176-180.
    [113]郭继孚,徐康明等.国内外快速公交系统发展实践[M].北京:中国建筑工业出版社,2008.
    [114]郭茜.BRT时空优先技术分析[J].交通科技与经济,2010,6:23-26.
    [115]郭欣蕾,张海.BRT线路公交信号优先协调与控制方法研究[J].交通运输系统工程与信息.2009,9(3):128-134.
    [116]国务院发展研究中心.西安市发展快速公交系统技术报告[R].美国能源基金项目,2005.
    [117]胡红,杨孝宽,魏中华,戴帅.基于成本-效益优化的BRT规划方案评价研究[J].中国市政工程,2007,33(4):393-397.
    [118]黄海军.城市交通网络动态建模与交通行为研究[J].管理学报,2005,2(1):18-22.
    [119]黄晓强.公交专用道系统在国内的设计研究[D].河海大学硕士学位论文,2007.
    [120]季彦婕,邓卫.交义口预信号公交优先方案及效益评价[J].华中科技大学学报(城市科学版),2003,20(1):83-84.
    [121]季彦婕.交义口公共交通优先通行方法研究[D].东南大学硕士学位论文,2003.
    [122]贾斌,高自友,李克平,等.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社,2007.
    [123]姜桂艳.道路交通状态判别技术与应用[M],北京:人民交通出版社,2004.
    [124]金凡.波哥大市快速公交系统建设经验对中国城市的启示[J].城市交通,2007,5(1):64-68.
    [125]荆琳.关于快速公交系统(BRT)评价体系研究[D].长安大学硕士学位论文,2005.
    [126]昆明市城市交通研究所.昆明市快速公交BRT系统研究[R].昆明,2004.
    [127]雷军.重庆巴士快速交通项目研究报告[D].重庆大学硕士学位论文,2005.
    [128]雷莲桂.公交专用道对道路交通的影响[D].北京交通大学硕士学位论文,2008.
    [129]李赫楠.单个交叉口公交优先信号控制方法研究[D].吉林大学硕士学位论文,2008.
    [130]李克平.德国道路与交通工程研究学会.交通信号控制指南:德国现行规范[M].北京:中国建筑工业出版社,2006.
    [131]李娜.快速公交走廊效果测算方法研究[D].长安大学硕士学位论文,2009.
    [132]李瑞敏,陆化普,史其信.基于遗传算法的交通信号多层模糊控制模型研究[J].武汉理工大学学报(交通科学与工程版),2009,33(3):407-410.
    [133]李盛春,孔令江,刘慕仁,等.智能交通灯对交叉路口交通流的影响[J].物理学报,2009,58(4):2266-2270.
    [134]李水友,刘智勇.城市交通感应控制综述[J].城市交通,2006,4(6):64-69.
    [135]李铁柱,丁建友,孙云峰,等.城市主干道公交专用道设置交通条件研究[J].昆明理工大学学报(理工版),2010,35(1):56-60.
    [136]李煜.西安市城市快速公交系统规划研究[D].西安建筑科技大学硕士学位论文,2007.
    [137]李元元,巨永锋.城市信号交义口公交优先及模糊控制策略[J].现代电子技术,2006,15,155-156.
    [138]李震宇.快速公交优先策略及其影响研究[D].河海大学硕士学位论文,2008.
    [139]林赐云.公交信号优先系统设计及实施技术研究[D].吉林大学硕士学位论文,2007.
    [140]林涛,晏克非,郑景轩.城市公交专用道系统规划方法探讨-以深圳为例[J].交通与运输.7,20-23.
    [141]林杨,赵胜川,赵建武.公交优先信号控制交叉口延误分析与控制方法改进[J].交通标准化,2010,1,78-83.
    [142]林杨.基于公交优先的交义口信号控制及仿真研究[D].大连理工大学大学硕士学位论文,2009.
    [143]林正,吴家正.北京市南中轴快速公交实施效果[J].交通运输系统工程与信息,2007,7(4):137-142.
    [144]零点研究咨询集团,北汽福田汽车有限公司.2009福田指数——中国居民生活机动性指数研究报告[R].http://auto.sina.com.cn/news/2009-12-25/1039553292.shtml, Accessed on 2010-12-29.
    [145]刘道君.快速公交(BRT)信号优先设计及其应用研究[D].河海大学硕士学位论文,2008.
    [146]刘芬芳.基于完全信息静态博弈下的城市公交优先研究[J].交通科技,2008,5:83-85.
    [147]刘红红,王鑫玥,杨兆升.城市公共交通优先的信号控制策略[J].公路交通科技,2004,5:121-124.
    [148]刘嫚,张卫华.巴士快速交通(BRT)与轨道交通转性及适用范围的比较[J].交通标准化,2007,4:161-164.
    [149]刘启强,李杰.快速公交(BRT)交叉路口信号优先车辆延误分析[C].第三届中国同舟交通论坛——公共交通与城市发展学术研讨会,2006,432-438.
    [150]刘伟.公交专用道规划体系及设置条件研究[D].重庆交通学院硕士学位论文,2003.
    [151]陆化普,文国玮.BRT系统成功的关键:带形城市土地利用形态[J].城市交通,2006,4(3):11-15.
    [152]陆建,王炜,陈学武.公交专用车车道设置条件与效益分析[J].东南大学学报,1998,28(3):103-107.
    [153]陆建.公交专用车道设置条件研究[J].交通标准化,2003,1:59-61.
    [154]陆锡明.快速公交系统[M].北京:同济大学出版社,2003.
    [155]陆悦,周强.策略与技术层面上的城市公交优先研究[J].交通标准化,2010,5:149-152.
    [156]罗大明,季晓京.北京南中轴路快速公交(BRT)智能交通系统总体设计概要[J].交通运输系统工程与信息,2005,5(2):97-103.
    [157]马海红,孙明正,郭继孚.快速公交专用道规划设计方法研究[J].城市交通,2007,5(4),70-75.
    [158]马海红.快速公交运营车辆发车间隔与交义口信号配时协调性研究[D].长安大学硕士学位论文,2005.
    [159]马万经,杨晓光.基于时空优化的单点交义口公交被动优先控制方法[J].中国公路学报,2007,20(3):86-90.
    [160]马万经,杨晓光.单点公交优先感应控制策略效益分析与仿真验证[J].系统仿真学报,2008,20(12):3309-3313.
    [161]毛保华,贾顺平等.北京市交通结构优化研究报告[R].北京:北京交通大学,北京交通发展研究中心,2008.
    [162]梅超群,黄海军,唐铁桥,等.信号灯和公交车站对T形路口交通流的影响研究[J].物理学报,2009,58(3):1497-1503.
    [163]莫一魁,柳伍生,晏克非.大城市公交专用道网络优化技术研究[J].交通科技与经济,2007,2:102-104.
    [164]牟达.大连市快速公交规划及其效果评价[D].大连理工大学硕士学位论文,2006.
    [165]欧键灵.可持续发展目标导向的城市快速公共交通(BRT)规划研究[D].同济大学硕士学位论文,2008.
    [166]裴玉龙,田林,徐大伟.城市快速公交系统优先信号预评估方法[C].第三届智能交通年会,南京,2007,13-17.
    [167]彭燕.BRT系统规划评价及其应用研究[D].长沙理工大学硕士学位论文,2006.
    [168]秦利芸.城市公共交通系统优先通行技术及评价研究[D].西安建筑科技大学硕士学位论文,2007.
    [169]邱诗纯, 锺慧諭,蒋静宜. 公车捷运系统效益模擬之研究http://www.docin.com/p-56120336.html,2006.
    [170]全永燊,徐康明等.中国城市快速公交系统建设专家点评[J].城市交通,2007,5(5):72-80.
    [171]全永燊.城市交通控制[M].北京:人民交通出版社,1989.
    [172]邵俊.公共汽车交通专用道(路)系统设计与评价方法研究[D].同济大学硕士学位论文,2000.
    [173]中丽君,董悦.RFID在城市快速交通系统应用中的关键问题研究[J].公路交通科技,2010,2:165-168.
    [174]沈颖,朱羽,徐英俊.道路饱和度计算方法研究[J].交通标准化,2007,1,125-129.
    [175]税文兵.快速公交专用道通行能力研究-以昆明快速公交专用道为例[D].昆明理工大学,2007.
    [176]宋瑞.快速公交系统规划理论与方法[M].北京:科学出版社,2009.
    [177]孙明正,刘雪杰,马海红.北京市快速公交2号线实施效果分析[J].城市交通,2009,7(3):22-26.
    [178]汪珏.成都快速公交(BRT)系统研究[D].西南交通大学硕士学位论文,2006.
    [179]王波.快速公交专用道规划的思想框架研究[J].交通标准化,2006,6:34-38.
    [180]王海霞,宋瑞,李明.城市快速公交系统发展水平评价方法研究[J].交通运输工程与信 息学报,2008,6(3):77-84.
    [181]王海霞,宋瑞.基于预信号控制的十字路口快速公交优先通行研究[J].城市公共交通,2007,2,24-28.
    [182]王健.巴士快速交通实施指南[M].北京:中国建筑工业出版社,2009.
    [183]王铭德.模糊邏辑大眾運输優先號誌控制模式-遗传演算法及蚂蚁演算法之应用[D].中国台湾国立交通大学大学博士学位论文,2006.
    [184]王瑞斌,王军利.信号交叉口公交优先控制策略探讨[J].中国人民公安大学学报(自然科学版),2010,63(1):87-90.
    [185]王炜.交通工程学[M].南京:东南大学出版社,2000.
    [186]王雁晖,陆振波.快速公交系统在我国的发展[J].交通科技与经济,2007,3:79-81.
    [187]王亿方.快速公交系统规划方法研究[D].东南大学硕士学位论文,2005.
    [188]王玉泽.快速公交系统规划设计指南[M].北京:人民交通出版社,2010.
    [189]王元庆,曾奕林.锯齿形公交优先进口道的设置方法.交通运输工程学报,2005,5(3):98-104.
    [190]王振报,朱跃华,陈艳艳.配合大容量快速运输的使用常规公交线网规划方法[J].北京工业大学学报,2010,36(6):785-789.
    [191]王正武,夏利民.单交义口自适应公交优先控制[J].中国公路学报.2010,23(4):84-90.
    [192]魏涛,金凡.雅加达市快速公交系统发展经验及启示[J].城市交通,2007,5(2),55-59.
    [193]吴兵,李晔.交通管理与控制[M].北京:人民交通出版社,2008.
    [194]吴家正,林正.北京市南中轴快速公交运营效果分析[J].城市交通,2007,5(4):76-80.
    [195]徐波.城市道路快速公交(BRT)系统设计[J].城市道桥与防洪,2007,5:36-39.
    [196]徐洪峰,李克平,郑明明.基于逻辑规则的单点公交优先控制策略[J].中国公路学报.2008,21(5):96-102.
    [197]徐康明,蔡健丞,孙鲁明,等.快速公交系统规划与设计[M].北京:中国建筑工业出版社,2010.
    [198]许伦辉,李民生.基于神经网络实现的交义口可变相序公交优先模糊逻辑控制[J].现代交通技术.2009,6(3):82-84.
    [199]许玮珑.杭州快速公交一号线运营分析[J].山西建筑,2007,33(36):279-280.
    [200]杨佩昆,吴兵.交通管理与控制[M].北京:人民交通出版社,2003.
    [201]杨晓光,林瑜,杭明升.信号控制交义口公共汽车优先信号确定方法研究[J].中国公路学报,2001,14(S1):101-104.
    [202]杨晓光,滕靖.公共交通通行能力和服务质量手册[M].北京:中国建筑工业出版社,2010.
    [203]杨晓光,周光伟,杭明升,等.公交优先技术方法[J].城市交通,2000,2:1-12.
    [204]杨远祥.快速公交BRT站点的优化布局研究[D].西南交通大学硕士学位论文,2006.
    [205]杨远舟,毛保华,张建鹏,等.基于元胞自动机模型的快速公交信号优先仿真研究[J].中国公路学报,2010,23(5):90-95.
    [206]杨运平.巴士快速公交系统专用道设置与路口优先通行技术研究[D].湖南大学硕士学位论文,2006.
    [207]杨兆升,林赐云,龚勃文.公交信号优先系统框架研究[C].2007第三届中国智能交通年会论文集,2007.
    [208]杨祖元,刘鸿飞,杜长海.交通强度优先的交义口模糊控制研究[J].计算机工程与应用, 2009,45(36):193-195.
    [209]叶敏,赵杰,赵一新,盛志前.我国城市快速公交发展策略研究[J].国外城市规划,2006,21(3):38-41.
    [210]于星涛.快速公交系统规划研究-以济南市为例[D].同济大学硕士学位论文,2006.
    [211]原永静.快速公交系统(BRT)站点布局优化问题研究[D].长安大学硕士学位论文,2005.
    [212]张达.基于粗糙集理论的公交优先控制算法研究[D].广西大学硕士学位论文,2007.
    [213]张建鹏.快速公交(BRT)对信号控制交义口影响仿真研究[D].北京交通大学硕士学位论文,2009.
    [214]张守军.城市BRT系统规划理论与方法研究[D].北京交通大学博士学位论文,2007.
    [215]张天奕.快速公交系统对车辆选型的影响研究[D].上海交通大学硕士学位论文,2006.
    [216]张卫钢,刘亚萍,靳瑾,等.十字口4相位信号灯模糊控制模型设计与仿真[J].长安大学学报(自然科学版).2008,28(4):83-86.
    [217]张卫华,陆化普,刘强.实施城市快速公交(BRT)的平面交义口处理技术[J].交通科技,2004,6:85-87.
    [218]张卫华,陆化普,石琴,等.公交优先的信号交叉口配时优化方法[J].交通运输工程学报,2004,4(3):49-53.
    [219]张卫华,陆化普.公交优先的预信号控制交叉口车辆延误分析[J].中国公路学报,2005,18(4):78-82.
    [220]张卫华,石琴,刘强.公交优先信号交义口延误计算与配时优化方法[J].华中科技大学学报(城市科学版),2004,21(4):30-33.
    [221]张卫华.城市快速公交(BRT)专用道客运能力探讨[J].武汉理工大学学报(交通科学与工程版),2008,32(1):118-121.
    [222]张洋,赵一新,付晶燕.快速公交专用车道及站台布设模式选择[J].城市交通,2009,7(3):27-34.
    [223]张云星,陈锋,董伟鹤,等.单交义口公交优先双系统模糊控制策略研究[J].计算机仿真,2009,26(5):278-281.
    [224]赵杰.国外发展快速公交的经验及对我国城市交通发展的启示[J].城市交通,2004,2(3):56-59.
    [225]赵倩瑜.快速公交系统基础设施规划与应用研究[D].南京林业大学硕士学位论文,2006.
    [226]赵翔.城市公交信号优先智能控制算法研究[D].山东大学硕士学位论文,2008.
    [227]中国快速公交网http://www.chinabrt.org/. Accessed on 2010-12-29.
    [228]中华人民共和国建设部.城市道路设计规范[S].北京,1991.
    [229]中华人民共和国建设部.快速公共汽车交通系统设计规范(征求意见稿)[S].北京,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700