用户名: 密码: 验证码:
聚乙二醇衍生物的合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙二醇(PEG)作为可溶性聚合物载体应用于有机合成,集中了固相反应和经典液相反应的双重优点,既有固相反应的易分离、可循环利用、产物易纯化的特点,又保持了经典液相反应的高反应性、易表征和分析的优点。
     本文以PEG作为可溶性聚合物载体,合成了PEG支载的两类树状化合物,并将其应用于去细胞瓣的修饰;以PEG作为可溶性聚合物载体,合成了PEG支载的吡啶叶立德,并将其应用于多取代环丙烷衍生物的合成。
     第一章PEG支载树状化合物的合成及其应用
     概述了近年来以PEG为可溶性载体支载合成树状化合物的研究进展及其在生物医学领域中的应用。基于PEG支载树状化合物修饰药物、多肽的优点以及本实验室前期工作的基础,提出本课题的设计思路。以不同分子量的线性PEG为原料,5-羟基间苯二甲酸甲酯作为连接基合成活性端基分别为丙烯酰基和琥珀酰亚胺的两种新型的树状化合物PEG-DA4和PEG-NHS4,并将其应用于去细胞瓣的修饰。对修饰条件进行了优化,得出最佳的修饰条件;对不同分子量PEG-DA4修饰效果进行了探讨,通过修饰后去细胞瓣的静态拉伸试验,得知分子量为20000Da时,抗拉强度最大,而弹性模量随分子量的增加而增大,故PEG2oooo-DA4的修饰效果最好;对两种不同活性端基PEG-DA4和PEG-NHS4修饰效果进行了探讨,通过力学测试数据得知PEG-DA4组抗拉强度均高于相同分子量PEG-NHS4组。
     第二章PEG支载吡啶叶立德的合成及应用
     概述了PEG支载的吡啶叶立德在有机合成中应用。基于本实验室的前期工作提出本课题的设计思路。以PEG支载溴乙酰溴为起始物,与吡啶反应生成PEG支载叶立德,与丙二腈或腈基乙酸乙酯和芳香醛通过Knoevenagel缩合得到的烯类衍生物经加成、环合反应得到14种多取代环丙烷衍生物,总产率为80-87%。同时对这些化合物运用1HNMR、13CNMR、IR等手段进行了分子结构的表征与确认,并由1HNMR确认所得产物均为tran-构型。
     PEG在反应过程中担任聚合物载体和保护基,其巨大的反应位阻使关环反应只得到反式产物。相对于经典液相合成,产物产率得到大幅度提高,因此PEG在反应中还起到相转移催化剂的作用,提高了反应的转化率。
Poly(ethylene glycol) (PEG) is applied to organic synthesis as soluble support, which combines the superiorities of solid phase synthesis such as easy separation and purification, recyclable usage, convenient reprocessing and advantages of classical homogeneous reaction such as detecting reactive procedure with routine analytic methods.
     In this paper, using PEG as soluble polymer support we synthesized two kinds of PEG-supported dendrimers, and applied them to modify decellularized leaflets; using PEG as soluble polymer support we synthesized PEG-supported pyridine ylide, and applied it to prepare polysubstituted cyclopropanes derivatives.
     The first section:synthesis and application of PEG-supported dendrimers.
     This section summarized the research progress of PEG-supported dendrimers and their applications in biomedical in recent years. Based on the advantages of PEG-supported dendrimers modifing drugs, peptides and previous work of our laboratory, presented the design idea. Using PEG with different molecular weight as starting materials, dimethyl 5-hydroxyisophthalate as linker, we synthesized two new kinds of dendrimers PEG-DA4 and PEG-NHS4 with acroloyl and NHS as active group respectively, and applied them to modify decellularized leaflets. Optimized the modification conditions, and obtained the best condition; investigated the modification effect of decellularized leaflets modified by different molecular weight of PEG-DA4, with the static tensile test, we reached a decision that PEG20000-DA4 is the best modification agent; investigated the modification effect of decellularized leaflets modified by two kinds of dendrimers PEG-DA4 and PEG-NHS4, with the test of tensile strength, we draw a conclusion that PEG-DA4 is better than PEG-NHS4.
     The second section:synthesis and application of PEG-supported pyridine ylide.
     This section summarized the applications of PEG-supported pyridine ylide in organic synthesis. Based on the previous work of our laboratory, the synthetical route was presented. PEG-supported acetyl bromide as starting material, reacted with pyridine and obtained PEG-supported pyridine ylide. Then it was treated with olefins generated by Knoevenagel condensation of malononitrile or ethyl cyano group and aromatic aldehydes, and obtained 14 polysubstituted cyclopropanes derivatives. The structure of these compounds was characterized and confirmed by'HNMR,13CNMR, IR. Also these compounds were all trans-configuration, which were confirmed by'HNMR.
     PEG acted polymer support and protective group in the whole reaction, and tran-configuration was the only reaction products because of huge steric hindrance of PEG. Compared with classic liquid-phase synthesis, product yield increased greatly, so PEG also played the role of phase transfer catalyst, improving the reaction rate.
引文
[1]Zhang, A. F. Synthesis and Applications of Dendronized Polymers[J]. Progress in Chemistry,2009,17,157-171
    [2]Estelle, D.; Tamis, D. Positive Dendritic Effect in a Peptide Dendrimer-Catalyzed Ester Hydrolysis Reaction[J]. J. Am. Chem. Soc,2004,126,15642-15643
    [3]Tang, X. D.; Zhang, Q. Z.; Zhou, Q. F. The paleoenvironmental significance of organic carbon [J]. Chinese Journal of Organic Chemistry,2010,24,585-590
    [4]Gernot, A.; Strohmeier, W.; Oliver, K. Synthesis of Functionalized 1,3-Thiazine Libraries Combining Solid-Phase Synthesis[J]. Chem. Eur. J,2004,10,2919-2926
    [5]Estelle, D.; Tamis, D. A Strong Positive Dendritic Effect in a Peptide Dendrimer Ester Hydrolysis Reaction[J]. J. Am. Chem. Soc,2004,126,15642-15643
    [6]Annunziata, R.; Benaglia, M. Poly(ethylene glycol)-Supported Bisoxazolines as Ligands for Catalytic Enantioselective Synthesis [J]. J. Org. Chem,2001,66,3160-3165
    [7]Lubineau, A.; Malleron. A. Recyclable Polymeric Catalyst Effective on Mannich-Type Reaction in Water[J]. J. Chem. Soc. Pekin Trans,2001,2,3815-4195.
    [8]Falchi, A.; Taddei, M. A New Soluble Polymer-Supported Scavenger for Alcohols and Phosphine Oxides[J]. PEG-DCT:Org. Lett,2009,2,3429-3431
    [9]Hai, H.; Yan, L. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors[J]. Biomaterials,2011,32,478-487
    [10]Inoue, K. Functional dendrimers, hyperbranched and star polymers[J]. Polym. Sci,2000, 25,453-571
    [11]Lu, C. F.; Xie, C.; Chen, Z. X. Synthesis of New Soluble Dendrimerson Poly(ehylene glycole) Sublayer[J]. Russian Journal of Organic Chemistry,2009,45,788-791
    [12]Ashkan, T.; Manouchehr, V. Poly(ethylene glycol) copolymers new biocompatible materials for nanomedicine[J]. Nanomedicine:Nanotechnology, Biology, and Medicine, 2010,6:556-562
    [13]Balan, S.; Choi, J.W; Godwin, A. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge[J]. Bioconjug Chem,2007,18,61-76
    [14]Cramer, N. B. Photo-polymerization mechanis mandrate limiting step changes Functional group chemistries[J]. Macromolecules,2003,36,7964-7969
    [15]Cramer, N. B.; Bowman, C. N. Kinetics of photo-polymerizations with real-time Fourier transforminfrared[J]. PolymSci Polym Chem,2001,39,3311-3319
    [16]Houllier, L.L.Photoinitiated corss-linking of athiol-methacrylate system[J]. Polyment, 2001,42,2727-2736
    [17]Raghavendra, S. N.; Bing, W. Poly(ethylene glycol) drug conjugates for improved delivery of the drug[J]. Journal of Controlled Release,2010,142,447-56
    [18]Youn, Y. S.; Na, D. H. High-yield production of biologically active mono-PEGylated on calciton in by site-specific PEGylation[J]. Journal of Controlled Release,2007,117, 371-379
    [19]Polizzotti, B. D. Three-dimensional biochemical patterning of click-based composite hydrogels via photopolymerization[J]. Biomacromolecules,2008,9,1084-1087
    [20]Peter, Z. Bioprosthetic tissue preparation with synthetic hydrogels [P].20050119736 A1
    [21]Malkoch, M.; Vestberg, R.; Gupta, N. Synthesis of well-defined hydrogel networks using Click chemistry[J]. Chem Commun,2006,2774-2776
    [22]Hu, B.H.; Su, J.; Messersmith, P.B. Hydrogels cross-linked by native chemical ligation[J]. Biomacromolecules,2009,10,2194-2200
    [23]Han, H.; Janda, K. D. An improved traceless linker methodology for aliphatic C-H bond formation[J]. J. Am. Chem. Soc,1996,118,2539-2543
    [24]Bayer, E.; Mutter, M. An infrared absorption method for quantitative titration of the extent of self-association in poly(ethylene glycol)-bound peptides[J]. Nature(London), 1972,237,512-516
    [25]Mel A.; Jell G.; Stevens, M. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization:a review[J]. Biomacromolecules,2008,9,2969-2979
    [26]Rahman, S.A.; Anzinger, H.; Mutter, M. Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis[J]. Biopolymers, 1980,19,173-176
    [27]Mutter, M.; Bayer, E. Electronic communication between carbon chain bridged metals:a theoretical approach[J].Angew. Chem. Int. Ed. Engl,1974,13,88-92
    [28]Bayer, E.; Mutter, M. Novel Synthesis of 3-Substituted 2-Thiohydantoins Reaction on Poly(ethylene glycol)[J]. Nature (London),1972,237,512-516
    [29]Amarnath, V.; Broom, A. D. O-selective phosphorylation of nucleosides without N-protection[J]. Chem. Rev,1977,77,183-187
    [30]Bonora, G. M. Colorimetric Assays for Biodegradation of Polycyclic Aromatic Hydrocarbons by Fungal Laccases[J]. Appl. Biochem. Biotechno,1995,54,3-7
    [31]Beamish, J. A.; Zhu, J. The effects of monoacrylate poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering [J]. Biomed Mater Res A,2010,92,441-450
    [32]Zhang, H. Q.; Yang, G. C.; Chen, J. N. Synthesis of Methyl N-Aryl Oxamate Using Soluble Polymer Support[J]. Synthesis,2004,18,3055-3059
    [33]Yue, G. Z.; Wan, Y. D. Synthesis of a library of benzoindolizines using poly(ethylene glycol) as soluble support[J]. Bioorg.& Med. Chem. Lett,2005,15,453-458
    [34]Yue, G. Z.; Chen, Z. X. Synthesis of a Library of 1,2,3,7-Polysubsti-tuted Indolizines using Poly(ethylene glycol) as Soluble Support[J]. J. Heter-cyclic. Chem,2006,43, 781-785
    [35]Huang, Y. L. Traceless Synthesis of quinazoline-2,4-diones by Curtius Rearrangement Reaction Using Poly(ethylene glycol)[J]. J. Heterocyclic Chem,2007,44,1421-1424
    [36]Xiang, F. Y.; Novel synthesis of 3-substituted 2-thiohydantoins on poly(ethylene glycol)[J]. Synthetic Commu,2008,38,953-960
    [37]Xie, H. W.; Lu, C. F. Synthesis of 1,4-BenzoDiazepine-2,5-diones Using Inoic Liquid as a Soluble Support[J]. Synthesis,2009,2,205-210
    [38]Porter, A. M.; Klinge, C. M. Biomimetic hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC[J]. Biomacromolecules,2010,12,242-6
    [1]Hao, F.Y.; Yao, X.D.; Ma, J.L. Estimation of divergence times for major lineages of birds [J]. African Journal of Biotechnology,2010,9,3073-3077
    [2]Blid, J.; Somfai, P. Diastereoselective synthesis of 3,6-disubstituted 3,6-dihyd-ropyridin-2-ones[J]. Tetrahedron Lett,2003,44,3059-3062
    [3]Wu, P.; Cai, X. M.; Yang, G. C. Application of Pyridinium Salts to Organic Syntheses [J]. Chin.J.Appl.Chem,2006,23,1378-1381
    [4]Kowalkowska, A.; Sucholbiak, D.; Jonczyk, A. Synthesis and Antitumor Activity of the Estrane Analogue of OSW-1[J]. Eur.J.Org.Chem,2005,5,925-929
    [5]Rotaru, A.V.; Danac, R. P. Synthesis of Non-Symmertrical Substituted Bisindolizines by the Direct Reaction of BipyridiniumYlides[J]. J. Heterocyclic Chem,2004,41,893-897
    [6]Serov A.B.1,3-Dipolar cycloaddition reaction of heteroaromatic N-ylides with 3-[(E)-2-aryl(hetaryl)-2-oxoethylidene]indolin-2-ones[J]. Russian Chemical Bulletin,2005,54, 2432-2436
    [7]Sheng, S. R. Synthesis of Bismethanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst[J]. Catal. Lett,2009,128,418-422
    [8]Takashi, A. A new approach to imidazo [1,2-a] pyridine derivatives and their application to the synthses of novel 2H-pyrano [2',3':4,5] imidazo [1,2-a] pyridine-2-one derivatives [J]. Heterocycles,2010,80,439-454
    [9]Andrea, D. Microwave-Assisted Multicomponent Synthesis of Diaza-, Benzo-, and Dibe-nzofluorenedione Derivatives[J].Synthetic Commun,2008,38,3003-3016
    [10]Wang, Q.F.; Song, X. F.; Chen, J. Pyridinium Ylide-Assisted One-Pot Two-Step Tandem Synthesis of Polysubstituted Cyclopropanes[J]. J. Comb. Chem,2009,11,1007-1010
    [11]Charles, D.; Papageorgiou, S.V. Organic-Catalyst-Mediated Cyclopropanation Reaction [J]. Angew. Chem.2003,42,828-831
    [12]Shi, L.; Wang, P. Single-step synthesis of subtituted 7-aminopyrano[2,3-d] pyrimidines [J]. Synthesis,2004,11,2342-2346
    [13]Kojima, S. Stereoselective formation of activated cyclopropane with pyridinium ylides bearing a (-)-8-phenylmenthyl group as the chiral auxiliary [J]. Tetrahedron Lett,2004, 45,3565-3569
    [14]Shinji,Y.; Jun, Y.; Emiko, O. Enantioselective cyclopropanation reaction using a confor-mationally fixed pyridinium ylide through a cation-p interaction[J]. Tetrahedron Letters, 2007,48,855-858
    [15]Wang, Q.F.; Hong, H. Diastereoselective Synthesis of trans-2,3-Dihydrofurans with Pyridinium Ylide Assisted Tandem Reaction[J]. J. Org. Chem,2009,74,7403-7406
    [16]Owen, J. S.; Labinger, J. A. Pyridinium-Derived N-Heterocyclic Carbene Complexes of Platinum:Synthesis, Structure and Ligand Substitution Kinetics [J]. J. Am. Chem. Soc, 2004,126,8247-8255
    [17]Shi, Q.; Thatcher, R. J.; Slattery, J. Coordination Chemistry and Bonding of Strong N-Donor LIgands Incorporating the 1H-Pyridin-(2E)-Ylidene (PYE) Motif[J]. Chem. Eur. J,2009,15,11346-11360
    [18]Kim, I.; Kim, S. G..; Choi J. H. Facile synthesis of benzo-fused 2,8-dioxabi-cyclo [3.3.1] nonane derivatives via a domino Knoevenagel condensation hetero-Diels-Alder reaction sequence[J]. Tetrahedron,2008,64,664-671
    [19]Shinji, Y.; Emiko, O. An Unusual Reaction of a Pyridinium Ylide with 1,1-Dicyanoeth ylene Derivatives [J]. Chemistry Letters,2008,37,628-629
    [20]Yun, L.; Hua, Y. H.; Qing, J. L. Synthesis of polycyclic indolizine derivatives via one-pot tandem reactions of N-ylides with dichloro substituted unsaturated carbonyl compounds [J]. Tetrahedron,2007,63,2024-2033
    [21]Chen, Z. X.; Yue, G. Z. Synthesis of a Library of indolizines Using Poly (ethylene glycol) as Soluble Support[J]. Synlett,2004,45,1231-1234.
    [22]Yue, G. Z. Synthesis of a library benzoindolizines using poly(ethylene gl ycol) as soluble support[J]. Chem. Lett,2005,15,453-458
    [23]Yue, G. Z.; Chen, Z. X. Synthesis of a Library of Polysubstituted Indolizines using Poly (ethylene glycol) as Soluble Support[J]. J. Heterocyclic. Chem,2006,43,781-784
    [24]Moreau, J. Metal-Free Bronsted Acid Catalyzed Formal Annulation Straightforwad Synt-hesis of DihydroChromenone and Tetrahydroquinolinones[J]. J. Org. Chem,2009,74, 8963-897
    [25]Feng, C. A Facile Synthesis of Tetrasubstituted 2,3-Dihydrofuran Derivatives Using Poly(ethylene glycol) as Soluble Support[J]. J. Heterocyclic Chem,2010,47,671-675
    [26]Jain, S. L. An Efficient Synthesis of Poly(ethylene glycol)-Supported Iron (II) Porphyrin using a Click Reaction and its Application for the Catalytic Olefination of Aldehydes[J]. Adv. Synth. Catal,2009,351,230-234
    [27]Khurana J.M.; Kumar S. Tetrabutylammonium bromide (TBAB):a neutral and efficient catalyst for the synthesis of biscoumarin and dihydropyrano[c]chromene derivatives in water and solvent-free conditions [J]. Tetrahedron Lett,2009,50,4125-4127
    [28]Ahadi, S.; Ghahremanzadeh, R.; Mirzaei, P. Synthesis of spir[benzo-pyrazolonaphthyrid ine-indoline]-diones and spir[chromenoPyrazolopyridine indoline] diones by one-pot, component methods in water[J]. Tetrahedron,2009,65,9316-9321
    [29]Shi, Q.; Thatcher, R. J. Coordination Chemistry and Bonding of Strong N-Donor Lgands Incorporating the 1 H-Pyridin-(2E)-Ylidene Motif [J]. Chem. Eur. J,2009,15,11346-11 360
    [30]Khoshkholgh, M.; Lotfi, M. Efficient synthesis of pyranocoumarins via intramolecular Knoevenagel hetero-Diels-Alder reactions[J]. Tetrahedron,2009,65,4228-4234
    [31]Antonioletti, R. New route to 2-alkenyl-1,3-dicarb-onyl compounds, intermidates in the synthesis of dihydrofurans[J]. Tetrahedron,2002,58,589-598
    [32]Bartoli, G.. Magnesium perchlorate as efficient Lewis acid for the Konevenagel condens-ation between diketones and aldehydes[J]. Tetrahedron,2008,49,2555-2557
    [33]Kim, I. Facile synthesis of benzo-fused dioxabi-cyclononane derivatives via a domino Knoevenagel condensation hetero-Diels-Alder reaction sequence [J]. Tetrahedron,2008, 64,664-671
    [34]Antonioletti, R. New route to 2-alkenyl-1,3-dicarb-onyl compounds, intermidates in the synthesis of dihydrofurans[J]. Tetrahedron,2002,58,589-598
    [35]Bartoli, G..; Bosco, M. Magnesium perchlorate as efficient Lewis acid for the Konevenag-el condensation between β-diketones and aldehydes[J]. Tetrahedron,2008,49,2555-2557
    [36]Sheng, S.R.; Wang, Q.Y. Synthesis of Bis(indolyl)methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst[J]. Catal Lett,2009,128,418-420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700