用户名: 密码: 验证码:
公路隧道洞口废气扩散形态与窜流影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国公路建设的快速发展,隧道越来越多地出现在公路交通工程领域里,其洞口废气扩散与窜流问题因其对隧道营运通风及对周围环境密切相关,亦越来越多地受到关注,本论文依托交通部西部交通建设科技项目“公路隧道智能联动控制技术研究”与国家杰出青年基金项目“长大交通隧道建设与营运关键科学问题”等科研项目,采用广泛调研、现场测试、理论分析、综合分析以及系统性数值分析等多种研究手段、结合北碚隧道与中梁山隧道等具体工程,就公路隧道洞口废气扩散形态与窜流影响等相关问题开展了研究,主要研究工作与取得的主要成果如下:
     1、依据非恒定多因素综合作用下洞口废气浓度分布特点,提出了基于极值的浓度场测试分析方案,依托北碚隧道、中梁山隧道,开展了公路隧道洞口废气浓度扩散的全场现场实测研究,并将全自动烟气分析仪成功应用于中梁山隧道不同测点的同步实测中,获得了多种运营工况、不同洞口地形条件下公路隧道实际运营废气最大浓度影响分布曲线簇以及一系列洞口废气多种成份的同步实测的浓度-时刻曲线簇,并以此为基础,分析了公路隧道洞口废气扩散规律,其扩散特征符合流体流动扩散传输规律、且两种测试方案其测试结果的一致性,印证了基于极值的浓度场测试分析方法具有合理性与可行性。
     2、根据公路隧道洞口废气扩散进入环境大气的出流特点,结合相关领域的研究分析,率先引入射流理论,并依据气体自由射流自保持状态的相关研究、结合有效模拟复杂地形的网格生成技术,建立了适应于公路隧道洞口废气湍射流扩散数值分析的区域模型;推导选择了相应的多组分气体扩散传输的三维微分数学模型组与适宜的求解方法。
     3、将基于极值的浓度场测试分析的现场测试与湍射流模拟理论相结合,探讨了一种适应于洞口废气非恒定扩散特点的综合分析方法,提出测试条件下一系列多因素组合影响下的工况组模拟方案,从而将模拟数据与测试数据进行了恰当的比较分析,并针对测试模式下不同自然风速、洞内外不同温差、两洞口不同出口与入口风速等影响因素,系统地探讨了相应工况组的洞口废气的扩散与窜流影响规律,依据现场测试数据,还推导预测了远期不同运营状况下相应洞口处实际废气的最大浓度范围,最后模拟了相应洞口废气窜流状况及出口隧道侧增设挡风壁后废气窜流改善的情况。
     4、针对洞口结构因素对废气窜流程度的影响开展了系统性的数值分析,首先针对开阔地形的平行隧道洞口从不同横向洞口间距、不同自然风速以及中间设置不同尺寸的挡壁等三个角度开展了影响研究,然后探讨了平行隧道洞口废气窜流影响的相关性研究,并针对特定横向洞口净距,考虑诸如两洞口位置是否纵向错开、在洞口段出口隧道侧、入口隧道侧以及两洞口之间是否有挡壁、以及各挡壁不同的长度与高度等洞口结构因素,采用六因素异水平的正交实验方案系统性地开展了废气窜流影响的模拟研究,最后得出减弱这类隧道废气窜流的有利与不利的洞口段上建结构类型建议。
     相关的实测数据曲线族,为公路隧道洞口废气扩散影响研究积累了最直接可靠的资料,其测试分析方案与手段亦为非恒定多因素作用下某物理量的测试与评价提供了切实可行的新思路与新途径;适宜的洞口废气湍射流扩散分析区域与求解方法为系统性探讨提供了有效的平台与手段;实测数据与湍射流扩散模拟理论相结合的综合分析研究,为扩散分析提供了相当程度上的可靠性证明;基于实测数据的洞口废气浓度的远期预测以及所探究的减弱平行隧道洞口端废气窜流状况的有利与不利的洞口土建结构类型等,从工程角度方面提出了可供参考的建议。
Along with the rapid development of highway engineering, tunnels have increasingly appeared in highway engineering field. Moreover, the problems of tunnel portal exhaust gas diffusing shape and channeling are attracting more and more attentions due to their close relations with tunnel ventilation and environment. Based on the related subjects such as the western transportation construction scientific and technological project of Transportation Department'Highway tunnel intelligent linkage control technology research", the National Science Found for Distinguished Young Scholars of China'key scientific problem of construction and operation for extra-long traffic tunnel'and so on, adopted many methods such as extensive study, field test, theoretical analysis, comprehensive analysis, and systematic numerical analysis, supported by specific projects such as Beibei tunnel and Zhongliangshan Tunnel, some research on highway tunnel portal exhaust gas diffusion shape and channeling problems are carried out in this paper. All the main works and results can be summarized as follows:
     1. According to the characteristics of concentration distribution of exhaust gas from highway tunnel portal under the comprehensive effect of unsteady multi-factors, the programme and analysis of the concentration distribution testing based on the extremum is put forward. Supported by Beibei Tunnel and Zhongliangshan Tunnel, the research of the whole field test about concentration distribution of exhaust gas from highway tunnel portal is carried out, and the automatic flue gas analyzer is the first applied to the synchronous measurement of the different points of Zhongliangshan Tunnel. A series of curves families of the maximum concentration distribution of the actual operation exhaust gas around of highway tunnel portal are the first obtained for the various operation conditions or terrains, and a series of various ingredients synchronous concentration-time curves families are also obtained firstly. Based on these series of curves families, the diffusion rules of the highway tunnel portal exhaust gas are analyzed, which conform to the ones of fluid flow diffusion transmission. And the concordant results of two kinds of testing plan have mutually proved that it is a reasonable and feasible method of the concentration field test and analysis which based on the extreme.
     2. According to the flow characteristics of the highway tunnel portal exhaust gas diffusing into the environment atmosphere, combined the analysis of study of the relative field, jet theory is the first introduced, and according to the relevant research on the self-hold state for the gas free jet and combined with the grid generation technique of effective simulation of complex terrain, a suitable regional model of numerical analysis of the turbulent jet spreading is established. And then, the three dimensional differential mathematical model groups and the appropriate solution are deduced or choosed for the corresponding multicomponent gas diffusion transmission.
     3. Combined the field test of concentration distribution programme and analysis based on the extremum with the simulation theory of turbulent jet together, a comprehensive analysis method adapted to the unsteady diffusion characteristics of tunnel portal exhaust gas is discussed, in which a simulation scheme of a series of working conditions under the functions of multi-factors of the test is put forward, thus resulting in a appropriate comparative analysis between the testing and the simulation data, and in allusion to the different influencing factors in test mode such as natural wind velocity, air flowing temperature difference between outside and inside of tunnel, and the operating wind velocity of both tunnels, the influence rules of the exhaust gas diffusing and channeling around highway tunnel portal are discussed systematically under the corresponding working conditions groups, moreover, on the basis of field test data, under the forward different operation conditions.the maximum concentration range of the corresponding tunnel portal actual exhaust gas is also deduced out,and finally, the corresponding exhaust gas channeling status and the improvement status of the gas channeling under the wind block wall set up on the side of export tunnel are simulated.
     4. A systematic numerical analysis of the tunnel portal structure factors influencing on the exhaust gas channeling is carried out. Firstly, for the parallel tunnel portal with open terrain, from three angles such as the different transverse spacing of the both tunnel portals, the different natural wind speed, the wind block wall with different size set up in the middle and so on, the impact study of exhaust gas channeling around the portal is carried out. secondly, the correlational study of the influence factors on the parallel tunnel portal exhaust gas channeling is explored, and specially for the tunnel portals with the specific transverse clear distance, consideration of these structure factors such as whether or not the parallel tunnel both portals are longitudinal stagger, whether or not the block wall set up on the side of the exit tunnel, the entrance tunnel and in the middle, different length and height of the block wall and so on, adopting the six factors and different levels orthogonal experiment scheme, the impact researches on the exhause gas channeling around the parallel portal are carried out systematically. Finally, some suggestion on tunnel portal civil structures which are helpful or against to weaken the effect of the parallel portal exhause gas channeling are proposed.
     The curve families related to the measured data accumulate the most direct and reliable information for the research of the highway tunnel portal exhaust gas diffusing, and the analysis method and means for this testing provides a feasible new idea or a new approach for the testing and evaluation of some physical quantity which is under the action of unsteady multifactor. The suitable analysis regional model and the solving method for the exhaust gas turbulent jet diffuseness of highway tunnel portal provides an effective platform and means for systematic discuss. The integrated analyses method combining the measured data with the simulation theory of the turbulent jet diffusion provide a degree of reliability proof for numerical analysis. The forward prediction based on the measured data of the portal exhaust gas concentration and the favorable or unfavorable civil structure type of highway tunnel portal for the weakening of the exhaust gas channeling are proposed as some engineering suggestions for reference.
引文
[1]周国光.实施西部大开发战略对我国西部地区公路建设的影响及其融资策略[J].《交通财会》.2000,,(154):4-7
    [2]四川省交通厅.[四川]交通大跨越蜀道变通途——西部大开发十周年四川交通建设成就2010年01月13日
    [3]刘明洁.浅析我国公路建设与发展[J].黑龙江科技信息.2009.(16):210
    [4]菏泽市公路管理局.我国公路建设面临的机遇与挑战[J].科学与管理.2003,(5):59-60
    [5]蒋树屏.我国公路隧道建设技术的现状及展望[J].交通世界.2003,(2-3):22-27
    [6]郝祎,张颖异.重庆公路隧道的发展[J].公路交通技术.2006(3):104-108
    [7]杨彦明,曹振.秦岭特长公路隧道群通风设计[J].公路.2005,(4):186-190
    [8]韩星,张旭.静电除尘装置在公路隧道通风中的使用条件研究[J].公路交通技术.2007,(1):124-126
    [9]王明年,杨其新,赵秋林,刘培硕等.秦岭终南山特长公路隧道防灾方案研究[J]公路,,2000.(11):87-91
    [10]夏永旭.我国长大公路隧道通风中的几个问题[J].公路.2003.5(5):146-149
    [11]曾艳华,关宝树.平行导坑通风计算的研究[J]中国公路学报,,2002.15(3):73-75
    [12]王明年,杨其新,曾艳华,袁雪戡等.秦岭终南山特长公路隧道网络通风研究[J].公路交通科技,2002.1(4):65-68
    [13]蔡珊瑜特长隧道通风系统选型的探讨[J]地下空间,2004.3,24(1):75-76
    [14]陆懋成,王梦恕,刘维宁等.双向行车公路隧道的通风及防灾研究[J]现代隧道技术,2003.10,40(5):67-69
    [15]梁淦波,聂玉文,林仕雄等.石牙山隧道运营通风方案比选[J].铁路设计与隧道通风,四川建筑,2005 2,25(1):115-117
    [16]何川,李祖伟,王明年等.特长公路隧道智能前馈式通风系统研究[R].重庆:第11届隧道和地下工程科技动态报告会论文集,2004
    [17]韩直.公路隧道通风设计的理念与方法[J].地下空间与工程学报.2005,1(3):464-466
    [18]杨庆娣,匡江红.隧道出口污染物排放及控制的研究[J].环境保护科学2004,30(125):4-6
    [23]胡维撷.延安东路隧道复线工程通风设计[J].地下工程与隧道.1995,(1):22-24
    [24]胡维撷.城市道路隧道废气排放影响预测[J].地下工程与隧道.1997,(2):38-43
    [25]徐振涛,蒋维楣.南京鼓楼隧道汽车排气对环境的影响[J].环境检测管理与技术.1998,10(6):22-24
    [26]蒋维楣,于洪彬,谢国梁等.城市交通隧道废气排放环境影响的实验研究[J].环境科学学报.1998,18(2):188-192
    [27]张惠玲,王晓雯,杨秀军等.中梁山隧道污染治理改造方案研究[J].地下空间与工程学报.2009,5(2):325-328
    [28]田利伟.交通隧道洞口污染物扩散的控制策略研究[J].建筑热能通风空调.2011,30(2):28-32
    [29]张涵信.第四届亚洲计算流体力学会议学术交流情况[J].力学进展.2001(1):156-157
    [30]国家自然科学基金委员会数理科学部.第七届国际计算流体力学尝议简介[J].力学进力学进展.1998,28(3):430-431
    [31]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报.2005,27(2):115-117
    [32]刘红年,蒋维楣,徐振涛等.城市中心街道交通隧道废气排放模拟[J].中国环境科学.1998,18(6):494-497
    [33]杨庆娣,匡江红.隧道出口污染物排放及控制的研究[J].环境保护科学2004,30(125):4-6
    [34]余斌,匡江红,徐正好,朱国庆,张志英.隧道峒口废气对流扩散的数值研究[J].上海理工大学学报.2005,27(4):315-322
    [35]邓顺熙,成平.纵向通风隧道内空气污染物浓度及通风量的计算[J].中国公路学报.2002,15(1):86-88
    [36]李飞.近距离公路隧道送排风相互影响机理及其对策研究[D].武汉:中国科学院研究生院,2005:1-65
    [37]邓顺熙,张广,官燕玲.特长公路隧道洞口污染物扩散的有限元法模拟[J].中国公路学报.2006,19(3):59-64
    [38]余快、刘宏、王晓雯等.中梁山隧道洞口窜流二次污染数值分析[J].重庆交通大学学报(自然科学版).2011,30(2):225-228
    [39]槐文信,李炜,彭文启.横流中单圆孔紊动射流计算与特性分析[J].水利学报.1998,(4):7-14
    [40]曾玉红,槐文信.流动环境中三维圆形垂直浮力射流特性实验研究[J].实验流体力学.2005,19(3):39-46
    [41]周丰.动水环境中射流特性的实验与数值模拟研究[D].大连:大连理工大学,2007
    [42]张健,杨立,张士成,吕事桂.流动环境中圆孔水平热射流三维数值模拟[J].水科学进展.2011,22(5):668-673
    [43]董刚,王海峰,陈义良.火焰面模型模拟甲烷空气湍流射流扩散火焰[J].力学学报.2005,37(1):73-78
    [44]何沛.空气射流及合成气射流火焰的直接数值模拟研究[D].浙江:浙江大学,2010
    [45]杨云春,何嘉鹏,周汝等.垂向射流与挡烟垂壁组合控制烟气蔓延研究[J]. 消防科学与技术.2011,30(7):574-576
    [46]卢树德,李德波,易富兴等.三维超声速射流火焰的直接模拟研究[J].工程热物理学报.2012,33(2):326-330
    [47]葛少成,孙文策,王树刚,刘雅俊.锥形风幕风机流场的实验研究[J].煤矿安全.2005,36(1):1-3
    [48]李森生.双层百叶用于低温送风系统的气流组织模拟[J].铁道勘测与设计.2010(5):191-198
    [49]李炜,槐文信.浮力射流的理论及应用[M].北京:科学出版社,1997: 1-314
    [50]余常昭.紊动射流[M].北京:高等教育出版社,1993:1-195
    [51]周连伟.三维非恒定流场中圆形浮射流的数值模拟研究[D].大连:大连理工大学,2004
    [52]谢象春编著.湍流射流理论与计算[M].北京:科学出版社,1975:1-255
    [53]平浚编著.射流理论基础及应用[M].北京:中国宇航出版社,1995:1-230
    [54]禹华谦主编.工程流体力学(水力学)[M].成都:西南交通大学出版社,1999
    [55]熊鳌魁,詹德新,全贵均等.近水面淹没喷嘴射流流场特性的实验研究[J].水动力学研究与进展.1995,A辑10(4):429-433
    [56]槐文信,那宇彤,童汉毅,李爱华.静止浅水环境中铅垂紊动射流的试验研究[J].水利学报.2002,,(9):32-36
    [57]徐高田,韦鹤平.量纲分析对污水近区初始稀释度变化规律的探讨[J].上海环境科学.1997,16(10):24-26
    [58]陈勇娟,吴宝武,李国平等.四堡污水处理厂排污管喷口研究[J].河海大学学报.1994.22(1):40-44
    [59]蒋传丰,严忠民,周春天,刘明明.污水排海管扩散器模型试验研究[J].河海大学学报.1994,22(1):1-6
    [60]Lee.J.H.V and V Cheung,Generalized Lagrangian model for buoyant jets in current[J]. Journal of Environmental Engineering.1990.116(6):1085-1106.
    [61]Cheung,S.K.B.,etal.,VISJET-A computer ocean outfall modeling system[J]. IEEE Computer Graphics International,2000:75-80.
    [62]Wang.H.and A.W.-K.Law.Second -order integral model for a round turbulent buoyant jet[J]. Journal of Fluid Mechanics,2002,(459):397-428
    [63]槐文信,李炜.静止环境中倾斜浮力射流[J].武汉水利电力学院学报.1991,,24(5):489-493
    [64]程卫东.浮射流特性研究及图像处理技术的应用[D].北京:清华人学,1995
    [65]余常昭,李春华.圆形断面自由紊动水射流卷吸实验研究[J].气动实验与量测控制.1996,10(1):31-35
    [66]Hjertager B H.Magnussen BF. Calculation of tabulent three-dimensional jet induced flow in rectangular closures[J]. Comput Fluids.1981.9:395-407
    [67]Elghobashi SE,Pun W N,Spalding D B. Concentration fluctuation in isothermal turbulent confined coaxial jets[J]. Chem Eng Sci.1977.32:161-166
    [68]Ramos J LA numerical study of confined Turbulent jets. In:Taytlor C,S chrefler B A.eds. Numerical methods in laminar and turbulent flows[J]. Swansea:Pineridge Press,1981:401-402
    [69]Raghunatch G,kumar R,Liburdy J A.Application of k-ε closure to a heated turbulent offset jet[J].In;proceedings of the Eighth International Conference,1986:1153-1158
    [70]金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989
    [71]槐文信,李炜.双孔平面射流的数值模拟[J].水利学报.1994,(11):37-41
    [72]槐文信,杨晓亭.横流中多孔射流浓度场的特性[J].武汉水利电力大学学报.1997,30(5):16-20
    [73]张健,杨立,张士成,吕事桂.流动环境中圆孔水平热射流三维数值模拟[J].水科学进展.2011,22(5):668-673
    [74]曾玉红,槐文信.流动环境中三维圆形垂直浮力射流特性实验研究[J].实验流体力学.2005,19(3):39-46
    [75]姜国强,任秀文,李炜.横流环境湍射流涡动力学特性数值模拟[J].水科学进展.2010,21(3):307-313
    [76]王海兴,陈熙,潘文霞.湍流空气射流引射特性的模拟研究[J].工程热物理学报.2008,29(6):1025-1027
    [77]韩东升,王海兴,陈熙.湍流空气自由射流引射特性的比较研究[J].工程热物理学报.2011,,32(9):1538-1540
    [78]刘艳鹏,张如春,刘靖竖壁贴附射流空气池的数值模拟[J].西安航空技术高等专科学校学报.2007,25(1):23-25
    [79]李森生.双层百叶用于低温送风系统的气流组织模拟[J].铁道勘测与设计2010,(5):191-198
    [80]周俊虎,何沛,王智化等.液体射流与空气交叉流动喷雾的数值模拟[J].浙江大学学报(工学版).2008,42(6):989-993
    [81]杨中华,槐文信,王驰,余新明.排放角度对平面负浮力射流的影响及射流远区特性分析[J].武汉大学学报(工学版).2005,38(1):34-38
    [82]苏亚欣,赵丹,赵兵涛.射流间距对高温空气燃烧影响的数值研究[J].《工业加热》.2008,37(5):23-25
    [83]BRIGONI L A, GARIMELLA S V. Experimental optimazition of confined air jet pingement on a pin-fin heat sink [J].IEEE Trans on Componentsand Packaging Tech, 1999,22(3):399-404.
    [84]周孑民,曾文辉,叶良春.受限空气射流冲击矩形柱鳍热沉换热实验研究[J].热科学与技术.2007,6(1):70-73
    [85]陈莉,马景骏.空气射流场温度和速度的测量[J].应用科技.2003,30(12):43-45
    [86]杨玉容,何川,曾艳华.特长公路隧道出口废气浓度扩散的现场实测研究[J].地下空间与工程学报.2008,2(4):392-396
    [87]YANG Yurong, HE Chuan, YAN Qixiang, TANG Xiujun. FIELD TEST ABOUT INFLUENCE OF TRAFFIC EMISSIONS ON ENVIRONMENT ROUND EXIT SECTION OF HIGHWAY TUNNELWITH SPILLSHIELD TENT [C]. ChengDu:China, Proceedings of the 3rd International Conference on Transportation Engineering,2011,2965-2972
    [88]王令,杨运泉.深圳市道路交通及机动车尾气超标状况研究[J].南华大学学报(自然科学版).2006,,20(1):85-89
    [89]朱利中,刘勇建,沈红心等.公路隧道空气中多环芳烃的污染现状及影响因素分析[J].中国环境科学.1999,19(3):201-205
    [90]邓顺熙,董小林.我国山岭公路汽车CO、HCs和NOx排放系数[J].环境科学.2000.21:109-114
    [91]黄远峰,罗澍,何龙,陈嘉晔.深圳市机动车氮氧化物排放、环境空气污染预测和控制对策[J].中国环境监测.2001.17(1):7-10
    [92]申卫国.城市交通道路氮氧化物监测与评价方法研究[D]北京林业大学硕士论文2010.6
    [93]刘小波.深圳汽车行驶工况和污染物排放关系的测试研究[D].昆明:昆明理工大学,2007
    [94]王令,杨运泉.深圳市道路交通及机动车尾气超标状况研究[J].南华大学学报(自然科学版).2006.20(1):85-89
    [95]Committee on Biological Effects of Environmental Pollutants. Carbon monoxide [R].Washingto n DC:National Academy of Sciences,1977.
    [96]中华人民共和国行业标准(JTJ026.1-1999),公路隧道通风照明设计规范[s].北京:人民交通出版社,2000.
    [97]陈建勋.公路隧道运营通风效果现场实测与分析[J].长安大学学报(自然科学版).2002,22(5):51-54
    [98]王军,张旭,张荣鹏.城市长大隧道集中排放的环境影响分析[J].地下空间与工程学报.2009,,5(1):196-199
    [99]罗暾.Testo350M/XL烟气分析仪比对实验及应用中的问题[J].环境监测管理与技术.2006,18(6):47-48
    [100]艾杰,杨宝林,李玉平.隧道出口减光防晕设计[J].隧道建设.2009,5:57-60
    [101]敖敏霞.新城隧道遮光棚段光过渡效应与经济性的结合[J].隧道建设.2004,24(4):76-77
    [102]冯宝平,米建春.出口条件对圆形湍流射流远场区自保持性的影响[J].力学学报.2009,41(5):609-616
    [103]Mi J,Nobes DS,Nathan GJ. Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet[J]. fluid Mech,2001,38:577-612
    [104]Wygnanski.I.and H.Fielder,Some measurements in the self~preserving jet[J]. Journal of Fluid Mechanics Digital Archive,1969.38(03):577-612
    [105]Fukushima, C. X.Aanen.and J.Westerweel. Investigation of the mixing process in an axisy-mmetric turbulent jet using PIV and LIF[J]. Laser Techniques for Fluid Mechanics, 2002,339-356
    [106]Malmstr, Ouml,et al,Centreline velocity decay measurements in low-velocity axisymmetric jets [J]. Journal of Fluid Mechanics.2000.346(~1):p.363-377.
    [107]Kotsovinos,N.E.and P.B. angelidis, The Momentum Flux in turbulent submerged Jets[J]. Journal of fluid Mechanics,1991.229:453-470
    [108]Lockwood,F.C. and H.A. Moneib,Fluctuating Temperature Measurements in a heated Round Free Jet[J].Combustion Science and Technology,1980.22(1):63,81.
    [109]Abdel-Rahman,A.A.,S.F.Al-fahed,and w.Chakroun,the near-field characterist-ics of circular jets at low Reynolds numbers[J]. Mechanics Research Communications,1996.23(3):P.313-324
    [110]Pietri,L.,M.Amielh,and F.Anselmet,Simultaneous measurements of temperature and velocity Fluctuations in a slightly heated jet combining a cold wire and Laser Doppler Anemometry[J].International Journal of Heat and Fluid Flow,2000.21(1):22-36.
    [111]陶文栓.数值传热学(第2版)[M].成都:西安交通大学出版社,2004
    [112]李万平.计算流体力学[M].杭州:华中科技大学出版社,,2004
    [113]窦国仁.《紊流力学(上)》[M].北京:人民教育出版社出版,1981
    [114]窦国仁.《紊流力学(下)》[M].北京:人民教育出版社出版,1987
    [115]卢强,李德波,易富兴,罗坤,樊建人.三维超声速射流火焰的直接模拟研究[J].工程热物理学报.2012,31(2):326-330
    [116]Boersma,B.J.G.Brethouwer.and F.T.M.Nieuwstadt,A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet[J].Physics of fluids. 1998.10(4):899-909
    [117]Moin p,Mahesh K.Direct numerical simulation:a tool in turbulence reseach. Ann Rev Fluid Mech.118:30:39-78
    [118]万曦.湍流大涡数值模拟的现状与展望[J].航空科学技术.2011,55-56
    [119]虞有松,李国岫,赵鹏.喷孔内流对射流初始扰动影响的大涡模拟研究[J].工程热物理学报.2010,31(1):161-164
    [120]Jordan S A, Ragab S A. A large eddy simulation near wake of a circular cylinder. ASME J Fluids Engineering.1998.120:243-252
    [121]Yang Z Y. Large eddy simulation of fully developed turbulent flow in a rotating pipe. Int J Numer Methods Fluids.2000.33:681-694
    [122]郑韫哲,朱民,姜羲.旋流预混燃烧室流动混合的大涡模拟[J].航空动力学报.20 1 2,27(1):33-40
    [123]Zhou PY.On the velocity correlations and the equations of turbulent vorticity fluctuation[J]. Quart Appl Math.1945.1:33-54
    [124]Chen C-J,Jaw S-Y.Fundamentals of turbulence modeling[J].washington DC:Taylor & Francis,1998.xi:91-92,119,69,71,64,64
    [125]Zhou L.x.Chen T.Simulation of swirling gas-particle flow using USM and k-ε-kp two-phase turbulence models [J].Powder Technology.2001.114:1-11
    [126]Zhou L X,Yang M, Lian C Y,et al.On the second-order moment turbulence model for simulating bubble column[J].Chemical Engineering Science,2002,57:3269-3281.
    [127]Yu Y, Zhou L X, Wang B G, et al. A USM-Theta two-phase turbulence model for simulating dense gas-particle flows [J].Acta Mechanica Sinica,2005.21(3):228-234.
    [128]刘阳,许春晓,周力行等.气固流动大涡模拟和两相湍流模型的评价[J].清华大学学报(自然科学版.2009,49(2):297-300
    [129]刘顺隆,郑群编著计算流体力学[M]哈尔滨:哈尔滨工程大学出版社,1998
    [130]王承尧等编著.计算流体力学-并行算法[M].长沙:国防科技大学出版社,2000
    [131]章本照.流体力学数值方法[M].北京:机械工业出版社,2003
    [132]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [133]杨玉容.室内气流通风效率的三维数值分析[D].重庆大学硕士学位论文.2002.
    [134]苏铭德,孙喜明,韩宗耀.用墨浸法自动生成三维无结构网格[J].计算物理.2000,17(3):227-240
    [135]徐明海,张俨彬,陶文铨.一种改进的Delaunay三角形化剖分方法[J].石油大学学报(自然科学版).2001,25(2):100-105
    [136]苏铭德,朱方林.二维非结构网格生成及自动加密技术[J].计算物理.1998,15(1):6-10
    [137]陈斌,郭烈锦.非结构化网格快速生成技术[J].西安交通大学学报.2000,34(1):18-21
    [138]徐明海,王秋旺,陶文铨.用于传热与流动数值计算的一种三角化剖分新方法[J].清华大学学报(自然科学版).2000,,40(12):90-93
    [139]周敏,周军,林鹏,郭建国基于变弹翼方式的非结构动网格建模方法研究[J].西北工业大学学报.2012,30(2):206-210
    [140]张明亮基于四叉树网格近海海域波浪、潮流相互作用的数学模型[J].中国科学2012年第42卷第3期:294-309
    [141]熊可嘉,杨坤,王毅刚,李启良.轿车外流场及气动噪声的建模与仿真[J].汽车科技.2011,(5):41-45
    [142]王阳,徐国华,招启军.基于非结构网格CFD技术的旋翼气动噪声计算方法研究[J].空气动力学学报.2011,29(5):560-566
    [143]张振江.船舶CFD网格自动生成技术的开发及其应用[D].上海交通大学硕士论文.2011.
    [144]刘传超,张彬乾,孙静等.大型载重货车气动阻力计算与流场分析[J].汽车科技.2005,(4):24-26
    [145]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报.2005,27(2):155-122
    [146]赵琴Fluent软件的技术特点及其在暖通空调领域的应用[J].计算机应用.2003,,23:424-425
    [147]李勇,刘志友,安亦然介绍计算流体力学通用软件~Fluent[J].水动力学研究与进展2001年6月A辑第16卷第2期254-258
    [148]刘霞,葛新锋.FLUENT软件及其在我国的应用[J].能源研究与利用.2003,(2):36-37
    [149]韩占忠,王敬,兰小平编FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社2004年
    [150]闫小康,王利军fluent软件在通风工程中的应用[J].煤矿机械.2005,(11):153-155
    [151]方海鑫,曾令可,王慧等FLUENT软件的应用及其污染物生成模型分析[J].《工业炉》.2004,26(3):31-34
    [152]于蕾,李敏,林豹等FLUENT软件在射流模拟中的应用[J].科技情报开发与经济.2005,15(13):153-155
    [153]许雅娟,罗挺.Fluent用于大气污染污染扩散的数值模拟[J].后勤工程学院.2005,(2):23-26
    [154]王东屏,兆文忠,孙彦彬,刘爱伶.空调通风系统CFD防真及在摆式客车二等座车中的应用[J].大连铁道学院学报.2001.22(4):1-5
    [155]唐振朝,詹杰民室内空气环境的数值模拟与通风评估[J].水动力学研究与进展.2004,A辑19增刊:904-911
    [156]琚娟,高波,赵文成.高速列车通过隧道时洞口瞬变压力的产生机理[J].现代隧道技术.2003,40(3):11-13
    [157]曾艳华,何川.特长公路隧道全射流通风技术的运用[J].公路.2002,(7):129-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700